
Stochastic Automata for Fault

Tolerant Concurrent Systems

Raúl Enrique Monti

Argentina
2018

Advisor: Pedro Ruben D’Argenio
Co-advisor: Holger Hermanns

A thesis presented for the degree of
Doctor of Philosophy



1



Abstract

Automata modeling gives a rigorous mathematical structure to the invaluable anal-
ysis of highly dependable systems. Many kinds of automata have been defined,
ranging from the simple transition systems to the complexity of hybrid automata,
all the way through probabilistic automata, Petri nets and many others. The main
purpose of automata is to give a mathematical representation of a real system for
the purpose of its analysis. Being able to represent probabilistic election is a de-
sired modeling feature since most real life models include some kind of probabilistic
behavior. Much of this behavior happens on the continuous domain, when model-
ing for physical measures such as time, temperature, energy, etc. Complex systems
that present such behaviour are usually impossible to analyze by Model Checking
techniques given the state space explosion. Other techniques, such as simulation
(also known as Statistical Model Checking), become an alternative, given that they
avoid the construction of the full state space. No real simulation can be taken over
a non-deterministic model as it is. Non-determinism has to be resolved.

In this thesis we introduce a new class of automata named Input/Output
Stochastic Automata (IOSA), a restriction of Stochastic Automata with input
and output transitions. We define a first version of IOSA and we give it seman-
tic on Non-deterministic Labeled Markov Process (NLMP). We define a parallel
composition operator and a notion of bisimulation. We show that parallel compo-
sition is a congruence with respect to bisimulation. Finally we demonstrate that
closed IOSA models (fully generative models, i.e. without input actions) are fully
deterministic and thus amenable to discrete event simulation.

A second version of IOSA introduces urgent actions to the model in order
to enhance compositional modeling, a most desired characteristic in any modeling
formalism. This extension introduces non-determinism even into the closed model.
We are able to tell apart spurious non-determinism produced by confluent actions.
We first show that confluent models are weakly deterministic in the sense that,
regardless the resolution of the non-determinism, the stochastic behaviour is the
same. In addition, we provide sufficient conditions to ensure that a network of
interacting IOSAs, constructed with possibly non-confluent components, is con-

2



fluent, without the need to analyse the larger composed IOSA. In doing so, we
address the complications of defining a particular form of weak transition on a
continuous setting that is normally elusive.

Finally we use IOSA with urgency to define a formal semantics for Repairable
Fault Trees (RFT), a prominent technique for analyzing industrial models. From
what we know, this is the first work on semantics for Dynamic Fault Trees with
complex repairs that allows for general distributions of failure and repairs. Fur-
thermore our RFT models are shown to be deterministic in the absence of spare
gates, and even in the presence of a subset of combinations of spare gates and spare
basic elements, making them amenable to discrete event simulation. An example
of rare event simulation on Repairable Fault Trees using the rare event simulation
tool FIG (developed in the Dependable Systems group at FAMAF) closes this
work.

3



Acknowledgements

I want to acknowledge ...



Contents

1 Introduction 7
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.2 Needs and Means for Formal Analysis . . . . . . . . . . . . . . 9
1.3 Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.4 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.5 Thesis layout . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2 Preliminaries 16
2.1 Probability and Measure theory . . . . . . . . . . . . . . . . . 16

2.1.1 σ-algebras (or σ-fields) . . . . . . . . . . . . . . . . . . 16
2.1.2 Probability measure . . . . . . . . . . . . . . . . . . . 17
2.1.3 Measurable functions and Lebesgue integrals . . . . . . 18

2.2 Non-deterministic Labeled Markov Process . . . . . . . . . . . 19

3 Input/Output Stochastic Automata 23
3.1 Clocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.2 Open vs Closed model . . . . . . . . . . . . . . . . . . . . . . 26
3.3 Input/Output Stochastic Automata . . . . . . . . . . . . . . . 28
3.4 Semantics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.5 Composition and bisimulation as a congruence . . . . . . . . . 35
3.6 Determinism . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4 IOSA with Urgency 46
4.1 Input/Output Stochastic Automata with urgency (IOSAu) . . 48
4.2 Semantics of IOSAu . . . . . . . . . . . . . . . . . . . . . . . . 50
4.3 Parallel Composition . . . . . . . . . . . . . . . . . . . . . . . 52
4.4 Confluence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

5



4.5 Weak Determinism . . . . . . . . . . . . . . . . . . . . . . . . 60
4.6 Sufficient conditions for weak determinism . . . . . . . . . . . 68
4.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

5 Repairable Fault Trees 81
5.1 Repairable Fault Trees . . . . . . . . . . . . . . . . . . . . . . 88
5.2 Discussion on design. . . . . . . . . . . . . . . . . . . . . . . . 92
5.3 IOSA symbolic language . . . . . . . . . . . . . . . . . . . . . 93
5.4 A formal definition of RFT . . . . . . . . . . . . . . . . . . . . 96
5.5 Semantics of RFT . . . . . . . . . . . . . . . . . . . . . . . . . 99
5.6 RFTs are deterministic . . . . . . . . . . . . . . . . . . . . . . 110
5.7 An extended semantics . . . . . . . . . . . . . . . . . . . . . . 113
5.8 RFT Analysis in FIG Simulator . . . . . . . . . . . . . . . . . 120

5.8.1 Rare Event Simulation and FIG Simulator . . . . . . . 120
5.8.2 The Water Cooling System case study . . . . . . . . . 121

5.9 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

6 Concluding Discussions 125
6.1 Achievements . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
6.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

A IOSA Syntax 142

B Kepler Syntax 144

6



Chapter 1

Introduction

1.1 Motivation

Reactive embedded systems are present in most of the activities in our daily
life. From relatively simple tasks like controlling the lights in our streets,
watering the grass of our gardens, washing our clothes, or making us coffee,
to much more complex activities like flying planes, managing our satellites,
enabling complex medical analysis by the use of sophisticated machinery,
routing our Internet connection to the rest of the world, securing our cars
and buildings, controlling our power plants, etc. Embedded software is at the
core of much important systems to which we trust our security, health and
money. Hence, there is an important need to ensure their correct functioning.

The use of robots in industry has already meant a revolution in how
things are produced. The so called “Internet of things” presents us a fu-
ture where every day objects such as lamps, thermometers, hair dryers, and
other home appliances are all connected to the Internet. It is not difficult
to find this connected every day objects already in the market. This was
not the case some time ago when most of this activities were performed by
simpler electronic circuits, which were of not much analysis interest given
their simplicity, or were not performed at all. Nowadays, an important part
of the market for microprocessors is filled by microcontrollers that are the
programmable core of embedded systems. A typical mid-range automobile
has about 40 microcontrollers, while luxury cars can have up to 150. Most
of the home electronics carry one or more microcontrollers in them. This
microcontrollers are usually simpler than most known processors found in

7



our cellphones or computers, since they usually have a specific activity to
perform in contrast to the general utility of a PC.

One of the main challenges of analyzing embeded software is the contin-
ued interaction of this systems with the physical world. Classical computers
were aimed to interact with a keyboard and a monitor as input and out-
put objects. This is not the case of most of embeded systems which are
instead connected to sensors through which they perceive input data, and
they respond to the physical world by means of different and heterogeneous
actuators. Furthermore embeded systems are far more complex and analysis
demanding than those electronic circuits that used to perform their activity
in a more naive way. Some special characteristics of this systems will help
us to introduce the needs, and later the means, to analyze their behaviour:

Embedded systems are not meant to be upgraded nor tunned after
deployment. It is not the case that we can upgrade the software at our
microwave oven, or that we can take our fridge and make it do something
new from what it came with. It is usually difficult to stop a nuclear power
plant and upgrade the sensors and microcontrollers in charge of controlling
its correct functioning, or to get to change the behavior of microcontrollers
at a satellite. Embedded systems need to be correct and sound from the
beginning, and remain unchanged until the end of their functioning.

Embedded systems are in constant and never ending interaction
with their environment. They land on what Pnueli describes as reactive
systems [79]. During their interaction with the physical world, real-time con-
straints, and concurrency become an important issue to tackle. The usual
representation of this kind of systems behaviour is that of a never ending
loop, where the system listens to inputs from the concurrent behaving phys-
ical environment and reacts by responding accordingly and listening again.
This contrasts with other kind of systems that halt immediately after they
have transformed an input data into a result, known as transformational sys-
tems. This is also one of the reasons why time measuring is important and
availability is required, since the system has to keep up with the speed and
requests of a most heterogeneous concurrent physical world environment.

Embedded systems are highly dependable. There is no doubt that
the risk that involves the bad behavior of this systems is very high. Imagine

8



the landing sensors of an airplane failing, or the heat sensors of a power plant
failing. Imagine the loses on money if the microcontrollers for a line of new
cars are defective and all sold cars have to be called back to be fixed. This
systems require to be checked not only for correctnesses, but also for avail-
ability and effectiveness. It is not the case that an ATM will make you wait
half an hour to give you the money you asked for. It should not be the case
that a microcontroller on a satellite consumes half of the available battery
power. Thus, not only qualitative aspects regarding correctness are required
but also quantitative measures regarding effectiveness and availability are
desired to be met.

1.2 Needs and Means for Formal Analysis

We have left clear the necessity of a rigorous and efficient analysis of em-
bedded software. It can be deduced of course that the sooner we detect the
problem the more we reduce the costs of solving it. The design phase of a
software product is then of high interest for verification. High requirements
are put on performance and dependability, which places the necessity to find
the correct and effective methods to analyze this kind of software, taking not
only into account its nature but also its concurrent for-ever communicating
environment. Many formalisms have been proposed for this purpose, ranging
over stochastic process algebras [67, 41, 66], variations of Petri Nets [84, 83],
or appropriate extensions of automata such as timed automata [1, 64], prob-
abilistic automata [85] and hybrid automata [63]. Automata theory has pro-
vided us with an efficient and effective way of formally verifying dependability
and correctness of software design. Formal analysis has mostly focused on
qualitative analysis, that is, determining whether a correctness property is
satisfied or not by an abstract model of the system. However, the analysis of
quantitative properties like reliability, throughput, mean time to failure, etc.
is required for the system to provide an efficient and dependable service. For
example, we do not only want to know if a system is error free but also if it
can respond in an adequate time lapse while consuming a limited amount of
energy.

Time is an important requirement when modeling the behaviour of phys-
ical systems. It is of interest to accurately model perhaps the rate of failure
of a train component in order to analyze the mean time to failure of the train
itself. Dependability usually demands to meet probability goals which are

9



in much cases quantified in a continuous space responding to the physical
nature of the systems environment.

Model Checking [34, 80, 7] has been for a long time an important rigorous
technique for exhaustively verifying the correct behaviour of a model. Never-
theless, the increasing complexity of models of interest exposes Model Check-
ing limitations. In general, it is not possible to analyze stochastic systems
with general continuous distributions by using Model Checking. Simulation
[75, 107, 33], also known as statistical model checking, offers an alternative
by giving tight probability bounds without the need to construct nor visit
the whole state space, avoiding the state space explosion problem. Regard-
less which of this techniques we decide to use, a common pattern has to be
followed: a model has to be obtained as a formal specification of the design,
plus a formal specification of the desired properties of the model should be
written down using some kind of logic. The model has to be analyzed against
this properties using one of the mentioned methods. The expressiveness of
the modeling language is critical for the analysis of the desired properties.

While formal methods give a rigorous mathematical foundation in order
to justify the results of the analysis, their language and handling suffer many
times of a steep curve of learning, which keeps it away from being spreadly
used in industry. On the other hand, simpler design languages known as
lightweight languages, such as SDL (System Description Language), the UML
(Unified Modeling Language), or FT (Fault Trees), offer a far easier and intu-
itive way of representing and analyzing this designs, although their usual lack
of formalization or underspecification is a big drawback for formal analysis.

In order to keep up with nowadays needs for systems dependability anal-
ysis, it becomes crucial to join this two techniques by giving this lightweight
languages the firm mathematical foundations of model checking and simula-
tion.

1.3 Contribution

In this thesis we contribute on the modeling and verification of general dis-
tributed stochastic systems. Historically, modeling for Simulation and Model
Checking has been centered on Markovian models. Algorithms have been
studied and optimized for this kind of models where, in the continuous case,
time and other measures are governed by the exponential distribution. How-
ever, it is more often that we find that the physical world does not respond

10



to this kind of distribution. Stochastic Automata (SA) [41, 44] presents a
framework for compositionally modeling general distributed stochastic sys-
tems, dropping the Markovian restriction. By extending SA, we propose
a new formal modeling language for describing systems where events are
governed by general continuous probability distributions. The language is
called Input/Output Stochastic Automata (IOSA) and its semantic is build
on the firm mathematical bases of Nondeterministic Labeled Markov Pro-
cesses (NLMP)[47, 103]. Its purpose is to serve as modeling language for
the analysis of systems using Simulation techniques. For this reason, it is
important to ensure that the model under analysis is deterministic (only de-
terministic systems are subject to real simulation) in a first version, while
sufficient conditions for weak determinism are given for its second version.

IOSA has been design as a compositional description language. This
attends to several concerns such as avoiding the state explosion problems
which greatly reduce the efficiency and even the possibility to reach the de-
sired analysis. Moreover, compositionality allows re-usability of components
and models, by decoupling the system behaviour into independent compo-
nents. Furthermore, it helps on the whole engineering process by offering
a more intuitive and clear understanding of the system while modeling it
as arbitrarily simple independent components with precise communication
points. This contrasts with huge monolithic models, where the understand-
ing of the control flow becomes difficult and errors in the design turn to be
very common.

Finally we make an approach on bridging the gap with industrial en-
gineering on performance analysis and verification, by defining a rigorous
semantic for Dynamic Fault Trees with Repairs (RFT) in terms of our lan-
guage IOSA. We prove that models written in this RFT formalism are weak
deterministic in the sense that the only non-determinism present in them is
spurious and thus no matter how we decide to solve it, it will not affect the
final result of the properties to analyze. This determinism permits us to sim-
ulate over the RFT IOSA models. Nowadays, systems are required to have
a high degree of resilience and dependability. Assessing properties that fail
with extremely small probability in complex models can be computationally
very demanding. Rare Event Simulation is an effective alternative to the
more naive Monte Carlo Simulation when carrying out this kind of demand-
ing analysis. We analyze a case study using the Rare Event Simulation tool
FIG [32, 29, 26], which allows to effectively model and analyze fault tolerant
systems using the IOSA formalism.

11



1.4 Related work

Many formal modeling languages for general distributed stochastic systems
have already been devised. In fact, most of this work is an extension from
Stochastic Automata (SA) [41, 43, 44], which were motivated as an alter-
native to probabilistic automata in order to be capable of symbolically rep-
resenting the infinite nature of stochastic behaviour systems. Inspired by
generalized semi-Markov process and Timed Automata, SA introduce ran-
dom variable called clocks which determine at what time an event will oc-
cur by sampling from a general continuous probability distribution. In [43]
the model is presented as a compositional framework with an open and
a closed behaviour, and different types of bisimulation are suggested. SA
are non-deterministic, being this a drawback for simulation, since the non-
determinism has to be resolved either by patching the model or by the use
of schedulers defined by an expert in the model. In any case this is an error
prone activity, and thus there is a need to think and model systems in a
fully probabilistic way from its construction. IOSA is an attempt to do so.
Other works in this direction are Bravetti’s thesis on the specification and
analysis of stochastic timed systems via process algebras [22] and its work
with D’Argenio [23] where the stochastic behavior is generalized to arbitrary
continuous distributions. We also take several ideas from the work [104] for
the definition and analysis of the compositional asynchronous behavior of
IOSA.

Contemporary to SA we find Interactive Markov Chains (IMC) [65] and
its input/output version Input/Output Interactive Markov Chains (I/O-IMC)
[37], from which we inspired our work on confluence and weak determinism
for the urgent version of IOSAİ/O-IMC are also oriented to compositional
modeling, as an efficient way of avoiding the state explosion problem and
as a clean engineering practice. The main difference with our work is that
I/O-IMC only allows Markovian distributions on its transitions, i.e. only
exponential distributions in continuous spaces (although it suggests to use
phase type distributions to model other kinds of distributions), in contrast
to the native general continuous distribution support that IOSA enables.

For defining bisimulation on IOSA we take ideas from [46, 47, 11, 49].
More precisely we use one of the bisimulation on NLMP defined in [46].
The parallel composition operator on IOSA is defined based on ideas from
[53, 46, 47, 77]. In fact it very closely resembles the parallel composition
operator defined for Stochastic Automata in [41], but takes the generative-

12



reactive approach, as well as the input enableness concept, from [77].
There exist many attempts to effectively give a formal semantic to one of

the many variants of Fault Trees [52, 70, 13, 87, 10, 18], and many others.
The main difference between our work at chapter 5 and these other works is
that they either not consider the repair model, or they restrict to Markovian
models, or they do not ensure deterministic modeling. One of the most com-
prehensive works is [19]. It presents the formalization of a complete Fault
Tree framework including a Repair model, it does it in a compositional ag-
gregational manner in order to reduce the size of the final Markov Chain, but
relying on I/O-IMC as its semantic and thus concerning only on Markovian
models. Similarly, another model that comprises a repairable version of fault
trees is [13].Again, it restricts to Markovian Models by using Petri Nets as its
semantic, although being successful in reducing the state space of the model
in comparison to a pure Markov Chain approach. A less comprehensive but
similar work is [18], where Dynamic Fault Trees are formalized by means of
I/O-IMC with the restrictions we have already mentioned. Some other recent
works make an effective attempt to formalize Fault Trees. This is the case of
[71] which presents a unification of several known Fault Tree formalisms in
literature, which can be obtained by adequately selecting priorities and non-
determinism treatment. A compositional semantic is given on Generalized
Stochastic Petri Nets, but it does not treat the repairable model, neither the
general continuous probability: only exponential distribution is allowed. In
contrast to this works, we formalized Fault Trees and defined a clear semantic
for them all the way to its repairable fault trees extension, which completely
changes the logic of the models and introduces several new sources of non-
determinism and underspecification. It is important to remark that in none
of the aforementioned works it has been ensured deterministic models. In-
stead, we show that our semantics ensures weak-deterministic RFT models,
in the sense that the only non-determinism present in the model is spurious
and does not affect the stochastic behavior and hence the assessment of the
top event probability.

Furthermore we present a compositional semantic for the FT models, and
we symbolically execute simulations on the IOSA level avoiding the state
space explosion. Good surveys on fault trees and their formal specification
can be found at [93]. Finally we have not treated maintenance models as [91,
92] do. Maintenance models are an interesting approach to fault tolerance
treatment reason why we are living this topic as a future work.

13



1.5 Thesis layout

Besides the introduction and final discusions, this thesis is organized as fol-
lows:

Chapter 2 presents the general background on automata and measure
theory that are the foundations to most of the central theoretical results of
the thesis. More precisely: Section 2.1 presents some principles of measure
theory and probabilities, along with some important definitions on particular
σ-algebras and probability measures. Section 2.2 Presents Non Deterministic
Labeled Markov Process, which is used as the concrete semantics of IOSA and
IOSAu. We also recall the notion of bisimulation on this structure.

Chapter 3 introduces a first version of Input/Output Stochastic Automata.
Sections 3.1 and 3.2 recall previous works and concepts on modeling and anal-
ysis of stochastic concurrent systems, such as concurrency, compositionallity,
and modeling of general distributed time events in concurrent models. These
concepts motivate the work on the new automata IOSA. IOSA is defined in
Section 3.3. The semantics of IOSA in terms of NLMP in section Section 3.4.
In Section 3.5 we define parallel composition and bisimulation for IOSA. We
also show that bisimulation is a congruence for the parallel composition. In
Section 3.6 we prove that closed IOSA are deterministic and thus amenable
for discrete event simulation.

Chapter 4. In this chapter we extend IOSA with urgent actions. Section
4.1 defines IOSAu. Section 4.2 defines the semantics of IOSAu in terms of
NLMP. Section 4.3 defines parallel composition on IOSAu. Closed IOSAu

are non-deterministic in the general case. Confluence on IOSAu is defined in
Section 4.4. In Section 4.5, we define the concept of weak determinism and
show that every closed confluent IOSAu is weak deterministic. Finally, in
Section 4.6 we find sufficient conditions to ensure that a net of possible non-
confluent components is actually confluent. We also present a polynomial
time algorithm to check for these conditions.

Chapter 5. In this chapter we give semantics to Repairable Fault Trees
(RFT) in terms of IOSAu. The chapter begins with a discussion on the state
of the art in Fault Tree analysis. It also motivates the need for allowing

14



arbitrary continuous distributions along with complex repairs in Fault Tree.
Section 5.3 presents a symbolic language to describe IOSAu models. In Sec-
tion 5.4 we give a formal definition of RFT. We use the IOSAu symbolic
language to provide a formal semantics for RFT in Section 5.5. In Section
5.6, we show that any RFT model induces a wakly deterministic IOSAu. We
extend the RFT semantics with spare systems in Section 5.7. In Section 5.8,
we present a small case study which we analyze using the FIG simulator.

15



Chapter 2

Preliminaries

2.1 Probability and Measure theory

In this section we briefly present the main concepts on probability and mea-
sure theory, which we will use to sustain the development of our most impor-
tant results in the thesis. Measure theory allows us to analyze the behavior
of our automatons which evolve in a continuous space and take probabilistic
decisions on which path to follow. It is a mathematical sound foundation
over which we are able to define and justify our results. Most of the content
for this section is taken from [3].

2.1.1 σ-algebras (or σ-fields)

Measure theory deals with the problem of quantifying the possible outcomes
of an experiment. Given the set of possible outcomes S, a measure µ is a
set function on the subsets of S, i.e. µ : S2 → R+. Not every subset can be
measured, and we will call events to those subsets which can. A σ-algebra
gives a structure to the sets of events:

Definition 2.1. Let Σ be a collection of subsets of a set S. Then Σ is called
a σ-algebra if S ∈ Σ and Σ is closed under complementation and countable
union (thus under countable intersection too). This is:

• S ∈ Σ.

• if Q ∈ Σ, then Qc ∈ Σ.

16



• if Q1, Q2, ... ∈ Σ, then
⋃∞
i=1Qi ∈ Σ.

The intuition over this definition is that if a set Q is measurable then for
any experiment outcome ω ∈ S we should be able to know if ω is in Q. If
so, then we can tell if ω is in Qc. Even more, the answer to “is ω in S”?
is always True and thus S is an event. Finally if we can answer if ω is in
Qi for i ≥ 1, then we can answer if ω is in

⋃
iQi, and the same for their

intersection.
Let Q be a non empty proper subset of S. Then it can be easily proved

that {∅, S,Q,Qc} is the smallest σ-algebra containing Q. For a set G ⊆ 2S

of subsets of S, we write σ(G) to denote the minimal σ-algebra containing
G. We call each element in G a generator, we call G the generator set, and
σ(G) the generated σ-algebra.

A very useful σ-algebra is the Borel σ-algebra which is generated by
the set of all open sets in a topology. Particularly, the Borel σ-algebra on
the real line is B(R) = σ({(a, b)|a, b ∈ R and a < b}). Similarly, B([0, 1])
is the Borel σ-algebra on the interval [0, 1] generated by the open sets in
the interval [0, 1]. An equivalent construction is obtained by using the set
of all right semiclosed intervals or the set of all left semiclosed intervals as
generators.

We will call every Q ∈ Σ a measurable set, and we will usually attach
the σ-algebra to their corresponding base sets and we will call the tuple
(S,Σ) a measurable space, being (S, {∅, S}) the smaller one and (S,P(S))
the biggest.

Let (L,Λ) and (S,Σ) be measurable spaces. A measurable rectangle is a
set Q × B with Q ∈ Λ and B ∈ Σ. The product σ-algebra on L × S is the
smallest σ-algebra containing all measurable rectangles, and is denoted by
Λ⊗ Σ. The coproduct σ-algebra Λ⊕ Σ of L and S is defined in the disjoint
union L]S and it is generated by the set Λ∪Σ. If a collection of measurable
spaces (Si,Σi) for i = 1...n coincide in their σ-algebra to be a same Σ, then
we denote their product σ-algebra with Σn.

2.1.2 Probability measure

A measure on a σ-algebra Σ is a non-negative, extended real-valued function
µ on Σ such that it is σ-additive, i.e.

µ(
⋃
i∈N

Qi) =
∑
i∈N

µ(Qi)

17



for all countable family of pairwise disjoint measurable sets {Qi | i ∈ N} ⊆ Σ.
If furthermore µ(S) = 1 then µ is called a probability measure, in which case
µ : Σ → [0, 1]. We will often make use of the Dirac probability measure
concentrated on a point a ∈ S, defined for every Q ∈ Σ as:

δa(Q) =

{
1 if a ∈ Q
0 if a 6∈ Q

The following construction will be useful to define and analyze measures
on product sigma algebras. Given measures µ and µ′ on (L,Λ) and (S,Σ)
respectively, the product measure µ×µ′ on the product space (L×S,Λ⊗Σ)
is defined as the unique measure such that (µ × µ′)(Q × B) = µ(Q) · µ′(B)
for all Q ∈ Λ and B ∈ Σ. Furthermore, any measure µ on (L,Λ) can be
naturally extended into a measure µ̂ in the coproduct space (L ] S,Λ ⊕ Σ)
by taking µ̂(Q) = µ(Q\S), and similarly for measures on (S,Σ).

Let ∆(S) denote the set of all probability measures over the measurable
space (S,Σ). We let µ, µ′, µ1,. . . range over ∆(S). It will be convenient to
endow ∆(S) with a σ-algebra. For this we will use a standard construction
from Giry [57], where ∆(Σ) is defined as the σ-algebra generated by the
sets of probability measures ∆≥p(Q)

.
= {µ | µ(Q) ≥ p}, with Q ∈ Σ and

p ∈ [0, 1]. We let ξ and ζ range over ∆(Σ). It is worth to point out that, if the
underlying σ-algebra is generated by a denumerable π-system, each singleton
{µ} is measurable in the Giry σ-algebra. Furthermore it is guaranteed that
∆(Σ) separates points, i.e. if there are two measures µ 6= µ′ then there is
a generator that distinguishes them, or equivalently there exists Q ∈ ∆(Σ)
such that µ ∈ Q and µ′ 6∈ Q.

2.1.3 Measurable functions and Lebesgue integrals

Let (S1,Σ1) and (S2,Σ2) be two measurable spaces. A function f : S1 → S2

is said to be measurable if for all Q2 ∈ Σ2, f
−1(Q2) ∈ Σ1, i.e., its inverse

image maps measurable sets to measurable sets. It is standard to write
f : (S1,Σ1) → (S2,Σ2) to denote that the function f is measurable. Notice
that functions f : S → S ′ preserve complements and arbitrary (in particular

18



countable) unions,

f−1(Xc) = (f−1(X))c

f−1(
⋃
i

Xi) =
⋃
i

f−1(Xi)

Thus to prove that a function is measurable from (S1,Σ1) to (S2,Σ2), it is
sufficient to prove that its inverse maps every set from G into measurable set
in Σ1, where G is a generator set for Σ2.

It will often come handy to build probability measures from other prob-
ability measures. Given that we are working on continuous grounds we will
make use of integrals. Moreover, given its generality, we will make use of the
Lebesgue integral instead of the Riemann integral.

Definition 2.2 (Lebesgue integral of simple functions). Let h : (S,Σ) →
(R+,B(R+)) be a simple function, say h =

∑n
i=1 xiAi, for Ai disjoints sets

in Σ. Then we define the Lebesgue integral of h with respect to µ:∫
S

h δµ =
n∑
i=1

xiµ(Ai)

Since every measurable function can be considered as the limit of increas-
ing simple functions, the integral of measurable functions can be defined as
follows.

Definition 2.3 (Lebesgue integral of probability measures). Let h be a non-
negative Borel measurable function, i.e. h : (S,Σ)→ (R+,B(R+)), we define
the Lebesgue integral of h with respect to µ as follows∫

S

h δµ = sup

{∫
S

s δµ : s simple, 0 ≤ s ≤ h

}
Proposition 2.1. Let (S,Σ, µ) be a measure space and h : (S,Σ)→ (R+,B(R+))
be a measurable function. Then ν =

∫
S
h δµ is a measure.

2.2 Non-deterministic Labeled Markov Pro-

cess

Labeled Markov Processes [11, 48, 49] are a probabilistic class of labeled tran-
sition systems. They distinguish from other approaches by being founded on

19



the solid grounds of measure theory and Markov Process theory. LMP are
motivated by the needs of correctly modeling physical systems (also known
as hybrid systems) which evolve in a continuous state-space, by involving
continuous parameters such as distance, time, temperature, pressure. Such
systems usually combine this continuous space with discrete and commonly
but not always finite sets of actions. The resulting models are tested against
actions taken by the environment. In this sense we say that they are reactive
systems, and are meant to work concurrently. By not modeling the environ-
ment, LMP work on external non-determinism, this is, the behavior of the
environment is not known (i.e. non-deterministic) to the model. Bisimula-
tion on LMP extends that from Larsen and Skou [73], defined for the simpler
case of discrete space systems. Ideas from Joyal, Nielsen and Winskel [69],
allow to adapt it to the continuous space.

Definition 2.4 (Labeled Markov Processes). A labeled Markov process is a
triple (S,Σ, {Ta | a ∈ L}) where Σ is a σ-algebra on the set of states S , and
for each label a ∈ L, the transition probability function Ta : S → ∆(S)∪{∅̄}
is a measurable function. Here, we let 0 : Σ→ [0, 1] be the null measure such
that ∅̄(Q) = 0 for all Q ∈ Σ.

For each state s ∈ S, Ta(s)(Q) ∈ [0, 1] represents the conditional prob-
ability of reaching any state in Q ∈ Σ given that we are in state s and we
make a transition label a. The null function notation, and this LMP defini-
tion, is taken from [30] which slightly differs from the original definition from
[48]. Here, in order to model cases where certain transitions are refused to
be taken from certain states, we use the null function which gives probability
zero to every equivalence set in Σ, i.e. ∅̄(Q) = 0 for all Q ∈ Σ. In [48]
transition function are allowed to be a sub-probability function, instead.

Non-deterministic Labeled Markov Process arises as an extension of La-
beled Markov Process introducing internal non-determinism [46] . They can
also be seen as a continuous extension of Probabilistic Automata [94] to give
them a measure theoretic sound basis to continuous state space. This sound
base on measure theory is a key distinction from other approaches to the
topic. We find two distinguishable characteristics in NLMP: transition func-
tion Ta maps states into measurable sets of probability measures rather than
arbitrary sets. This allows to resolve non-determinism by the introduction
of schedulers later on. Allowing arbitrary sets could make the system suf-
fer from nonmeasurability in presence of certain non measurable continuous
sets. A class of structured NLMPs [30] also endows labels with a σ-algebra.

20



A second characteristic allows, as in LMP, to have well defined modal opera-
tors of a probabilistic Hennessy-Milner logic. This is achieved by restricting
Ta to measurable functions for each a ∈ L.

Definition 2.5. A non-deterministic labeled Markov process (NLMP for
short) is a structure (S,Σ, {Ta | a ∈ L}) where Σ is a σ-algebra on the set
of states S, and for each label a ∈ L we have Ta : S → ∆(Σ) is measurable
from Σ to the hit σ-algebra H(∆(Σ)).

The measurability requirement of Ta requires the definition of a σ-algebra
over its codomain, the Giry σ-algebra ∆(Σ). Furthermore, in order to be able
to map into measurable sets of measures over S, ∆(Σ), is endowed with a
σ-algebra called the hit σ-algebra H(∆(Σ)) [47].

Definition 2.6 (Hit σ-algebra). Let (S,Σ) be a measurable space, then
H(∆(Σ)) is the minimal σ-algebra containing all sets

Hξ = {ζ ∈ ∆(Σ)|ζ ∩ ξ 6= ∅}

for the measurable sets ξ ∈ ∆(Σ).

For each label a ∈ L the corresponding nondeterministic transition func-
tion Ta must be measurable from the σ-algebra of states to the hit σ-algebra
of measures, i.e. Ta : (S,Σ)→ (∆(Σ), H(∆(Σ))). To prove so, it is sufficient
to check the generators of the hit σ-algebra H(∆(Σ)), that is, it suffices to
show that for each ξ ∈ ∆(Σ), T−1a (Hξ) ∈ Σ. Notice that T−1a (Hξ) = {s ∈
S|T (s) ∩ ξ 6= ∅} is the set of all states s such that, through label a, the
transition function “hits” the set of measures in ξ.

In this work, we use NLMP to define the underlying semantics of In-
put/Output Stochastic Automata.

Bisimulation has become the main way to analyze behavioral equivalence
of transition systems in concurrency. It stands on the principle that two
agents should only be distinguish from each other if they can be observed to
behave differently by an interacting external third agent [82].

In [46] three varieties of bisimulation for NLMP are presented. The so
called traditional bisimulation is based on Milner’s original definition and
is constructed by lifting the state bisimulation to the probabilities space,
and checking that the set of outgoing probability measures from equivalent
states matches modulo this lifting. We resemble this definition when defining

21



bisimulation on IOSA. In fact, this definition is an adaptation of probabilistic
bisimulation, introduced by Larsen and Skou [73] in a discrete setting and
adapted to a continuous setting like NLMP in [49, 46]. The idea behind the
bisimulation equivalence is that from two equivalent states, an a-transition
should lead with equal probability to any measurable aggregate of equiva-
lence classes (properly speaking, to any measurable set that results from an
arbitrary union of equivalence classes).

Given a relation R ⊆ S×S, a set Q ⊆ S is R-closed if R(Q) ⊆ Q. If R is
symmetric, Q is R-closed iff for all s, t ∈ S such that s R t, s ∈ Q⇔ t ∈ Q.
Using this definition, a symmetric relation R can be lifted to an equivalence
relation in ∆(S) as follows: µ R µ′ iff for every R-closed Q ∈ Σ, µ(Q) =
µ′(Q).

Definition 2.7 (Traditional bisimulation). A relation R ⊆ S×S is a bisim-
ulation on the NLMP P = (S,Σ, {Ta | a ∈ L}) if it is symmetric and for all
a ∈ L, s R t implies that for all µ ∈ Ta(s), there is µ′ ∈ Ta(t) s.t. µ R µ′. We
say that s, t ∈ S are bisimilar, denoted by s ∼ t, if there is a bisimulation R
such that s R t.

We know that ∼ is an equivalence relation [46].
A second notion of bisimulation is defined just as for LMP in [39], and is

referred to as event bisimulation. The third bisimulation presented is original
to the paper and is based on the also original hit σ-algebras (see [46]). It
will be referred to as state bisimulation and it asserts that if s R t then both
Ta(s) and Ta(t) hit the same measurable sets of measures.

Definition 2.8 (State bisimulation). A relation R ⊆ S ×S is a state bisim-
ulation if it is symmetric and for all a ∈ L, we have sRt implies

∀ξ ∈ ∆(Σ(R)) : Ta(s) ∩ ξ 6= ∅⇔ Ta(t) ∩ ξ 6= ∅,

where Σ(R) is the sub-σ-algebra of Σ containing all R-closed Σ-measurable
sets, i.e. all Q ∈ Σ such that R(Q) ⊆ Q.

It has been shown that provided R is symmetric, R is a state bisimulation
if and only if Σ(R) is an event bisimulation. Furthermore, it has been proved
that if the NLMP is image denumerable, then R is a traditional bisimulation
if and only if it is a state bisimulation. This is precisely the case for IOSAs,
since its semantic is given by an image denumerable NLMP, thus the three
bisimulation concepts coincide.

22



Chapter 3

Input/Output Stochastic
Automata

Many formalisms have been proposed for modeling systems in order to ana-
lyze their reliability and performance. The field of stochastic process is one
of the most prominent in this topic. Modeling is no easy task, since not only
a good representation of the real system is intended, but also an efficient
representation is desired in order to avoid the state space explosion phenom-
ena that arises with the ever increasing size of the systems. This phenomena
is specially problematic in Model Checking where an exhaustive state space
exploration is the base of the technique. Though the full state space is not
needed to be inspected by simulation techniques, the state explosion is still
a problem in this kind of analysis, since it represents a drawback on the ef-
ficiency of algorithms and increases the time to obtain sufficiently accurate
statistic results.

In addition to considering efficiency matters, one should also take a look at
quality matters when modeling a system for performance and dependability
analysis. We will always want a model as true as possible to the real system.
Two main aspects of the modeling language are determining in this sense: it
should be complex enough to capture all those interesting characteristics of
the real system relevant to the intended analysis, and furthermore it should
allow to deliver maintainable models with a clearly understandable and sound
meaning, in order to avoid as much as possible the introduction of errors
during modeling.

That being said, there is no question that modeling can greatly benefit
from compositional approaches. This approaches facilitate systematic design

23



and the interchange of components, enable compositional analysis and help
for the compact representation of state spaces, along with other ways of at-
tacking the state explosion problem such as aggregation and minimization
techniques [6, 18]. Compositional modeling allows the designer to focus on
the modeling of the rather discernible operational behaviour of the compo-
nents and the evident synchronization among them (compare to the difficulty
of figuring out the whole behaviour in a monolithic model). The jump from
a monolithic kind of modeling to a compositional one is not direct, and it
requires to build formal mechanisms of interaction between components, and
analyze equivalence in behaviour, by means of for example bisimulation.

There is a clear need to consider general distributions when modeling
several time aspects of a concurrent system as could be activity durations
or time stamps. In fact it is nearly mandatory if the system is intended to
be analyzed on performance. This is though to the certainty that much of
the functional correctness of systems depend heavily in this real-time quan-
tities, and that moreover, correctly expressing this time aspects allows to
analyze and estimate performance issues. Although traditionally the memo-
ryless negative exponential distribution has offered a quite useful framework
for modeling and analyzing systems on continuous domains, and has yield an-
alytically tractable models (i.e., CTMCs), it is not able to truly model many
phenomena. Phenomena such as timeouts in communication protocols, hard
deadlines in real-time systems, human response times, the variability of the
delay of sound and video frames (so-called jitter) in modern multi-media com-
munication systems, censorial information in embedded systems, or natural
phenomena, are typically described by non-memoryless distributions such as
uniform, log-normal, or Weibull distributions.

Some works have been addressed in this direction, which introduce a
compositional kind of modeling on generally distributed stochastic systems
[23, 15], but they introduce non-determinism, which is undesirable if we want
to simulate over a model. No real simulation can be considered in a non-
deterministic model alone. Certain artificial mechanisms as the introduction
of schedulers or the intervention of a human decision needs to be implemented
in order to solve the non-determinism. Furthermore, care should be taken in
doing so in an unbiased way, which is not a simple task. This has two main
drawbacks: the simulation technique is no more a stand alone push button
technique, and artificial decisions, which are not considered to be part of the
real system to model, are introduced into the analysis. In general, it is not
possible to analyze generally distributed stochastic processes, let alone if they

24



are also non-deterministic. However, deterministic stochastic processes can
be simulated using discrete event simulation. Though there are approaches
to simulate MDP either by recognizing spurious non-determinism [14, 37]
or by sampling schedulers [40], it is not clear how these techniques scale to
continuous settings.

In this chapter we introduce an extension of Stochastic Automata named
Input/Output Stochastic Automata. Stochastic Automata [38, 43, 41] were
introduced as a model to symbolically represent probabilistic transition sys-
tems which for continuous probability spaces are infinite by nature. This is,
for instance, the case when we want to model systems with stochastic time
behavior, i.e. models in which the occurrence time of events may respond to
any continuous random variable. Stochastic automata (SA) provide a way to
represent their behavior in a finite fashion. SA are inspired on Generalized
semi-Markov Processes (GSMP) and timed automata, and are equipped with
compositionality and a probabilistic version of bisimulation, inherited from
its semantic built on probabilistic transition systems.

In a first attempt to produce a model that accomplishes both being able to
represent general distributed time events, and being suitable for simulation,
i.e. being fully deterministic, we introduced in this chapter the Input/Out-
put Stochastic Automata model. As the name suggests, we bring here an
input/output variant of Stochastic Automata that, once the model is closed
–i.e., all synchronizations are resolved–, the resulting automaton does not
contain non-deterministic choices. This turns it amenable to simulation in
the general case and to much more efficient analysis if restricted to Markov
models. We start the chapter by presenting a theoretical introduction to
IOSA, for which we provide a concrete semantic in terms of non-deterministic
labeled Markov Process (NLMP). We then prove that bisimulation is a con-
gruence for parallel composition both in NLMP and IOSA, show that paral-
lel composition commutes in the symbolic and concrete level, and provide a
proof that a closed IOSA is indeed deterministic.

3.1 Clocks

Stochastic automata [41, 43] use clock variables to control and observe the
passage of time. Since in the context of IOSA the time at which events occur
is random, clocks are in fact random variables. Whenever a clock is set, it
takes a random value whose probability depends on the distribution function

25



associated to the clock. As time evolves, clocks count down synchronously,
i.e., all do so at the same rate. When a clock reaches the value zero, “the
clock expires” and this may enable some events. In fact, in our context the
expiration of a clock will enable a transition to be taken. In this sense, the
evolution of the system will be determined by the continuously setting and
expiring of clocks. At each step we will check for the lowest valued clock and
the transitions it may enable. A key factor in our work will be to ensure that
the expiration of a clock does not enable more than one transition, which
otherwise would induce a non-deterministic situation. If x is a random clock
variable in C, then µx will denote its probability distribution. The notation

s
C,a,C′−−−−→ s′

will represent a transition from a state s to a state s′ producing the action
a that will be taken as soon as all clocks in the set C have expired, and will
instantly set all clocks in C ′, each one with a value sampled from their corre-
sponding probability distributions. Since clocks are random variables, they
will probably be assigned with a different value each, which will represent
a key factor when analyzing determinacy in IOSA models. We will usually
want to impose an ordering on the clocks of the model, for sake of simplicity.
For a set C of clocks we will denote ~C to this ordering, and given the set of
all valuations V : C− > Rn, ~v will denote a valuation for each clock in ~C.

3.2 Open vs Closed model

Starting from the notion of stochastic automata, we restrict this framework
to obtain IOSA. Based on Probabilistic Input/Output Automata [104] we
split actions into inputs and outputs and let them behave in a reactive and
generative manner respectively. This is, input actions stay passive and their
occurrence depend only in their interaction with output actions. In contrast,
the occurrence of output actions depends on the expiration of clocks and are
taken as soon as they become enabled (see [97] for the concepts of reactive and
generative transitions). The synchronization of an input and output action
results in an output action which is again available to synchronization with
other input actions. Thus, an output is broadcast to all components able to
listen to it through input actions. This is not the case in SA, where synchro-
nization between components is achieved by agreement and no distinction

26



between actions types is done. Agreement allows to block components by
not synchronizing with them. In contrast, our models are input enabled, and
thus they do not model the blocking of transitions by means of synchroniza-
tion. In our opinion this achieves higher decoupling of components, and a
much more clear treatment of determinism and compositionality.

We could also think that inputs are externally controlled actions and out-
puts are locally controlled actions. Precisely because of this, the occurrence
time of output actions is controlled by a random variable, while inputs are
passive and hence their occurrence time can only depend on their interaction
with outputs. In this sense we will call open models to those reactive models
where input actions are still present, and somehow information is missing in
order to determine the complete behaviour of that model. On the other hand
we will call closed models to those generative models where no input action is
present, and thus its behaviour is completely determine by the model itself.
A set of restrictions, which we will explain later, ensures that, almost surely,
no two outputs actions are enabled at the same time. This is intended to
ensure determinism on closed models in order to enable discrete event simu-
lation on IOSA models. An open model will become a closed model once all
its input actions have been synchronized through parallel composition with
other models, and turned into output (generative) actions.

When analyzing if a model is deterministic, we will focus on closed mod-
els, since open models are intrinsically nondeterministic given that their be-
haviour depends on the decisions made by the not yet synchronized and
potentially nondeterministic environment. Nevertheless, since our analysis
of determinism is done over the components of the model, we will find many
open models in the way.

Example 3.2.1 (Open vs Closed model for an egg selling business). In
Figure 3.1 we find a model of an egg selling business. In the open model
(Figure 3.1b), we find that we know the rate of production of the eggs along
we the rate for packing the eggs. Input transitions are still present in the
model since we do not have information about the shipping rates. This
will disallow us to make a complete analysis of the real system, since it will
depend on the time rates at which the shipping is done. These timings are not
known a priori, and, on what concerns to us, introduce a non-deterministic
choices on the occurrence time. The closed model (Figure 3.1d) completes
the model by synchronizing the open model with the missing shipping model
(Figure 3.1c). In this way input transitions are turned into output transitions

27



OPEN MODEL

CLOSED MODEL

(a)

{x}, put!, {y}
{y}, pack!,∅

∅,
sh
ip

?,
{x
}

(b)

{z}, ship!, {z}

(c)

{x}, put!, {y}

{y}, pack!,∅

{z
},
sh
ip

!,
{x
}

(d)

Figure 3.1: Open vs closed model. (a) Graphical representation of an egg
selling business. (b) IOSA of the open model in (a). (c) IOSA of a shipping
model. (d) IOSA of the closed model after composing (b) and (c).

which rates are given by the shipping model. The open model gives us a hint
on one of the benefits of compositionality, which is reusability. In fact many
models can be obtained by reusing the open model 3.1b and composing it
with different shipping models as 3.1c. A comparative analysis can be carried
out between this different settings, without the need of remodeling the whole
system each time, which would be the case on a monolithic style of modeling.

3.3 Input/Output Stochastic Automata

We present a first approach to Input/Output Stochastic Automata. The
formal definition of IOSA consists of a structure and a set of restrictions
which will eventually ensure that closed models are deterministic.

Definition 3.1. An input/output stochastic automaton (IOSA for short) is

28



a structure (S,A, C,−→, C0, s0), where S is a (denumerable) set of states, A
is a (denumerable) set of labels partitioned into disjoint sets of input labels
Ai, and output labels Ao, C is a (finite) set of clocks such that each x ∈ C
has associated a continuous probability measure µx on R (hence µx(d) = 0
for any d ∈ R) also satisfying that µx(R>0) = 1, −→ ⊆ S × C × A× C × S is
a transition function, C0 is the set of clocks that are initialized in the initial
state, and s0 ∈ S is the initial state. In addition an IOSA should satisfy the
following constraints:

(a) If s
C,a,C′−−−−→ s′ and a ∈ Ai, then C = ∅.

(b) If s
C,a,C′−−−−→ s′ and a ∈ Ao, then C is a singleton set.

(c) If s
{x},a1,C1−−−−−−→ s1 and s

{x},a2,C2−−−−−−→ s2 then a1 = a2, C1 = C2 and s1 = s2.

(d) If s
{x},a,C−−−−−→ s′ then, for every transition t

C1,b,C2−−−−→ s, either x ∈ C2, or

x /∈ C1 and there exists a transition t
{x},c,C3−−−−−→ t′.

(e) If s0
{x},a,C−−−−−→ s then x ∈ C0.

(f) For every a ∈ Ai and state s, there exists a transition s
∅,a,C−−−−→ s′.

(g) For every a ∈ Ai, if s
∅,a,C1−−−−→ s1 and s

∅,a,C2−−−−→ s2, then C1 = C2 and
s1 = s2.

The occurrence of an action is controlled by the expiration of clocks.

Thus, whenever s
{x},a,C−−−−→ s′ and the system is in state s, output action a will

occur once the value of clock x reaches 0. At this point, the system moves to
state s′ setting the values of every clock y ∈ C to a value sampled according

to the distribution µy. For input transitions s
∅,a,C−−−→ s′, the behaviour is

similar, only that its occurrence can potentially occur at any time which will
become definite once the action interacts with an output.

Since we intend IOSA to be deterministic, a few restrictions have been
made to the model, such that no two transitions are enabled at the same time.
Restriction (a) states that every input is reactive and hence their occurrence
is controlled by the environment. Hence no clock controls its occurrence.
Restriction (b) states that each output is generative (or locally controlled)

29



7

{x},
a1!,

C1

{x}, a2 !, C
2

Figure 3.2: Restriction (c)

so it has associated a clock which determines its occurrence time. We also
limit the set to exactly one clock, to have a clean definition.

Restriction (c) forbids that a single clock enables two different transitions,
otherwise two output actions would become enable simultaneously and the
choice on which one to take would become non-deterministic (See Figure 3.2
where 7 denotes a forbidden state). Besides, notice that if clocks are used

7
{z}, a!,∅ {x}, ·

· ·

{y}, · · ·

3
{z}, a!, {x} {x}, ·

· ·

3
{z}, a!,∅ {x}, ·

· ·

{x}, · · ·

Figure 3.3: Restriction (d)

when they have already expired they would immediately enable the respective
output transition. This may lead to simultaneously enabled outputs if the
system arrives to a states with two expired clocks enabling two different
transitions. Restrictions (d) and (e) ensure that a clock would never be used
when it has already expired. Particularly (d) states that an enabling clock
x at state s should either be set on arrival (x ∈ C2) or it has not been used
immediately before (x /∈ C1) but should be also enabling on the immediately
preceding state (See Figures 3.4 and 3.3 where 7 denotes a forbidden state and
3 allowed states). Since clocks are set by sampling from a continuous random
variable, the probability that the values of two different clocks are equal is
0. This last fact, together with restrictions (c), (d) and (e), guarantees that
almost never two different output transitions are enabled at the same time.

Restrictions (f) and (g) are usual restrictions on I/O-like automata: (f)
ensures that outputs are not blocked in a composition. This has a twofold
effect by ensuring that the original behaviour of the automatons is preserved,
and on the other hand by avoiding non-deterministic situations as the one
depicted in Figure 3.5. There, the gray state at the leftmost component lacks

30



s0 =⇒ {x, y} ∈ C0

{x},
· · ·

{y}, · · ·

Figure 3.4: Restriction (e)

of input enableness. This introduces non-determinism after synchronization
during parallel composition (see Definition 3.4 for the rules of composition),
finally violating restriction (d) at the state marked with an 7. Restriction

{x}, a!,∅

∅, b?,∅

∅, c?,∅

{z},
b!,∅

{y}, c!,∅

7
{x}, a!,∅ {z}, b

!,∅

{y}, c!,∅

|| ⇒

Figure 3.5: Restriction (f)

(g), also helps to ensure that determinism is preserved after composition,
since otherwise situations as the one depicted in Figure 3.6 could arise. This
is due to composition, where the synchronization between input and output
actions generates output actions as we will see in Definition 3.4.

{x}, a!, C
7

∅, a?
, C1

∅, a?, C
2

7

{x}, a
!, C
∪ C1

{x}, a!, C ∪ C
2

|| ⇒

Figure 3.6: Restriction (g)

3.4 Semantics

The semantics of IOSA is defined in terms of NLMP(see section 2.2), a gen-
eralization of probabilistic transition systems with continuous domain. The

31



formal semantics of an IOSA is defined by a NLMP with two classes of tran-
sitions: one that encodes the discrete steps and contains all the probabilistic
information introduced by the sampling of clocks, and other describing the
time steps, that only records the passage of time synchronously decreasing
the value of all clocks. In order to simplify the definition, we assume that
the set of clocks has a particular order and their current values follow the
same order in a vector. This is, ~C will denote this order on the set of clocks
C of cardinality n, and a valuation ~v from the set of valuations V : C −→ Rn,
will denote the values for each clock at any moment.

Definition 3.2. Given an IOSA I = (S,A, C,−→, C0, s0) with C = {x1, . . . , xN},
its semantics is defined by the NLMP P(I) = (S,B(S), {Ta | a ∈ L}) where

• S = (S ∪ {init})× RN , L = A ∪ R>0 ∪ {init}, with init /∈ S ∪ A ∪ R>0

• Tinit(init, ~v) = {δs0 ×
∏N

i=1 µxi}

• Ta(s,~v) = {µ~v,C′,s′ | s
C,a,C′−−−−→ s′,

∧
xi∈C ~v(i) ≤ 0},

for all a ∈ A, where µ~v,C′,s′ = δs′ ×
∏N

i=1 µxi with

µxi =

{
µxi ifxi ∈ C ′

δ~v(i) otherwise

• Td(s,~v) =

{δ−d(s,~v) | 0 < d ≤ min{~v(i) | ∃a∈Ao, C ′⊆C, s′∈S : s
{xi},a,C′−−−−−→ s′}}

for all d ∈ R≥0, where δ−d(s,~v) = δs ×
∏N

i=1 δ~v(i)−d.

The state space is the product space of the states of the IOSA with all
possible clock valuations. A distinguished initial state init is added to encode
the random initialization of all clocks (it would be sufficient to initialize
clocks in C0 but we decided for this simplification). Such encoding is done by
transition Tinit. The state space is structured in the usual Borel σ-algebra.
The discrete step is encoded by Ta , with a ∈ A. Notice that, at state (s,~v),

the transition s
C,a,C′−−−−→ s′ will only take place if

∧
xi∈C ~v(i) ≤ 0, that is,

if the current values of all clocks in C are not positive. For the particular
case of the input actions this will always be true. The next actual state

32



would be determined randomly as follows: the symbolic state will be s′ (this
corresponds to δs′ in µ~v,C′,s′ = δs′ ×

∏N
i=1 µxi), any clock not in C ′ preserves

the current value (hence µxi = δ~v(i) if xi /∈ C ′), and any clock in C ′ is set
randomly according to its respective associated distribution (hence µxi = µxi
if xi ∈ C ′). The time step is encoded by Td(s,~v) with d ∈ R≥0. It can
only take place at d units of time if there is no output transition enabled at
the current state within the next d time units (this is verified by condition

0 < d ≤ min{~v(i) | ∃a∈Ao, C ′⊆C, s′∈S : s
{xi},a,C′−−−−−→ s′}). That is, the

maximum possible time jump equals the minimum time required to elapse
until an output transition becomes enabled in the current state. In this case,
the system remains in the same symbolic state (this corresponds to δs in
δ−d(s,~v) = δs×

∏N
i=1 δ~v(i)−d), and all clock values are decreased by d units of times

(represented by δ~v(i)−d in the same formula). Figure 3.7 shows a drawing
representing the two types of transitions defined at IOSA semantics: the
transition corresponding to a discrete step on the left side, and the transition
corresponding to the time jump at the right side.

(s,~v) µ~vC′,s′
(s′, ~v′)

..
.

(s′, ~v′′)
(s,~v) (s,~v − d)

a δ−ds,~v

Figure 3.7: Transitions in the NLMP semantic of IOSA.

We still need to show that P(I) is indeed a NLMP. For this we have to
prove that Ta maps into measurable sets in ∆(B(S)) (Lemma 3.1), and that
Ta is a measurable function for every a ∈ L (Lemma 3.2).

Lemma 3.1. Ta(s,~v) ∈ ∆(B(S)) for all a ∈ L and (s,~v) ∈ S.

Proof. The proof makes use of Lemma 3.1 in [46], from which we know that
for all µ ∈ ∆(S), {µ} ∈ ∆(B(S)) (since B(S) is generated by a discrete
π-system).

Notice that for any ~v ∈ RN , Tinit(init, ~v) is a singleton set and hence
measurable. Similarly, notice that for every d ∈ R>0, s ∈ S, and ~v ∈ RN ,

33



Td(s,~v) is either a singleton set or the empty set, and hence measurable.
Finally, since there is only a denumerable number of transitions in an IOSA,
for every a ∈ A, s ∈ S, and ~v ∈ RN , Ta(s,~v) is a denumerable union of
singleton sets, and hence also measurable.

The following lemma uses the hit σ-algebra introduced in the preliminaries
(Section 2.6).

Lemma 3.2. For all a ∈ L, Ta is measurable from B(S) to H(∆(B(S))).

Proof. We need to show that for every a ∈ L and every ξ ∈ ∆(B(S)),
T −1a (H(ξ)) = {(s,~v) | Ta(s,~v) ∩ ξ 6= ∅} is measurable.

We divide the proof in three cases depending on the nature of the label
on the transition function. First, notice that T −1init (H(ξ)) = {init} × RN

if δs0 ×
∏N

i=1 µxi ∈ ξ and T −1init (H(ξ)) = ∅ otherwise, and both sets are
measurable.

We analyze now the case of a ∈ A, for which we can calculate

T −1a (H(ξ)) = {(s,~v) | {µ~v,C′,s′ | s
C,a,C′−−−−→ s′,

∧
xi∈C ~v(i) ≤ 0} ∩ ξ 6= ∅}

=
⋃
s
C,a,C′−−−→s′

{(s,~v) |
∧
xi∈C ~v(i) ≤ 0} ∩ {(s,~v) | µ~v,C′,s′ ∈ ξ}

Since the union is denumerable, it is sufficient to prove that the two inter-
secting sets are measurable. First, notice that {(s,~v) |

∧
xi∈C ~v(i) ≤ 0} =

{s} ×
∏N

i=1 Vi where Vi = (−∞, 0] if xi ∈ C and Vi = R otherwise. Hence, it
is measurable.

For the second case, define fC′,s′ : RN → ∆(S) by fC′,s′(~v) = µ~v,C′,s′ .
Then {(s,~v) | µ~v,C′,s′ ∈ ξ} = {(s,~v) | fC′,s′(~v) ∈ ξ} = {s} × f−1C′,s′(ξ). So,
it only remains to prove that fC′,s′ is a measurable function. Using [100,

Lemma 3.6], we only have to prove that f−1C′,s′(∆
≥q(A×

∏N
i=1 Vi)) with A ⊆ S

and Vi ∈ B(R), 1 ≤ i ≤ N , is measurable, for which we can calculate

f−1C′,s′(∆
≥q(A×

∏N
i=1 Vi)) = {~v | µ~v,C′,s′(A×

∏N
i=1 Vi) ≥ q}

= {~v | s′ ∈ A, (
∏

xi∈C′ µxi)(
∏

xi∈C′ Vi) ≥ q,∀xi /∈ C ′ : ~v(i) ∈ Vi}

Then, if s′ ∈ A and (
∏

xi∈C′)(
∏

xi∈C′ Vi) ≥ q, f−1C′,s′(∆
≥q(A ×

∏N
i=1 Vi)) =∏N

i=1 Vi with Vi = R if xi ∈ C ′, Vi = Vi if xi /∈ C ′, or f−1C′,s′(∆
≥q(A ×∏N

i=1 Vi)) = ∅ otherwise, and in both cases the sets are measurable.

34



For the case of d ∈ R, notice that

T −1d (H(ξ)) = {(s,~v) | δ−d(s,~v) ∈ ξ} ∩

{(s,~v) | 0 < d ≤ min{~v(i) | ∃a∈Ao, C ′⊆C, s′∈S : s
{xi},a,C′−−−−−→ s′}

The second set is equal to S ×
∏N

i=1 Vi where Vi = [d,∞) if s
{xi},a,C′−−−−−→ s′,

and Vi = R otherwise. Hence it is measurable. For the first set, define
fd : S → ∆(S) by fd(s,~v) = δ−d(s,~v). Then {(s,~v) | δ−d(s,~v) ∈ ξ} = f−1d (ξ) and
hence it suffices to show that fd is measurable. So, we have to prove that
f−1d (∆≥q(Q)) is measurable for any Q ∈ B(S). But f−1d (∆≥q(Q)) = {(s,~v) |
δ−d(s,~v)(Q) ≥ q} , and hence f−1d (∆≥q(Q)) = {(s,~v) | (s,~v− d) ∈ Q} if q > 0 or

f−1d (∆≥q(Q)) = S if q = 0 , and in both cases the sets are measurable.

3.5 Composition and bisimulation as a con-

gruence

Parallel composition is a fundamental tool for the modular construction of
large models. Parallel composition in IOSA models concurrency through the
interleaving of independent actions, but synchronizes equally named actions
just as it happens in CSP [68] and LOTOS [16].

Bisimulation is a notion of equivalence between agents. It is based on
the idea that we only want to distinguish between agents if their observable
behavior can be distinguished by a third agent [82].

In the case of IOSA, composition preserves bisimulation relation. This is,
bisimulation is a congruence with respect to the composition operator. This
allows us to replace components in our models by other components which
behave equally, hence without altering the behavior of the composed model.

In this section we define parallel composition of IOSA and show that
IOSA is closed for parallel composition. We also show that bisimulation is a
congruence for the parallel composition and we achieve it through defining
parallel composition on NLMP. Since we intend outputs to be autonomous
(or locally controlled), we do not allow synchronization between outputs.
Besides, we need to avoid name clashes on the clock, so that the intended
behaviour of each component is preserved and moreover, to ensure that the
resulting composed automata is indeed an IOSA. Thus we require to compose
only compatible IOSAs.

35



Definition 3.3. Two IOSAs I1 and I2 are said to be compatible if they do
not share output actions nor clocks, i.e. AO1 ∩ AO2 = ∅ and C1 ∩ C2 = ∅.

Definition 3.4. Given two compatible IOSAs I1 and I2, the parallel com-
position I1||I2 is a new IOSA (S1 × S2,A, C,−→, C0, s10||s20) where

(i) Ao = AO1 ∪ AO2

(ii) Ai = (AI1 ∪ AI2) \ Ao

(iii) C = C1 ∪ C2

(iv) C0 = C10 ∪ C20

and −→ is the smallest relation defined by rules in Table 3.1 where we write
s||t instead of (s, t).

Table 3.1: Parallel composition on IOSA

s1
C,a,C′−−−−→1 s

′
1

s1||s2
C,a,C′−−−−→ s′1||s2

a ∈ A1\A2 (R1)

s2
C,a,C′−−−−→2 s

′
2

s1||s2
C,a,C′−−−−→ s1||s′2

a ∈ A2\A1 (R2)

s1
C1,a,C′1−−−−−→1 s

′
1 s2

C2,a,C′2−−−−−→2 s
′
2

s1||s2
C1∪C2,a,C′1∪C′2−−−−−−−−−→ s′1||s′2

a ∈ A1∩A2 (R3)

Rules R1 and R2 from Table 3.1 refer to the interleaving of transitions.
This will be the case for all transitions for which the action does not belong
to the intersection of A1 and A2. On the other hand, rule R3 defines syn-
chronization for all actions in the intersection of the alphabets. Since both
automata are compatible, their output actions are disjoint, from which we
deduce that action a must be an input action in at least one of I1 or I2. In

36



case it is in both, the resulting transition will be an input transition. Oth-
erwise it would be an output transition (notice item (ii) in definition 3.4).
Given IOSA restrictions (a) and (b), the resulting transition will be well
formed.

The previous definition is only structural. We need to show that the seven
restrictions that define IOSAs also hold in the composed automata.

Theorem 3.1. Let I1 and I2 be two compatible IOSAs. Then I1||I2 is
indeed an IOSA.

Proof. The proof of restrictions (a), (b), (f), (e), and (g) follow by straight-
forward inspection on the rules, considering that I1 and I2 also satisfy the
respective restriction, and doing some case analysis. Since I1 and I2 are
compatible, restriction (c) also follows by inspecting the rules, taking into
account, in addition, that I1 and I2 also satisfy restriction (g).

So, we only focus on (d). Suppose s1||s2
{x},a,C−−−−−→ s′1||s′2. We analyze the

case in which a ∈ A1 and x ∈ C1. The other is symmetric. Moreover, we only
consider the case in which a ∈ A1 ∩ A2 since the case a ∈ A1 \ A2 follows
similarly.

In this case, we have that s1
{x},a,C1−−−−−→1 s

′
1, s2

∅,a,C2−−−−→2 s
′
2, and C = C1∪C2.

Let t1||t2
C′,b,C′′−−−−→ s1||s2. We distinguish three cases:

(i) Suppose b ∈ A1 \ A2. Then t1
C′,b,C′′−−−−→ s1 and t2 = s2. Because I1

satisfies (d), then either x ∈ C ′′, or x /∈ C ′ and there exist t1
{x},c,C3−−−−−→1

t′1. Hence x ∈ C ′′, or x /∈ C ′ and there exist t′2 and C ′3 such that

t1||t2
{x},c,C′3−−−−−→ t′1||t′2 (which may occur either by rule (R1) or (R3) if

c ∈ A1 ∩ A2).

(ii) If b ∈ A2 \A1, then t2
C′,b,C′′−−−−→2 s2 and t1 = s1. Notice that C ′, C ′′ ⊆ C2

and hence x /∈ C ′ and x /∈ C ′′. Moreover, since I2 is input enabled

(restriction (f)), t2
∅,a,C3−−−−→2 t

′
2 for some C3 and t′2. Then, by rule (R3),

s1||t2
{x},a,C1∪C3−−−−−−−→ s′1||t′2 which proves this case.

(iii) If b ∈ A1 ∩ A2, then, by rule (R3), t1
C′1,b,C

′′
1−−−−−→1 s1, t2

C′2,b,C
′′
2−−−−−→2 s2,

C ′ = C ′1 ∪ C ′2 and C ′′ = C ′′1 ∪ C ′′2 . Because I1 satisfies (d), then either

x ∈ C ′′1 , or x /∈ C ′1 and there exist t1
{x},c,C3−−−−−→1 t

′
1. If x ∈ C ′′1 , then

x ∈ C ′ partially proving this case. If instead x /∈ C ′1 and there exist

t1
{x},c,C3−−−−−→1 t

′
1, then x /∈ C ′′ (since x /∈ C ′′2 by compatibility), and there

37



exist t′2 and C ′3 such that t1||t2
{x},c,C′3−−−−−→ t′1||t′2 (which may occur either

by rule (R1) or (R3) if c ∈ A1 ∩ A2), finally proving this case.

To prove that bisimulation is a congruence on IOSAs, we first define a
parallel composition on NLMPs, prove congruence in this setting, and then
show that the semantics of the parallel composition of two IOSAs is isomor-
phic to the parallel composition of the semantics of each IOSA. From this,
it follows that bisimulation is also a congruence for the parallel composition
of IOSAs. An important consideration is that NLMPs are not closed for
parallel composition [55] in general, although they are in our settings, i.e.
when they correspond to the semantic of IOSAs. So we need to require that
the parallel composition of NLMPs is also a NLMP as a hypothesis of the
congruence theorem on NLMP (Theorem 3.2).

Definition 3.5. Let Pi = (Si,Σi, {T ia | a ∈ Li}), i ∈ {1, 2}, be two NLMPs.
We define the parallel composition by P1||P2 = (S1 × S2,Σ1 ⊗ Σ2, {Ta | a ∈
L1 ∪ L2}) where, writing s1||s2 instead of (s1, s2),

(i) Ta(s1||s2) = {µ1 × δs2 | µ1 ∈ T 1
a (s1)}, if a ∈ L1 \ L2,

(ii) Ta(s1||s2) = {δs1 × µ2 | µ2 ∈ T 2
a (s2)}, if a ∈ L2 \ L1, and

(iii) Ta(s1||s2) = {µ1 × µ2 | µ1 ∈ T 1
a (s1), µ2 ∈ T 2

a (s2)}, if a ∈ L1 ∩ L2.

The next theorem states that ∼ is a congruence for parallel composition
whenever the resulting composition is indeed a NLMP. For the definition of
∼ we refer the reader to Preliminaries ??.

Theorem 3.2. Let Pi = (Si,Σi, {T ia | a ∈ Li}) i ∈ {1, 2}, be two NLMPs.
If P1||P2 is a NLMP, then for all s1, s

′
1 ∈ S1 and s2 ∈ S2, if s1 ∼ s′1, then

s1||s2 ∼ s′1||s2 and s2||s1 ∼ s2||s′1.

Proof. We only prove that s1||s2 ∼ s′1||s2. The other case is symmetric. Let
R ⊆ S1×S1 be a bisimulation relation. Define R′ ⊆ (S1×S2) × (S1×S2)
by R′ = {(s1||s2, s′1||s2) | (s1, s

′
1) ∈ R, s2 ∈ S2}. We prove that R′ is a

bisimulation by doing case analysis on the definition of the transition relation
in the parallel composition.

Suppose in general that s1||s2 R′ s′1||s2, and consider the case in which
Ta(s1||s2) results from (i) in Definition 3.5. Let µ1 × δs2 ∈ Ta(s1||s2) with

38



µ1 ∈ T 1
a (s1). Since s1 R s′1, there exists µ′1 ∈ T 1

a (s′1) such that µ1 R µ′1.
Let Q ∈ Σ1 ⊗ Σ2 be R′-closed and define Q|s2 = {s1 | s1||s2 ∈ Q}. Q|s2 is
measurable in Σ1 [3], and can be easily proven to be R-closed. Now we can
calculate:

(µ1 × δs2)(Q) = (µ1 × δs2)(Q|s2 × {s2}) = µ1(Q|s2)
(∗)
= µ′1(Q|s2) = (µ′1 × δs2)(Q|s2 × {s2}) = (µ′1 × δs2)(Q)

where equality (∗) follows from µ1 R µ′1, and hence (µ1 × δs2) R′ (µ′1 × δs2).
Case (ii) in Definition 3.5 follows with a similar analysis, so we focus on

case (iii). Let µ1 × µ2 ∈ Ta(s1||s2) with µ1 ∈ T 1
a (s1). Since s1 R s′1, there

exists µ′1 ∈ T 1
a (s′1) such that µ1 R µ′1. Let Q ∈ Σ1 ⊗ Σ2 be R′-closed. Using

Fubini’s theorem [3], we calculate:

(µ1 × µ2)(Q) =

∫
S2

∫
S1

1Q(x, y) dµ1(x) dµ2(y)

=

∫
S2

∫
S1

1Q|y(x) dµ1(x) dµ2(y)

=

∫
S2

µ1(Q|y) dµ2(y)

(∗)
=

∫
S2

µ′1(Q|y) dµ2(y)

= (µ′1 × µ2)(Q)

where 1Q is the usual characteristic function, and (∗) follows from µ1 R µ′1.
Therefore (µ1 × µ2) R

′ (µ′1 × µ2).

Next, we prove that the semantic interpretation of IOSAs and parallel
composition commutes, that is, that the NLMP resulting from interpreting a
parallel composition of two IOSAs is isomorphic to the parallel composition
of the two NLMPs interpreting each of the IOSAs.

Theorem 3.3. Given two IOSAs I1 and I2, there is an isomorphism between
(the reachable parts of) P(I1||I2) and P(I1)||P(I2).

Proof. Let N and M be the number of clocks in I1 and I2, respectively.
Let S = ((S1 × S2) ∪ {init}) × RN+M and S′ = ((S1 × RN) × (S2 × RM)) ∪
(({init} ×RN)× ({init} ×RM)) be the states of P(I1||I2) and P(I1)||P(I2),

39



respectively 1. The isomorphism is given by function f : S → S′ defined by
f(init, ~v1~v2) = (init, ~v1)||(init, ~v2), and f((s1||s2), ~v1~v2) = (s1, ~v1)||(s2, ~v2) for
all s1 ∈ S1, s2 ∈ S2, and vectors ~v1 and ~v2 which represent valuations on
the sets of clocks C1 and C2 respectively. f is clearly bijective, and it can
be proved straightforwardly that both f and f−1 are measurable (i.e. f is
bimeasurable). From this, it follows that the measurable spaces (S,B(S))
and (S′,B(S′)) are isomorphic.

Following [51], f induces a map ∆f : ∆(S)→ ∆(S′) defined by ∆f(µ) =
µ ◦ f−1. It is not difficult to prove that ∆f is bijective and bimeasurable.
Hence, (∆(S),∆(B(S))) and (∆(S′),∆(B(S′))) are isomorphic.

We can lift f a second time to obtain an isomorphism on hit σ-algebras.
Define 2 Hf : ∆(B(S′)) → ∆(B(S)) by Hf = (∆f)−1. Again Hf can be
proven to be bijective and bimeasurable and hence, (∆(B(S)), H(∆(B(S))))
and (∆(B(S′)), H(∆(B(S′)))) are isomorphic.

Now, it is not difficult to see that for all a ∈ L, Ta(r) = Hf(T ′a (f(r)))
for all r ∈ S where Ta and T ′a are the transition functions on P(I1||I2) and
P(I1)||P(I2), respectively. This proves that both NLMPs are isomorphic.

Given two NLMPs P1 and P2 with the same set of labels, the definition of
bisimulation can be extended to states in the different NLMPs by construct-
ing the NLMP induced by the coproduct σ-algebra. The NLMP P1 ⊕ P2

is defined by the structure (S1 ] S2,Σ1 ⊕ Σ2, {Ta | a ∈ L}) where, for all
s ∈ S1 ] S2 and a ∈ L, Ta(s) = T 1

a (s) if s ∈ S1 and Ta(s) = T 2
a (s) if s ∈ S2.

Thus, if s1 and s2 are states of P1 and P2 respectively, s1 ∼ s2 whenever they
are bisimilar in P1 ⊕ P2.

By [51, Prop. 3.6], the next corollary follows immediately from Theo-
rem 3.3.

Corollary 3.1. For any ~v1 and ~v2 representing valuations of clocks in I1 and
I2, resp., (init, ~v1~v2) ∼ (init, ~v1)||(init, ~v2) and ((s1||s2), ~v1~v2) ∼ (s1, ~v1)||(s2, ~v2).

1Strictly speaking, P(I1)||P(I2) should also contain states of the form (s,~v1)||(init, ~v2)
and (init, ~v1)||(s,~v2) with s 6= init. Nonetheless, these states are not reachable. Thus, we
do not consider them since otherwise the result would not be strictly an isomorphism and
it would only add irrelevant technical problems to the proof.

2Note that the domain and image of Hf appear apparently inverted. This is necessary
in [51] since they only deal with morphisms, and we are following their definitions. In
our case, we could have also defined a direct map from ∆(B(S)) to ∆(B(S′)) since ∆f is
bimeasurable, namely H(f−1) = (∆(f−1))−1.

40



We say that two IOSAs I1 and I2 are bisimilar, notation I1 ∼ I2 whenever
(init, ~v1) ∼ (init, ~v2) for any vectors ~v1 and ~v2 representing the valuations of
clocks in I1 and I2, respectively.

Then, the fact that bisimulation equivalence is a congruence on IOSAs
follows from Theorem 3.2 and Corollary 3.1 and it is stated in the following
theorem.

Theorem 3.4. Let I1 and I2 be two IOSAs such that I1 ∼ I2. Then, for
any IOSA I3, I1||I3 ∼ I2||I3 and I3||I1 ∼ I3||I2.

3.6 Determinism

A closed IOSA is an IOSA in which all synchronizations, if ever existed in
the model, have been resolved through parallel composition. Therefore, it
has no input actions (i.e. Ai = ∅), and hence represents a fully generative
model. It is just then reasonable to talk about determinism of the model.

In this section we show that a closed IOSA is deterministic. Deterministic
IOSA are amenable for discrete event simulation or, in case all its clocks are
exponentially distributed random variables, also amenable for analysis as a
continuous time Markov chain. We will say that an IOSA is deterministic
if almost surely at most one discrete transition is enabled at every time
point. To avoid referring explicitly to time, we say instead that an IOSA is
deterministic if almost never reaches a state in which two different discrete
transitions are enabled.

Definition 3.6. An IOSA I is deterministic whenever in P(I) = (S,B(S), {Ta |
a ∈ L}), a state (s,~v) ∈ S such that

⋃
a∈A∪{init} Ta(s,~v) contains at least two

different probability measures, is almost never reached from any (init, ~v′) ∈ S.

By “almost never” we mean that the measure of the set of all paths
leading to a state (s,~v) ∈ S such that

⋃
a∈A∪{init} Ta(s,~v) contains at least

two elements is 0. A strictly formal definition of this requires a series of
definitions related to schedulers and measures on paths in NLMPs which
is not crucial for the developing of the result. (For a formal definition of
scheduler and probability measures on paths in NLMPs see [103, Chap. 7].)

Of course, to ensure determinism, timed transitions have to be taken into
account too. Thus, the previous definition only makes sense if P(I) satisfies
time additivity, time determinism, and maximal progress [106]. Particularly,

41



by maximal progress we understand that time cannot progress if an output
transition is enabled.

Theorem 3.5. For an IOSA I, its semantics P(I) = (S,B(S), {Ta | a ∈ L})
satisfies, for all (s,~v) ∈ S, a ∈ Ao and d, d′ ∈ R>0,

maximal progress: Ta(s,~v) 6= ∅ ⇒ Td(s,~v) = ∅

time determinism: µ, µ′ ∈ Td(s,~v) ⇒ µ = µ′, and

time additivity: δ−d(s,~v)∈Td(s,~v)∧δ−d′(s,~v−d)∈Td′(s,~v − d) ⇔ δ
−(d+d′)
(s,~v) ∈Td+d′(s,~v).

Proof. Notice that if Ta(s,~v) 6= ∅, with a ∈ Ao, then there exists a transition

s
{xj},a,C′−−−−−−→ s′ such that ~v(j) ≤ 0. Suppose by contradiction that Td(s,~v) 6= ∅,

then 0 < d ≤ min{~v(i) | ∃a∈Ao, C ′⊆C, s′∈S : s
{xi},a,C′−−−−−→ s′} ≤ ~v(j) ≤ 0,

which is a contradiction.
Time determinism is immediate by Definition 3.2 since either Td(s,~v) =

{δ−d(s,~v)} or Td(s,~v) = ∅.

For time additivity, let d̂ = min{~v(i) | ∃a∈Ao, C⊆C, s′∈S : s
{xi},a,C−−−−−→

s′}. Suppose δ−d(s,~v) ∈ Td(s,~v) and δ−d
′

(s,~v−d) ∈ Td′(s,~v − d). By Definition 3.2,

0 < d ≤ d̂ and 0 < d′ ≤ d̂−d, i.e. 0 < d+d′ ≤ d̂. Thus δ
−(d+d′)
(s,~v) ∈ Td+d′(s,~v).

Suppose now that δ
−(d+d′)
(s,~v) ∈ Td+d′(s,~v). Then 0 < d + d′ ≤ d̂ and thus

0 < d ≤ d̂ and 0 < d′ ≤ d̂ − d, which implies that δ−d(s,~v) ∈ Td(s,~v) and

δ−d
′

(s,~v−d) ∈ Td′(s,~v − d).

We now present the main theorem of this section.

Theorem 3.6. Every closed IOSA is deterministic.

The rest of the section is devoted to proving this theorem. From now on,
we work with the closed IOSA I = (S, C,A,−→, s0, C0), with |C| = N , and its
semantics P(I) = (S,B(S), {Ta | a ∈ L}). We recall that IOSAs only admit
sampling clock values from continuous random variables, which is essential
for the validity of Theorem 3.6.

For every state s ∈ S, let active(s) = {x | s {x},a,C−−−−−→ s′} be the set of
active clocks at state s. By Definition 3.1(d) it follows that active(s′) ⊆
(active(s)\{x}) ∪ C whenever s

{x},a,C−−−−−→ s′.

42



The idea of the proof of Theorem 3.6 is to show that the property that all
active clocks have non-negative values and they are different from each other
is almost surely an invariant of I, and that at most one transition is enabled
in every state satisfying such invariant. Formally, the invariant is the set

Inv = {(s,~v) | s ∈ S, ~v(i) 6= ~v(j), and ~v(i) ≥ 0

for all xi, xj ∈ active(s) with i 6= j} ∪ ({init}×RN) (3.1)

therefore, its complement set is

Invc = {(s, ~w) | s ∈ S, ~w(i) = ~w(j) for some xi, xj ∈ active(s) with i 6= j}
∪ {(s, ~w) | s ∈ S, ~w(i) < 0 for some xi ∈ active(s)} (3.2)

The next lemma states that Invc is almost never reached in one step from a
state satisfying the invariant.

Lemma 3.3. For all (s,~v) ∈ Inv, a ∈ L, and µ ∈ Ta(s,~v), µ(Invc) = 0.

Proof. We proceed analyzing by cases, according a is init, in A, or in R>0.
For a = init, we only consider states of the form (init, ~v) since Tinit(s,~v) 6=

∅ iff s = init. So, let µ ∈ Tinit(init, ~v). Then µ = δs0 ×
∏N

i=1 µxi . Since each
µxi is a continuous probability measure (hence the likelihood that two clocks
are set to the same value is 0) and µxi(R>0) = 1, then µ(Invc) = 0.

For a ∈ A, take µ ∈ Ta(s,~v) with (s,~v) ∈ Inv. Notice that s ∈ S. By

Definition 3.2 and because I is closed, there exists s
{x},a,C−−−−−→ s′ with ~v(i) ≤ 0

and µ = µ~v,C,s′ = δs′ ×
∏

i∈I µxi ×
∏

j∈J δ~v(j) where I = {i | xi ∈ C} and
J = {j | xj /∈ C}.

For each xi, xj ∈ active(s′) define Invcij = {(s′′, ~w) | s′′ ∈ S, ~w(i) = ~w(j)}
whenever i 6= j, and Invci = {(s′′, ~w) | s′′ ∈ S, ~w(i) < 0}. Notice that Invc =⋃

Invcij ∪
⋃

Invci and, since the unions are finite, µ(Invc) = 0 iff µ(Invcij) = 0
and µ(Invci) = 0, for every i, j. In the following, we show this last statement.

Let xi ∈ active(s′). Then xi ∈ (active(s)\{x}) ∪ C. If xi ∈ C, then
µ(Invci) = 0 because µi(R≥0) = 1. If instead xi ∈ active(s)\{x}, then
µ(Invci) = 0 because δ~v(i)(R≥0) = 1, since (s,~v) ∈ Inv and hence ~v(i) ≥ 0.

Let xi, xj ∈ active(s′) with i 6= j. Then xi, xj ∈ (active(s)\{x}) ∪ C. If
xi ∈ C then µi is a continuous probability measure and hence µ(Invcij) = 0.
Similarly if xj ∈ C. If instead xi, xj ∈ active(s)\{x}, then δ~v(i) 6= δ~v(j)
because (s,~v) ∈ Inv and hence ~v(i) 6= ~v(j). Therefore µ(Invcij) = 0. This
proves that µ(Invc) = 0 for this case.

43



Finally, take d ∈ R>0 and suppose that Td(s,~v) = {δ−d(s,~v)} with (s,~v) ∈

Inv. Notice that s ∈ S. By Definition 3.2, 0 < d ≤ min{~v(k) | s {xk},a,C′−−−−−−→
s′, a∈Ao} and δ−d(s,~v) = δs ×

∏N
i=1 δ~v(i)−d. We take sets Invcij and Invci as before

and follow a similar reasoning. For xi ∈ active(s), ~v(i)−d ≥ min{~v(k) |
s
{xk},a,C′−−−−−−→ s′, a∈Ao}−d ≥ 0 and hence δ~v(i)−d(R≥0) = 1. Therefore µ(Invci) =

0. For xi, xj ∈ active(s) with i 6=j, δ~v(i)−d 6= δ~v(j)−d because (s,~v) ∈ Inv and
hence ~v(i) 6= ~v(j). So µ(Invcij) = 0. This proves that µ(Invc) = 0 for this
case, and hence the lemma.

From Lemma 3.3 we have the following corollary.

Corollary 3.2. The set Invc is almost never reachable in P(I).

The proof of the corollary requires, again, the definitions related to sched-
ulers and measures on paths in NLMPs. We omit it here since the proof
eventually boils down to directly applying Lemma 3.3 and seeing that the
measure of all paths leading to a state in Invc is 0 for all possible schedulers.

The next lemma states that any state in the invariant Inv has at most
one discrete transition enabled.

Lemma 3.4. For all (s,~v) ∈ Inv, the set enabled(s,~v) =
⋃

a∈A∪{init} Ta(s,~v)
is either a singleton set or the empty set.

Proof. By Def 3.2, enabled(init, ~v) = Tinit(s,~v) = {δs0 ×
∏N

i=1 µxi}, which
proves this case. So, let (s,~v) ∈ Inv with s ∈ S and suppose that enabled(s,~v) 6=
∅. By Def 3.2, there is at least one transition s

{xi},a,C−−−−−→ s′ such that
~v(i) ≤ 0. Because, (s,~v) ∈ Inv and xi ∈ active(s), then ~v(i) = 0 and for
all xj ∈ active(s) with i 6= j, ~v(j) > 0. Condition (c) in Definition 3.1 en-

sures that there is no other transition s
{xi},b,C′−−−−−→ s′′ and, as a consequence,

enabled(s,~v) is a singleton set.

Finally, the proof of Theorem 3.6 is a direct consequence of Corollary 3.2
and Lemma 3.4.

Proof of Theorem 3.6. Let En≥2 = {(s,~v) ∈ S | |enabled(s,~v)| ≥ 2}. By
Corollary 3.2, En≥2 ⊆ Invc. Therefore, by Lemma 3.4, En≥2 is almost never
reachable.

44



3.7 Conclusion

In this chapter we have defined Input/Output Stochastic Automata. IOSA
enjoy the following important characteristics:

• IOSA is compositional, enabling reuse of components, significantly re-
ducing the state space explosion problem, and easing the engineering
of modeling systems.

• IOSA allows to model events that occur according to general continuous
probability measures and not only memoryless.

• Closed IOSA models are warrantied to be fully deterministic, that is,
all choices are resolved probabilistically.

These characteristics enable to use IOSA as an efficient and reality-fair model
for discrete event simulation. It has been used as the input specification lan-
guage in the first version of FIG rare event simulation tool (see Section 5.8.1).

All the formalities needed to support the language have been treated in
this chapter: its semantic has been given in terms of NLMPs. A bisimulation
relation has been defined (on NLMPs and then lifted to IOSAs) as well as a
parallel composition operator. Furthermore bisimulation on IOSAs has been
shown to be a congruence with respect to the parallel composition. Finally
we have proved that closed IOSA models are fully deterministic and hence
amenable to discrete event simulation without any further intervention of
schedulers nor human expertise to solve non-determinism.

45



Chapter 4

IOSA with Urgency

In the previous chapter we presented IOSA, a modeling language for general
distributed stochastic timed systems. From its features we highlighted (i)
the possibility to define general distributed occurrence of events, allowing
for a better representation of the real systems to be model in comparison
with other formalisms which only allow memoryless distributed time stamps;
(ii) that a closed IOSA model is deterministic and thus amanable to discrete
event simulation; (iii) that compositionality on IOSA attacks the exponential
growth of the state space, resulting in a more efficient analysis framework,
and providing cleaner and reusable models.

This chapter and, more specifically, the introduction of urgent transitions
in IOSA find motivation on the fact that compositionality in IOSA is greatly
limited by synchronization being taken only upon the expiration of a clock
(see parallelization rule R3). This constraints our capabilities for modular-
ization and makes a limited use of the benefits of compositionality.

In fact, by experimenting with the rare event simulation tool FIG [29,
26, 42], we have often experienced difficulties on compositional modeling and
this finally leads us to model a big monolithic component instead of the
more natural compositional model that would arise more naturally in other
languages such as Modest [15, 61, 62].

To illustrate this problem, in Figure 4.1 we find a graphical model of
a full two bits adder. Like other electronic devices it is described by gates,
which produce output signals as a logical combination of inputs. An intuitive
and reusable way of modeling such a device should take into account that all
gates of a given type work the same. Thus, a good design should, in principle,
model each kind of gate as a separate component, and combine their inputs

46



A
B

C_in S

C_out

Figure 4.1: Tow-bit full adder. The adder sums bit inputs A and B, taking
into account the carry in bit Cin. The result is signaled at S and if there is
any carry out, then it is placed at Cout.

and outputs in order to synchronize with each other and produce the desired
result. A usual abstraction when analyzing this kind of systems, considers
that gates work instantaneously, and communication between them is also
assumed to be instantaneous. Hence, a compositional approach as the one
described becomes impossible to obtain with the IOSA model introduced
in the previous chapter, since synchronization between gate components is
obliged to introduce clocks. Thus, we are forced to produce a monolithic
model in IOSA.

In this chapter we introduce Input/Output Stochastic Automata with Ur-
gency (IOSAu), an extension of IOSA with urgent actions. The occurrence
of output urgent transitions, i.e. those labeled by output urgent actions, are
not govern by the expiration of a clock. Instead, an urgent transition is taken
immediately, as soon as a state where it is enabled is reached. Urgent out-
puts are still considered generative and urgent inputs reactive, but neither
of them have clock constraints in their guards.

Whit the introduction of this new kind of transitions, we improve one of
the most useful characteristics of IOSA, namely its compositionality, but on
the other hand we have a drawback on another of its interesting features: this
extension introduces non-determinism even in the closed models. Neverthe-
less, we will find out that this non-determinism is produced between urgent
actions and that, usually, it is introduced by the interleaving of confluent ur-
gent actions. This non-determinism results to be spurious in the sense that
it does not change the stochastic results of the behavior of the system.

Based on [37], we define a notion of weak determinism for confluent

47



IOSAus, proving that these automata maintain their stochastic behavior re-
gardless the resolution of the non-determinism introduced by urgent actions.
Also based on the work of Crouzen [37], we provide sufficient conditions to
ensure that a network of interacting IOSAus is confluent, and thus weak
deterministic, without the need to obtain the composed model, hence avoid-
ing the usual state explosion problem. Such conditions can be verified in
polynomial time.

4.1 Input/Output Stochastic Automata with

urgency (IOSAu)

The formal definition of IOSAu is similar to that of IOSA. Just as before,
conditions are given with the purpose of ensuring that the defined structure
is deterministic in the absence of urgent actions. In the case of IOSAu, not
only input actions but also urgent actions lack of an enabling clock. This
corresponds to the fact that they will trigger as soon as the state is reached.

Definition 4.1. An input/output stochastic automaton with urgency is a
structure (S,A, C,−→, C0, s0), where

• S is a (denumerable) set of states,

• A is a (denumerable) set of labels partitioned into disjoint sets of input
labels Ai and output labels Ao, from which a subset Au ⊆ A is marked
as urgent,

• C is a (finite) set of clocks such that each x ∈ C has an associated
continuous probability measure µx on R s.t. µx(R>0) = 1,

• −→ ⊆ S × C ×A× C × S is a transition function,

• C0 is the set of clocks that are initialized in the initial state, and

• s0 ∈ S is the initial state.

In addition an IOSAu should satisfy the following constraints:

(a) If s
C,a,C′−−−−→ s′ and a ∈ Ai ∪ Au, then C = ∅.

(b) If s
C,a,C′−−−−→ s′ and a ∈ Ao \ Au, then C is a singleton set.

48



(c) If s
{x},a1,C1−−−−−−→ s1 and s

{x},a2,C2−−−−−−→ s2 then a1 = a2, C1 = C2 and s1 = s2.

(d) For every a ∈ Ai and state s, there exists a transition s
∅,a,C−−−−→ s′.

(e) For every a ∈ Ai, if s
∅,a,C′1−−−−→ s1 and s

∅,a,C′2−−−−→ s2, C
′
1 = C ′2 and s1 = s2.

(f) There exists a function active : S → 2C such that:

(i) active(s0) ⊆ C0,

(ii) enabling(s) ⊆ active(s),

(iii) if s is stable, active(s) = enabling(s), and

(iv) if t
C,a,C′−−−−→ s then active(s) ⊆ (active(t) \ C) ∪ C ′.

where enabling(s) = {y | s {y}, ,−−−−→ }, and s is stable if there is no a ∈ Au∩Ao

such that s
∅,a,−−−→ . ( indicates the existential quantification of a parameter.)

The occurrence of an output transition is controlled by the expiration of

clocks. If a ∈ Ao, s
C,a,C′−−−−→ s′ indicates that there is a transition from state

s to state s′ that can be taken only when all clocks in C have expired and,
when taken, it triggers action a and sets all clocks in C ′ to a value sampled
from their associated probability distribution. Notice that if C = ∅ (which

means a ∈ Ao ∩Au) s
C,a,C′−−−−→ s′ is immediately triggered. Instead, if a ∈ Ai,

s
∅,a,C′−−−−→ s′ is only intended to take place if an external output synchronizes

with it, which, in terms of an open system semantic, means that it may take
place at any possible time.

Restrictions (a) to (f) ensure that any closed IOSAu without urgent ac-
tions is deterministic, just as in the original IOSA. An IOSAu is closed if all
its synchronizations have been resolved, that is, the IOSAu resulting from a
composition does not have input actions (Ai = ∅). Since this restrictions
are very similar to those for IOSA (3.1), we just go through the differences.
Restriction (a) is two-folded: on the one hand, it specifies that output ur-
gent actions must occur as soon as the enabling state is reached, on the other
hand, as input actions are reactive and their time occurrence can only depend
on the interaction with an output, no clock can control their enabling.

Finally, (f) ensures that clocks enabling some output transition have not
expired before, that is, they have not been used before by another output

49



s0 s1 s2

I1

{x}, a!,∅ ∅, c!!,∅

s3 s4 s5

I2

{y}, b!,∅ ∅, d!!,∅

s6

s7

s8

s9

I3

∅, c
??,∅

∅, d??,∅

∅, d??, {z}

{z},
e!,

∅

Figure 4.2: Examples of IOSAus.

transition (without being reset in between) nor inadvertedly reached zero.
Function active collects all clocks that are required to be active (i.e. that
have been set but not yet expired) at each state. Notice that enabling clocks
are required to be active (conditions (f)(ii) and (f)(iii)). Also note that clocks
that are active in a state are allowed to remain active in a successor state
as long as the clock has not been used, and clocks that has just been set
may become active in the successor state (condition (f)(iv)). Furthermore,
this condition ensures that all the initially enabled clocks are included in the
initial clocks set. Note that this condition replaces conditions (d) and (e)
from definition 3.1. In this case, we need to take into account clocks that are
reset by a series of urgent transitions eventually arriving to the stable state.

Figure 4.2 depicts three simple examples of IOSAus. Although IOSAus
are input enabled, we have omitted self loops of input enabling transitions
for the sake of readability. In the figure, we represent output actions suffixed
by ‘!’ and by ‘!!’ when they are urgent, and input actions suffixed by ‘?’ and
by ‘??’ when they are urgent.

4.2 Semantics of IOSAu

Just as with IOSA, the semantic of IOSAu is defined in terms of non-
deterministic labeled Markov processes (NLMP) which extends LMP with
internal non-determinism (see Section 2.2 ).

The formal semantic of an IOSAu is defined by a NLMP with two classes
of transitions: one that encodes the discrete steps and contains all the prob-
abilistic information introduced by the sampling of clocks, and another de-
scribing the time steps that only records the passage of time synchronously

50



decreasing the value of all clocks. Again, for simplicity, we assume that the
set of clocks has a particular order and their current values follow the same
order in a vector.

Definition 4.2. Given an IOSAu I = (S,A, C,−→, C0, s0) with C = {x1, . . . , xN},
its semantic is defined by the NLMP P(I) = (S,B(S), {Ta | a ∈ L}) where

• S = (S ∪ {init})× RN , L = A ∪ R>0 ∪ {init}, with init /∈ S ∪ A ∪ R>0

• Tinit(init, ~v) = {δs0 ×
∏N

i=1 µxi},

• Ta(s,~v) = {µ~vC′,s′ | s
C,a,C′−−−−→ s′,

∧
xi∈C ~v(i) ≤ 0}, for all a ∈ A, where

µ~vC′,s′ = δs′×
∏N

i=1 µxi with µxi = µxi if xi ∈ C ′ and µxi = δ~v(i) otherwise,
and

• Td(s,~v) = {δs×
∏N

i=1 δ~v(i)−d} if there is no urgent b ∈ Ao∩Au for which

s
,b,−−→ and 0 < d ≤ min{~v(i) | ∃a∈Ao, C ′⊆C, s′∈S : s

{xi},a,C′−−−−−→ s′},
and Td(s,~v) = ∅ otherwise, for all d ∈ R≥0.

The state space is the product space of the states of the IOSAu with all
possible clock valuations. A distinguished initial state init is added to encode
the random initialization of all clocks (it would be sufficient to initialize
clocks in C0 but we decided for this simplification). Such encoding is done by
transition Tinit. The state space is structured with the usual Borel σ-algebra.
The discrete step is encoded by Ta , with a ∈ A. Notice that, at state (s,~v),

the transition s
C,a,C′−−−−→ s′ will only take place if

∧
xi∈C ~v(i) ≤ 0, that is,

if the current values of all clocks in C are not positive. For the particular
case of the input or urgent actions this will always be true. The next actual
state would be determined randomly as follows: the symbolic state will be
s′ (this corresponds to δs′ in µ~vC′,s′ = δs′ ×

∏N
i=1 µxi), any clock not in C ′

preserves the current value (hence µxi = δ~v(i) if xi /∈ C ′), and any clock in
C ′ is set randomly according to its respective associated distribution (hence
µxi = µxi if xi ∈ C ′). The time step is encoded by Td(s,~v) with d ∈ R≥0.
It can only take place at d units of time if there is no output transition
enabled at the current state within the next d time units (this is verified by

condition 0 < d ≤ min{~v(i) | ∃a∈Ao, C ′⊆C, s′∈S : s
{xi},a,C′−−−−−→ s′}). In this

case, the system remains in the same symbolic state (this corresponds to δs
in δ−d(s,~v) = δs ×

∏N
i=1 δ~v(i)−d), and all clock values are decreased by d units of

51



time (represented by δ~v(i)−d in the same formula). Note the difference from
the timed transitions semantic of pure IOSA. This is due to the maximal
progress assumption, which forces to take urgent transition as soon as they
get enabled. We encode this by not allowing to make time transitions in
presence of urgent actions, i.e. we check that there is no urgent b ∈ Ao ∩Au

for which s
,b,−−→ (in which case Td(s,~v) = ∅.) Instead, notice the patient

nature of a state (s,~v) that has no output enabled. That is, Td(s,~v) =
{δs ×

∏N
i=1 δ~v(i)−d} for all d > 0 whenever there is no output action b ∈ Ao

such that s
,b,−−→ .

In a similar way to Section 3.4, it is possible to show that P(I) is indeed
a NLMP, i.e. that Ta maps into measurable sets in ∆(B(S)), and that Ta
is a measurable function for every a ∈ L. The proof follows exactly as for
lemmas 3.1 and 3.2

4.3 Parallel Composition

In this section we define parallel composition of IOSAu. In doing so, we need
to avoid name clashes on the clocks, so that we ensure that the intended
behavior of each component is preserved. Furthermore, we do not allow
synchronization between outputs to ensure they are autonomous and locally
controlled. Finally, we should only allow synchronizing IOSAus that agree on
urgent actions in order to ensure their immediate occurrence. More precisely
we should only allow synchronization of compatible IOSAus as defined next:

Definition 4.3. Two IOSAus I1 and I2 are compatible if they do not share
output actions nor clocks, i.e. AO1 ∩AO2 = ∅ and C1∩C2 = ∅ and, moreover,
they agree on urgent actions, i.e. A1 ∩ Au

2 = A2 ∩ Au
1.

Definition 4.4. Given two compatible IOSAus I1 and I2, the parallel com-
position I1||I2 is a new IOSAu (S1 × S2,A, C,−→, C0, s

1
0||s20) where

(i) Ao = Ao
1 ∪ Ao

2

(ii) Ai = (Ai
1 ∪ Ai

2) \ Ao

(iii) Au = Au
1 ∪ Au

2

(iv) C = C1 ∪ C2

52



(v) C0 = C1
0 ∪ C2

0

and −→ is defined by the same rules in Table 3.1 where we write s||t instead
of (s, t).

Def 4.4 does not ensures a priori that the resulting structure satisfies
conditions (a)–(f) in Definition 4.1. This is only guaranteed by the following
proposition.

Proposition 4.1. Let I1 and I2 be two compatible IOSAus. Then I1||I2 is
indeed an IOSAu.

Proof. The proof of restrictions (a), (b), (d), and (e) follow by straight-
forward inspection of the rules, considering that I1 and I2 also satisfy the
respective restriction, and doing some case analysis. Since I1 and I2 are
compatible, restriction (c) also follows by inspecting the rules taking into
account, in addition, that I1 and I2 satisfy restriction (e).

To prove (f) we need to take into account that

enabling(s1) ∩ enabling(s2) = ∅

which is guaranteed by compatibility, and that

enabling(s1||s2) = enabling(s1) ∪ enabling(s2)

which is guaranteed by input enabling.
We take active(s1||s2) = active1(s1)∪active2(s2) and prove that it satisfies

conditions (i)–(iv) in (f).

(i) active(s10||s20) = active1(s
1
0) ∪ active2(s

2
0) ⊆ C1

0 ∪ C2
0 = C0.

(ii) enabling(s1||s2) = enabling(s1)∪enabling(s2) ⊆ active1(s1)∪active2(s2) =
active(s1||s2).

(iii) Let s1||s2 be stable, then s1 and s2 are stable as well (guaranteed by
input enabledness). Then active(s1||s2) = active1(s1) ∪ active2(s2) =
enabling(s1) ∪ enabling(s2) = enabling(s1||s2).

(iv) Let t1||t2
C,a,C′−−−−→ s1||s2. We prove by cases according to the rules in

Table 3.1

53



(R1) Let a ∈ A1 \ A2. Then t1
C,a,C′−−−−→ s1 and s2 = t2, and we can cal-

culate: active(s1||s2) = active1(s1) ∪ active2(s2) = active1(s1) ∪
active2(t2) ⊆ (active1(t1) \ C) ∪ C ′ ∪ active2(t2) = ((active1(t1) ∪
active2(t2))\C)∪C ′ = (active(t1||t2) \ C) ∪ C ′. In particular, the
last but one equality follows by compatibility.

(R2) Similar to the previous case if a ∈ A2 \ A1.

(R3) Let a ∈ A1 ∪A2. Then t1
C1,a,C′1−−−−−→ s1 and t2

C2,a,C′2−−−−−→ s2, with C =
C1 ∪ C2 and C ′ = C ′1 ∪ C ′2, and we can calculate: active(s1||s2) =
active1(s1) ∪ active2(s2) ⊆ ((active1(t1)\C1)∪C ′1)∪((active2(t2)\
C2) ∪ C ′2) = ((active1(t1) ∪ active2(t2)) \ C1 ∪ C2) ∪ C ′1 ∪ C ′2 =
(active(t1||t2) \ C) ∪ C ′. The last but one equality follow by com-
patibility.

s0||s3||s6 s1||s3||s6 s2||s3||s7

s0||s4||s6 s1||s4||s6 s2||s4||s7

s0||s5||s9 s1||s5||s9 s2||s5||s9 s2||s5||s8

{x}, a!,∅

{y}, b!,∅

∅, c!!,∅

{y}, b!,∅
{y}, b!,∅

{x}, a!,∅

∅, d!!,∅

∅, c!!,∅

∅, d!!,∅ ∅, d!!,∅

{x}, a!,∅ ∅, c!!,∅ {x}, e!,∅

Figure 4.3: Composition I1||I2||I3.

Figure 4.3 shows the result of composing components I1, I2, and I3 from
example 4.2.

It can be shown that the bisimulation equivalence is a congruence for
parallel composition of IOSAu. In fact, we have already shown this for IOSA
without urgency at Corollary 3.1, and since the characteristics of urgency do
not play any role in the proof of Corollary 3.1 the result immediately extends
to this new setting. We formalize this in the following theorem.

54



Theorem 4.1. Let ∼ denote the bisimimulation equivalence relation on
NLMPs from definition 2.7 properly lifted to IOSAu, and let I1, I ′1, I2, I ′2
be IOSAus such that I1 ∼ I ′1 and I2 ∼ I ′2.Then, I1||I2 ∼ I ′1||I ′2.

4.4 Confluence

In this section we present a notion of confluence, first introduced by Robert
Milner in his book Communication and Concurrency [82]. As a notion of
behaviour equivalence, confluence will help us to eliminate of certain kinds
of non-determinism introduced by urgent actions. We say that such cases of
non-determinism are spurious, as they represent situations where any possible
decision on which path to follow do not change the stochastic behaviour of
the automaton. We call weakly deterministic the class of IOSAus which only
present such kind of non-determinism.

As exemplified by I3 in Figure 4.2, IOSAus with urgency can be nonde-
terministic (a priori no indication is given on which action to take at state
s6). Furthermore, even closed IOSAus may be non-deterministic. Consider
for example the composition of I3 with I4 in Figure 4.4 resulting int the
composed IOSAu I5 at the right of Figure 4.4, Notice that I5 is closed but
nevertheless non-deterministic.

s10 s11

I4

∅, c!!,∅

∅, d!!,∅

s6||s10

s7||s11

s8||s10

s9||s10

I5 ∅,
c!!
,∅

∅, d!!,∅

∅, d!!, {z}

{z}
, e!
,∅

Figure 4.4: I5 is the result of composition I3||I4.

Using the concept of confluence [82, Chapter 11.3], we proceed to identify
an important set of IOSAus that are weakly-deterministic. In our case we will
eventually consider that the urgent actions in a closed IOSAu are silent, since
they do not delay the behaviour of the model. Furthermore, confluent urgent

55



actions can be interchanged while not modifying the stochastic behaviour of
the model. Thus, we will focus on the study of confluence over our urgent
actions only.

s s1

s2 s3

∀

∃

∅, a, C1

∅
,b
,C

2

∅
,b
,C

2

∅, a, C1

Figure 4.5: Confluence in IOSA.

More precisely, an IOSAu I is confluent with respect to urgent actions
a and b in Au if for every state s in S we can complete the diagram from
Figure 4.5. Note that we are asking to converge in a single state, which is
stronger than Milner’s strong confluence, where convergence takes place on
bisimilar but potentially distinct states. Formally:

Definition 4.5. An IOSAu I is confluent with respect to actions a, b ∈ Au,
if for every state s ∈ S it satisfies that:

s
∅,a,C1−−−−→ s1 ∧ s

∅,b,C2−−−−→ s2 =⇒ ∃s3 ∈ S · s1
∅,b,C2−−−−→ s3 ∧ s2

∅,a,C1−−−−→ s3

I is confluent if it is confluent with respect to every pair of urgent actions.

Confluence is preserved by parallel composition as demonstrated in the
following proposition.

Proposition 4.2. If both I1 and I2 are confluent w.r.t. urgent actions a
and b, then so is I1||I2. Therefore, if I1 and I2 are confluent, I1||I2 is also
confluent.

Proof. Let s1||s2 in SI1||I2 , such that s1||s2
∅,a,C′−−−−→ s′1||s′2 and s1||s2

∅,b,C′′−−−−→
s′′1||s′′2 with a, b ∈ AI1||I2 . We proceed by case analysis on each possible
combinations of the rules in Table 3.1 that originates the transitions. We

prove the case in which s1||s2
∅,a,C′−−−−→ s′1||s′2 is produced by rule (R1), hence

56



a ∈ AI1 \ AI2 . The rest proceeds in a similar way. Then s′2 = s2 and

s1
∅,a,C′−−−−→ s′1. We have then three sub-cases given the nature of b:

• If b ∈ AI1\AI2 , rule (R1) applies and hence s′′2 = s2 and s1
∅,b,C′−−−−→

s′′1. Since I1 is confluent, there exists s′′′1 such that s′1
∅,a,C′−−−−→ s′′′1 and

s′′1
∅,b,C′′−−−−→ s′′′1 . Using (R1) in both cases, s′1||s2

∅,a,C′−−−−→ s′′′1 ||s2 and

s′′1||s2
∅,b,C′′−−−−→ s′′′1 ||s2, which proves this case.

• If b ∈ AI2\AI1 , (R2) applies and hence s1 = s′′1 and s2
∅,b,C′′−−−−→ s′′2.

By (R1), s1||s′′2
∅,a,C′−−−−→ s′1||s′′2, and by (R2), s′1||s2

∅,b,C′′−−−−→ s′1||s′′2 which
proves this case.

• If b ∈ AI1∩AI2 , (R3) applies. Hence there are C ′′1 and C ′′2 such that

C ′′ = C ′′1 ∪ C ′′2 , s1
∅,b,C′′1−−−−→ s′′1 and s2

∅,b,C′′2−−−−→ s′′2. Furthermore, since I1
is confluent, there exists s′′′1 such that s′1

∅,b,C′′1−−−−→ s′′′1 and s′′1
∅,a,C′−−−−→ s′′′1 .

Then, by (R3), s′1||s2
∅,b,C′′−−−−→ s′′′1 ||s′′2, and by (R1), s′′1||s′′2

∅,a,C′−−−−→ s′′′1 ||s′′2,
which concludes the proof.

Proposition 4.2 implies that no matter how big and complex our system
is, if it can be decomposed into confluent components then the model is con-
fluent. Furthermore, composing the model with other confluent components
delivers a new confluent model.

Nevertheless this is not the case of non-confluence. In fact, it could hap-
pen that several non-confluent components are composed resulting in a con-
fluent IOSAu. Later, following [37], we will provide sufficient conditions on
possibly non-confluent components to ensure that the composed IOSAu is
nevertheless confluent.

By looking at the IOSAu of Fig. 4.6 one can notice that the non-determinism
introduced by confluent urgent output actions is spurious in the sense that it
does not change the stochastic behaviour of the model. (Here τ ∈ Au ∩Ao.)
Indeed, since time does not progress, it is the same to sample first clock
x and then clock y passing through state s1, or first y and then x passing
through s2, or even sampling both clocks simultaneously through a transition

s1
∅,τ,{x,y}−−−−−→ s3. In any of this cases, the stochastic resolution of the execution

57



s0

s1 s2

s3

s4 s5

∅, τ, {x} ∅, τ, {y}

∅, τ, {y} ∅, τ, {x}

{x}, a!,∅ {y}, b!,∅

Figure 4.6: Confluence is weakly deterministic

of a or b in the stable state s3 is the same. This could be generalized to any
number of confluent transitions.

In this sense, it will be convenient to use term rewriting techniques to
collect all clocks that are active in the convergent stable state and have been
activated through a path of urgent actions. The resulting reduction system
will be then used to prove weak determinism on confluent IOSAus (Section
4.5). Therefore, we recall some basic notions of rewriting systems.

An abstract reduction system [4] is a pair (E ,�), where the reduction
� is a binary relation over the set E , i.e. � ⊆ E × E . We write a � b

for (a, b) ∈ �. We also write a
∗
� b to denote that there is a path a0 �

a1 . . .� an with n ≥ 0, a0 = a and an = b. An element a ∈ E is in normal
form if there is no b such that a� b. We say that b is a normal form of a

if a
∗
� b and b is in normal form. A reduction system (E ,�) is confluent

if for all a, b, c ∈ E a
∗
� c

∗
� b implies a

∗
� d

∗
� b for some d ∈ E . This

notion of confluence is implied by the following statement: for all a, b, c ∈ E ,
a � c � b implies that either a � d � b for some d ∈ E , or a = b. A
reduction system is normalizing if every element has a normal form, and it
is terminating if there is no infinite chain a0 � a1 � · · · . A terminating
reduction system is also normalizing. In a confluent reduction system every
element has at most one normal form. If in addition it is also normalizing,

58



then such normal form always exists and is unique.
We now define the abstract reduction system introduced by the urgent

transitions of an IOSAu. The idea is to introduce a reduction in the reduction
system each time we find an urgent transition in the IOSAu model, and let
stable states be normal form. In the reduction we accumulate all reseted
clocks and the number of steps taken to get there.

Definition 4.6. Given an IOSAu I = (S,A, C,−→I , C0, s0), define the ab-
stract reduction system UI as (S ×P(C)×N0,�) where (s, C, n)� (s′, C ∪
C ′, n+ 1) if and only if there exists a ∈ Au such that s

∅,a,C′−−−−→ s′.

An IOSAu is non-Zeno if there is no loop of urgent actions. This concept
is actually related to Zenoness in timed automata, where infinite action take
place in a finite amount of time (see e.g. [7].) The following result can be
straightforwardly proven.

Proposition 4.3. Let the IOSAu I be closed and confluent.Then UI is con-
fluent, and hence every element has at most one normal form. Moreover,
an element (s, C, n) is in normal form iff s is stable in I. If in addition I
is non-Zeno, UI is also terminating and hence every element has a unique
normal form.

The following is the interesting cut of the abstract reduction system for
the IOSAu of Figure 4.6.

(s0,∅, 0)

(s1, {x}, 1) (s2, {y}, 1)

(s3, {x, y}, 2)

Figure 4.7: Abstract reduction system of Fig. 4.6

The abstract reduction system of an IOSAu will become useful in the
following section, where we prove that closed confluent IOSAus are weakly
deterministic.

59



4.5 Weak Determinism

We call an IOSAu closed when all its synchronizations have been resolved
through composition and no input actions remain, i.e. Ai = ∅ (see Section
3.2). In this section we show that closed confluent IOSAus are deterministic.
Notice that in the more general case, closed IOSAus may not be deterministic
as exemplified by the IOSAu I3 in Figure 4.2.

A deterministic IOSAu is amenable for discrete event simulation or, in
case all its clocks are exponentially distributed random variables, also amenable
for analysis as a continuous time Markov chain. Actually, we show that closed
confluent IOSAus behave deterministically in the sense that the stochas-
tic behaviour of the model is the same, regardless the way in which non-
determinism is resolved. Thus, we say that an IOSAu is weakly deterministic
if

(i) almost surely at most one discrete non-urgent transition is enabled at
every time point,

(ii) the choice over enabled urgent transitions does not affect the non urgent-
behavior of the model, and

(iii) no non-urgent output and urgent output are enabled simultaneously.

To avoid referring explicitly to time in (i), we say instead that an IOSAu is
weakly deterministic if it almost never reaches a state in which two different
non-urgent discrete transitions are enabled. Moreover, to ensure (ii), we
define the following weak transition, where the notation st(s) (read “s is
stable”) indicate that the state s has no urgent transitions enabled.

Definition 4.7. For a non stable state s, and v ∈ RN , we define (s,~v)
C

=⇒n µ
inductively by the following rules:

s
∅,a,C−−−−→ s′ st(s′)

(s,~v)
C

=⇒1 µ~vC,s′
(T1)

s
∅,a,C′−−−−→ s′ ∀~v′ ∈ RN : ∃C ′′, µ′ : (s′, ~v′)

C′′
==⇒n µ

′

(s,~v)
C′∪C′′

====⇒n+1 µ̂
(T2)

60



where a ∈ Au, µ~vC,s is defined as in Definition 3.2, and µ̂ =
∫
S×RN f

C′′
n dµ~vC′,s′ ,

with fC
′′

n (t, ~w) = ν, if (t, ~w)
C′′

==⇒n ν, and fC
′′

n (t, ~w) = ∅̄ otherwise.

We define the weak transition (s,~v) =⇒ µ if (s,~v)
C

=⇒n µ for some n ≥ 1
and C ⊆ C.

We find here an inductive definition. In this definition, function fC
′′

n acts
as an accumulator for the measures until step n − 1. A Lebesgue integral
defines the final measure, given that fC

′′
n is measurable. As given above,

there is no guarantee that
C

=⇒n is well defined. In particular, there is no
guarantee that fC

′′
n is a well defined measurable function. We postpone this

to Lemma 4.1 below.
With this definition, we can introduce the concept of weak determinism:

Definition 4.8. A closed IOSA I is weakly deterministic if =⇒ is well defined
in I and, in P (I), any state (s, v) ∈ S that satisfies one of the following
conditions is almost never reached from any (init, v0) ∈ S:

(a) s is stable and ∪a∈A∪{init}Ta(s, v) contains at least two different prob-
ability measures,

(b) s is not stable, (s, v) =⇒ µ, (s, v) =⇒ µ′ and µ 6= µ′, or

(c) s is not stable and (s, v)
a−→ µ for some a ∈ Ao \ Au.

By “almost never” we mean that the measure of the set of all paths
leading to any measurable set in B(S) containing only states satisfying (a),
(b), or (c) is zero. Thus, Definition 4.8 states that, in a weakly deterministic
IOSAu, a situation in which a non urgent output action is enabled with
another output action, being it urgent (case (c)) or non urgent (case (a)),
or in which sequences of urgent transitions lead to different stable situations
(case (b)), is almost never reached.

For the previous definition to make sense we need that P(I) satisfies time
additivity, time determinism, and maximal progress [106]. This is stated in
the following theorem whose proof is very similar to that of Theorem 3.5.

Theorem 4.2. Let I be an IOSAu. Its semantics P(I) satisfies, for all
(s,~v) ∈ S, a ∈ Ao and d, d′ ∈ R>0, the following three items:

(i) Ta(s,~v) 6= ∅ ⇒ Td(s,~v) = ∅ (maximal progress),

61



(ii) µ, µ′ ∈ Td(s,~v) ⇒ µ = µ′ (time determinism), and

(iii) δ−d(s,~v)∈Td(s,~v) ∧ δ−d′(s,~v−d)∈Td′(s,~v − d) ⇔ δ
−(d+d′)
(s,~v) ∈Td+d′(s,~v) (time ad-

ditivity).

In the next lemma, we prove that, under the hypothesis that the IOSA

is closed and confluent,
C

=⇒n is well defined. Simultaneously, we prove that
C

=⇒n is deterministic.

Lemma 4.1. Let I be a closed and confluent IOSA. Then, for all n ≥ 1,
the following holds:

1. If (s,~v)
C

=⇒n µ then there is a stable state s′ such that

(i) µ = µ~vC,s′ ,

(ii) (s, C ′,m)
∗
� (s′, C ′∪C,m+n) for all C ′ ⊆ C and m ≥ 0, and

(iii) if (s,~v′)
C′

=⇒n µ
′ then C ′ = C and moreover, if ~v′ = ~v, also µ′ = µ;

and

2. fCn is a measurable function.

Proof. We proceed by induction on n proving first item 1 and using it to
prove 2.

So, suppose n = 1 and (s,~v)
C

=⇒1 µ. By rule (T1) in Definition 4.7, there

exists s′ stable such that s
∅,a,C−−−−→ s′ for some a ∈ Au with µ = µ~vC,s′ , which

proves (i). From here and Definition 4.6, (s, C ′,m)
∗
� (s′, C ′∪C,m+1),

proving (ii). To prove (iii), suppose (s,~v′)
C′

=⇒1 µ
′. By (i) and (ii) applied

to this other transition, there exists a stable s′′ such that µ′ = µ~v
′

C′,s′′ and

(s,∅, 0)
∗
� (s′′, C ′, 1). But also (s,∅, 0)

∗
� (s′, C, 1) as proven before. Since

s′ and s′′ are stable, then, by Prop. 4.3, both (s′, C, 1) and (s′′, C ′, 1) are
in normal form which must also be unique. Then s′ = s′′ and C ′ = C ′′.
Moreover, if ~v′ = ~v then µ′ = µ~v

′

C′,s′′ = µ~vC,s′ = µ.

To prove item 2 for n = 1, notice first that, by (iii), fC1 is indeed a

function. By (i), fC1 (t, ~w) = µ~wC,t′ whenever (t, ~w)
C

=⇒1 µ
~w
C,t′ for some t′ stable

which is granted to exist, and fC1 (t, ~w) = ∅̄ otherwise. To show that fC1

62



is measurable, by [99, Lemma 3.6], it suffices to prove that (fC1 )−1(∆q(A ×∏N
i=1 Vi)) is measurable for all A ⊆ S and Vi ∈ B(R). Notice that

(fC1 )−1(∆q(A×
∏N

i=1 Vi)) =

= {(t, ~w) | ∃t′ : (t, ~w)
C

=⇒1 µ
~w
C,t′ ∧ µ~wC,t′(A×

∏N
i=1 Vi) ≥ q}

= {(t, ~w) | ∃t′∈A : (t, ~w)
C

=⇒1 µ
~w
C,t′ ∧

∏
xi∈C

µxi(
∏
xi∈C

Vi) ≥ q ∧ ∀xi /∈ C : ~w(i) ∈ Vi}

=
⋃

t∈S
t′∈A
{(t, ~w) | (t, ~w)

C
=⇒1 µ

~w
C,t′ ∧

∏
xi∈C

µxi(
∏
xi∈C

Vi) ≥ q ∧ ∀xi /∈ C : ~w(i) ∈ Vi}︸ ︷︷ ︸
=Xt

Notice that, if
∏

xi∈C µxi(
∏

xi∈C Vi) ≥ q, then Xt = {t} ×
∏N

i=1 V i, with

V i = R if xi ∈ C and V i = Vi if xi /∈ C, and Xt = ∅ otherwise. In both
cases Xt is measurable. Since S is finite, the union is also finite and hence
fC1 es measurable, which proves the base case.

For the inductive case, let n ≥ 1 and suppose (s,~v)
C

=⇒n+1 µ. By (T2),

there are C ′ and C ′′ such that C = C ′ ∪ C ′′, s ∅,a,C′−−−−→ s′, ∀~v′ ∈ RN :

(s′, ~v′)
C′′

==⇒n µ
′, and µ =

∫
S×RN f

C′′
n dµ~vC′,s′ . By induction, C ′′ is unique (by

1.(iii)), (s′, ~v′)
C′′

==⇒n µ
~v′

C′′,s′′ for all ~v′ and unique stable state s′′ (by 1.(i) and

1.(ii)), and fC
′′

n is measurable (by 2). Thus
∫
S×RN f

C′′
n dµ~vC′,s′ is well defined.

Moreover, notice that fC
′′

n (s′, ~v′) = µ~v
′

C′′,s′′ for all ~v′.

We focus on 1.(i) and show that µ = µ~vC′∪C′′,s′′ . First, notice that µ =∫
{s′}×RN f

C′′
n dµ~vC′,s′ +

∫
(S\{s′})×RN f

C′′
n dµ~vC′,s′ and since µ~vC′,s′ = δs′ ×

∏N
i=1 µ

vi
xi

with µvixi = µxi if xi ∈ C ′ and µvixi = δvi otherwise (we write vi for ~v(i)), then
the second summand is the null function ∅̄. Now, for A ⊆ S and Qi ∈ R,
1 ≤ i ≤ N , we calculate

µ(A×Q1 × · · · ×QN) =

=

∫
{s′}×RN

fC
′′

n (t, ~w)(A×Q1 × · · · ×QN) dµ~vC′,s′(t, ~w)

=

∫
RN

fC
′′

n (s′, ~w)(A×Q1 × · · · ×QN) d(
∏N

i=1µ
vi
xi

)(~w)

=

∫
RN

µ~wC′′,s′′(A×Q1 × · · · ×QN) d(
∏N

i=1µ
vi
xi

)(~w) = (†)

63



By definition, µ~wC′′,s′′ = δs′′×
∏N

i=1 µ
wi
xi

with µwi
xi

= µxi if xi ∈ C ′′ and µwi
xi

= δvi
otherwise. Then (in the following we omit the domain R of each integral),
using Fubini’s theorem, we have:

(†) =

∫
···
∫
δs′′(A) · µw1

x1
(Q1)···µwN

xN
(QN) dµv1x1(w1)...dµ

vN
xN

(wN)

= δs′′(A)

∫
···
∫
µw2
x2

(Q2)···µwN
xN

(QN)
(∫

µw1
x1

(Q1) dµ
v1
x1

(w1)︸ ︷︷ ︸
(∗)

)
dµv2x2(w2)...dµ

vN
xN

(wN)

We focus on (∗). Three cases may arise. If x1 ∈ C ′′, then

(∗) =

∫
µx1(Q1) dµ

v1
x1

(w1) = µx1(Q1)

∫
dµv1x1(w1) = µx1(Q1)

since
∫
dµv1x1(w1) = 1. If x1 ∈ C ′ \ C ′′,

(∗) =

∫
δw1(Q1) dµx1(w1) =

∫
χQ1(w1) dµx1(w1) = µx1(Q1)

where χQ1 is the usual characteristic function. Finally, if x1 /∈ C ∪ C ′′,

(∗) =

∫
δw1(Q1) dδv1(w1) =

∫
χQ1(w1) dδv1(w1) = δv1(Q1).

Therefore (∗) = µx1(Q1) with µx1 = µx1 if x1 ∈ C ′ ∪ C ′′ and µx1 = δv1
otherwise. Then, proceeding in the same manner for all the indices, we
continue,

= δs′′(A)µx1(Q1)

∫
···
∫
µw2
x2

(Q2)···µwN
xN

(QN) dµv2x2(w2)...dµ
vN
xN

(wN)

= δs′′(A) · µx1(Q1) · · ·µxN (QN) = (δs′′ ×
∏N

i=1µxi)(A×Q1 × · · · ×QN)

= µ~vC∪C′′,s′′(A×Q1 × · · · ×QN)

which proves 1.(i).
To prove 1.(ii), by Definition 4.6, (s, C∗,m) � (s′, C∗∪C ′,m+1) since

s
∅,a,C′−−−−→ s′. By induction, (s′, ~v′)

C′′
==⇒n µ′ implies (s′, C∗∪C ′,m+1)

∗
�

(s′′, C∗∪C ′∪C ′′,m+1+n). Thus (s, C∗,m)
∗
� (s′′, C∗∪C ′∪C ′′,m+1+n), which

proves 1.(ii).
The proofs of 1.(iii) and 2 follows like for the base case.

64



The next corollary follows by item 1 of Lemma 4.1. It states that =⇒ is
deterministic.

Corollary 4.1. Let I be a closed and confluent IOSAu. Then, for all (s,~v),
if (s,~v) =⇒ µ1 and (s,~v) =⇒ µ2, µ1 = µ2.

This corollary already shows that closed and confluent IOSAus satisfy
part (b) of Definition 4.8. In general, we can state:

Theorem 4.3. Every closed confluent IOSA is weakly deterministic.

The rest of the section is devoted to proving this theorem. As we have
already showed that closed confluent IOSAus satisfy (b) of the definition of
weak determinism (Definition 4.8), we now focus on points (a) and (c). From
now on, we work with the closed confluent IOSA I = (S, C,A,−→, s0, C0),
with |C| = N , and its semantics P(I) = (S,B(S), {Ta | a ∈ L}).

The idea of the proof of Theorem 4.3 is to show that the property that
all active clocks have non-negative values and they are different from each
other is almost surely an invariant of I, and that at most one non-urgent
transition is enabled in every state satisfying such invariant. Furthermore,
we want to show that, for unstable states, active clocks have strictly positive
values, which implies that non-urgent transitions are never enabled in these
states. Formally, the invariant is the set

Inv = {(s,~v) | st(s) and ∀xi, xj ∈ active(s) : i 6= j ⇒ ~v(i) 6= ~v(j) ∧ ~v(i) ≥ 0}
∪ {(s,~v) | ¬st(s) and ∀xi, xj ∈ active(s) : i 6= j ⇒ ~v(i) 6= ~v(j)~v(i) > 0}
∪ ({init} × RN) (4.1)

with active as in Definition 4.1. Note that its complement is:

Invc = {(s,~v) | ∃xi, xj ∈ active(s) : i 6= j ∧ ~v(i) = ~v(j)}
∪ {(s,~v) | st(s) and ∃xi ∈ active(s) : ~v(i) < 0}
∪ {(s,~v) | ¬st(s) and ∃xi ∈ active(s) : ~v(i) ≤ 0} (4.2)

It is not difficult to show that Invc is measurable and, in consequence, so
is Inv. The following lemma states that Invc is almost never reached in one
step from a state satisfying the invariant.

Lemma 4.2. If (s,~v) ∈ Inv, a ∈ L, and µ ∈ Ta(s,~v), then µ(Invc) = 0.

65



Proof. We proceed analyzing by cases according a is init, in A, or in R>0.
If a is init, we only consider cases where s = init, since Tinit(s, v) = ∅

otherwise. If µ ∈ Tinit(init, v), then µ = δs0 ×
∏N

i=1 µxi . Since each µxi is a
continuous probability measure, the likelihood of two clocks being set to the
same value is 0 and µxi(R>0) = 1. Then µ(Invc) = 0. This proves the first
case.

For the other cases we introduce the following notation. For each xi, xj ∈
active(s′), define Invcij = {(s′′, ~w) | ~w(i) = ~w(j)} whenever i 6= j, Invci,st =
{(s′′, ~w) | st(s′′), ~w(i) < 0}, and Invci,nst = {(s′′, ~w) | ¬st(s′′), ~w(i) ≤ 0}. It
is not difficult to prove that each of this type of sets is measurable. Notice
that Invc =

⋃
Invcij ∪

⋃
Invci,st ∪

⋃
Invci,nst and, since the unions are finite,

µ(Invc) = 0 if and only if µ(Invcij) = 0, µ(Invci,st) = 0, and µ(Invci,nst) = 0, for
every i, j. Thus, for the remaining two cases we focus on proving these last
three equalities.

Let a ∈ A, µ ∈ Ta(s,~v) and (s,~v) ∈ Inv. Then s 6= init and hence,

by Definition 3.2, there exists s
C,a,C′−−−−→ s′ such that

∧
xi∈C ~v(i) ≤ 0, and

µ = δs′ ×
∏N

i=1 µxi with µxi = µxi if xi ∈ C, µxi = δ~v(i) otherwise.
Let xi ∈ active(s′), then xi ∈ (active(s) \ C) ∪ C ′. If xi ∈ C ′, then

µxi(R>0) = 1 and hence µ(Invci,st) = µ(Invci,nst) = 0. If xi ∈ (active(s)\C)\C ′
we consider two subcases: either C = ∅ or C = {xj}. In the first case,
a ∈ Au and therefore s is not stable. Then ~v(i) > 0 (since (s,~v) ∈ Inv) and
hence δ~v(i)(R>0) = 1, which implies µ(Invci,st) = µ(Invci,nst) = 0. If instead
C = {xj}, i 6= j and, by Definition 3.2, ~v(j) = 0. Since s is stable and
(s,~v) ∈ Inv, then ~v(i) ≥ 0 and ~v(i) 6= ~v(j), hence ~v(i) > 0 and, as before,
µ(Invci,st) = µ(Invci,nst) = 0.

Suppose now xi, xj ∈ active(s′) with i 6= j, then xi, xj ∈ (active(s) \
C) ∪ C ′. If xi ∈ C then µxi is a continuous probability measure and hence
µ(Invcij) = 0. Similarly if xj ∈ C. If instead xi, xj ∈ active(s)\C, then ~v(i) 6=
~v(j) because (s,~v) ∈ Inv and hence δ~v(i) 6= δ~v(j). Therefore µ(Invcij) = 0. This
proves that µ(Invc) = 0 for this case.

Finally, take d ∈ R>0 and suppose that Td(s,~v) = {µ} with (s,~v) ∈ Inv.

By Definition 3.2, s needs to be stable, 0 < d ≤ min{~v(k) | s {xk},a,C′−−−−−−→
s′, a∈Ao}, and µ = δs ×

∏N
i=1 δ~v(i)−d. Since s is stable, µ(Invci,nst) = 0. For

xi ∈ active(s), ~v(i)−d ≥ min{~v(k) | s {xk},a,C′−−−−−−→ s′, a∈AO} − d ≥ 0, since
active(s) = enabling(s) (s is stable). Hence δ~v(i)−d(R≥0) = 1. Therefore
µ(Invci,st) = 0. For xi, xj ∈ active(s) with i6=j, ~v(i) 6= ~v(j) because (s,~v) ∈

66



Inv. Hence δ~v(i)−d 6= δ~v(j)−d. So µ(Invcij) = 0. This proves that µ(Invc) = 0 for
this case, and therefore the lemma.

From this lemma we have the following corollary

Corollary 4.2. The set Invc is almost never reached in P(I).

The proof of the corollary requires the definitions related to schedulers
and measures on paths in NLMPs (see [103, Chap. 7] for a formal definition of
scheduler and probability measures on paths in NLMPs.) We omit the proof
of the corollary since it eventually boils down to an inductive application of
Lemma 4.2.

The next lemma states that any stable state in the invariant Inv has
at most one discrete transition enabled. Its proof is the same as that of
Lemma 3.4.

Lemma 4.3. For all (s,~v) ∈ Inv with s stable or s = init, the set
⋃

a∈A∪{init} Ta(s,~v)
is either a singleton set or the empty set.

Thus we have only left item (c) of Definition 4.8 in order to prove Theo-
rem 4.3. The next lemma states that any unstable state in the invariant Inv
can only produce urgent actions.

Lemma 4.4. For every state (s,~v) ∈ Inv, if ¬st(s) and (s,~v)
a−→ µ, then

a ∈ Au.

Proof. First, recall I is closed, hence Ai = ∅. If (s,~v) ∈ Inv and ¬st(s) then
~vi > 0 for all xi ∈ enabling(s) ⊆ active(s). Therefore, by Definition 3.2,
Ta(s,~v) = ∅ if a ∈ Ao \ Au. Furthermore, for any d ∈ R>0, Td(s,~v) = ∅
since s is not stable and hence s

,b,−−→ for some b ∈ Ao ∪ Au.

Finally, Theorem 4.3 is a consequence of Lemma 4.3, Lemma 4.4, Corol-
lary 4.2, and Corollary 4.1.

Proof of Theorem 4.3. We have to show that every measurable set B ∈ B(S)
of states satisfying conditions (a), (b), or (c) in Definition 4.8 is almost
never reached in P(I). Let Bst = B ∩ (({s | st(s)} ∪ {init}) × RN) and
B¬st = B ∩ ({s | ¬st(s)} ×RN). Then B = Bst ∪B¬st, and Bst and B¬st are

67



measurable. Hence B is almost never reached if and only if Bst and B¬st are
almost never reached.

Let En≥2 = {(s,~v) ∈ S | (st(s)∨ s = init)∧ |
⋃

a∈A∪{init} Ta(s,~v)| ≥ 2}. By

Lemma 4.3, En≥2 ⊆ Invc, and by (a) in Definition 4.8, Bst ⊆ En≥2. Then, by
Corollary 4.2, Bst is almost never reached. In addition, Corollary 4.1, ensures
that no (s,~v) ∈ B¬st satisfies (b). Therefore every (s,~v) ∈ B¬st satisfies (c).
Hence, by Lemma 4.4 B¬st ⊆ Invc. Then, by Corollary 4.2, B¬st is almost
never reached, which proves the theorem.

4.6 Sufficient conditions for weak determin-

ism

So far, we insistently pointed out that we were interested in building models
in a compositional fashion, in a way that they result amenable to real simu-
lation, i.e fully stochastic models. Assuming we have reached a closed model
by composing only confluent components, we can apply Theorem 4.3 to en-
sure that the composition is weakly deterministic, since parallel composition
preserves confluence Proposition 4.2. Nevertheless, having a non-confluent
component does not imply that the composed model is non-confluent as well.
Thus it would be interesting to find conditions under which potentially non-
confluent components can be composed into a confluent model.

Fig. 4.3 shows an example in which the composed IOSA is weakly deter-
ministic despite that some of its components are not confluent. The potential
non-determinism introduced by state s2||s4||s6 is never reached since urgent
actions at states s0||s4||s6 and s1||s3||s6 prevent the execution of a non urgent
action leading to such state. We say that state s2||s4||s6 is not potentially
reachable. The concept of potentially reachable can be defined as follows.

Definition 4.9. Given an IOSAu I, a state s is potentially reachable if there

is a path s0
,a0,−−−→ s1 . . . , sn−1

,an−1,−−−−−→ sn = s from the initial state, with

n ≥ 0, such that for all 0 ≤ i < n, if si
,b,−−→ for some b ∈ Au ∩ Ao then

ai ∈ Au. In such case we call the path plausible.

Notice that none of the paths leading to s2||s4||s6 in Fig. 4.3 are plausible.
Also, notice that an IOSAu is bisimilar to the same IOSAu when its set of
states is restricted to only potentially reachable states.

68



Proposition 4.4. Let I be a close IOSAu with set of states S and let
I be the same IOSAu as I restricted to the set of states S = {s ∈ S |
is potentially reachable in I}. Then I ∼ I.

It should be clear that both semantics are bisimilar through the identity

relation since a s
{x},a,C−−−−→ s′ with s unstable does not introduce any concrete

transition. (Recall the IOSAu is closed so there is no input action on I.)
For a state in a composed IOSAu to be potentially reachable, necessarily

each of the component states has to be potentially reachable in its respective
component IOSAu.

Lemma 4.5. If a state s1|| · · · ||sn is potentially reachable in I1|| · · · ||In then
si is potentially reachable in Ii for all i = 1, . . . , N .

Proof. We only prove it for I1||I2. The generalization to any n follows easily.
We prove it by induction on the length of the plausible path σ that leads
to s1||s2. If |σ| = 0 then σ = s01||s02, where each s0i is initial in each Ii and

hence potentially reachable. For the inductive case let σ = σ′ ·(s′1||s′2)
C,a,C′−−−−→

(s1||s2). W.l.o.g. and by contradiction, suppose s1 is not potentially reachable
in I1. Necessarily, s1 6= s′1 since s′1 is potentially reachable by induction

(|σ| = |σ′| + 1). Thus s′1||s′2
C,a,C′−−−−→ s1||s2 is the result of applying (R1) or

(R3). The rest of the proof follows similarly for both cases. So suppose (R3)

was applied. Then s′1
C1,a,C′1−−−−−→ s1 for some C1 ⊆ C and C ′1 ⊆ C ′. Since s1 is

not potentially reachable but s′1 is, then a ∈ A\Au and there is a b ∈ Au∩Ao

such that s′1
,b,−−→ . Then s′1||s′2

,b,−−→ , either by (R1) or by (R3) (being I2
input enabled) yielding σ not plausible and hence a contradiction.

In this section, and following ideas introduced in [37], we build on a
theory that allows us to ensure that a closed composed IOSAu is confluent
(and thus weakly deterministic) in a compositional manner, even when its
components may not be confluent. Theorem 4.5 provides such sufficient
conditions to guarantee that the composed IOSAu is confluent. Because
of Proposition 4.2, it suffices to check whether two urgent actions that are
not confluent in a single component are potentially reached. Since potential
reachability depends on the composition, the idea is to overapproximate by
inspecting the components in order to avoid the state space explosion. The
rest of the section builds on concepts that are essential to construct such
overapproximation.

69



We identify the sets of urgent actions that may be enabled at the same
time. To do so, we look at the events that may trigger this action to become
enabled. There are three types of such events, occurring into the enabling
of spontaneously enabled actions, initially enabled actions, and triggered
actions. We also formally define enabled sets and show that the proposed
events are the only ones capable of enabling this urgent actions.

Let us define the set uen(s) = {a ∈ Au | s ,a,−−→ } as the set of urgent
actions enabled in a state s. We say that a set B of output urgent actions
is spontaneously enabled by an action b if it becomes enabled just after a
non-urgent transition labeled by b.

Definition 4.10. A set B ⊆ Au∩Ao is spontaneously enabled by b ∈ A\Au

in I, if either B = ∅ or there are potentially reachable states s and s′ such

that s is stable, s
,b,−−→ s′, and B ⊆ uen(s′). B is maximal if for any B′

spontaneously enabled by b in I such that B ⊆ B′, B = B′.

A set that is spontaneously enabled in a composed IOSAu, can be con-
structed as the union of spontaneously enabled sets in each of the components
as stated by the following proposition. Therefore, spontaneously enabled sets
in a composed IOSAu can be overapproximated by unions of spontaneously
enabled sets of its components.

Proposition 4.5. Let B be spontaneously enabled by a in I1|| . . . ||In. Then,
there are B1, . . . , Bn such that each Bi is spontaneously enabled by a in Ii,
and B =

⋃n
i=1Bi. If in addition B is maximal, there are B1, . . . , Bn such that

each Bi is a maximal spontaneously enabled by a in Ii, and B ⊆
⋃n
i=1Bi.

Proof. We only prove it for I1||I2. The generalization to any n follows easily.
Let B̄i = B ∩ Ai for i = 1, 2 and note that B = B̄1 ∪ B̄2. We show that B̄1

is spontaneously enabled by a in I1. The case of B̄2 follows similarly. Since
B is spontaneously enabled by a in I1||I2, there exist potentially reachable

states s1||s2 and s′1||s′2, such that s1||s2 is stable, s1||s2
,a,−−→ s′1||s′2, and

B ⊆ uen(s′1||s′2). First notice that B̄1 ⊆ uen(s1). Also, suppose B̄1 6= ∅,
otherwise B̄1 is spontaneously enabled by a trivially. Consider first the case

that a ∈ A2 \A1. By (R2), s1 = s′1, but, since there is some b ∈ B̄1, s1
,b,−−→

and hence s1||s2
,b,−−→ rendering s1||s2 unstable, which is a contradiction.

So a ∈ A1 and s1
,a,−−→ s′1. By Lemma 4.5, s1 and s′1 are potentially reachable

and, necessarily, s1 is stable (otherwise s1||s2 has to be unstable as shown

70



before). Therefore B̄1 is spontaneously enabled by a in I1. The second part
of the proposition is immediate from the first part.

Proposition 4.5 allows us to overapproximate the set of spontaneously
enabling actions in the composed IOSAu:

{B | B spontaneously enabled by a in I1|| . . . ||In} ⊆{
n⋃
i=1

Bi | ∀1 ≤ i ≤ n ·Bi spontaneously enabled by a in Ii

}
(4.3)

Spontaneously enabled sets refer to sets of urgent output actions that
are enable after some steps of execution. Urgent output actions can also be
enabled at the initial state.

Definition 4.11. A set B ⊆ Au∩Ao is initial in an IOSAu I if B ⊆ uen(s0),
with s0 being the initial state of I. B is maximal if B = uen(s0) ∩ Ao.

An initial set of a composed IOSAu can be constructed as the union of
initial sets of its components. In particular the maximal initial set is the
union of all the maximal sets of its components. The proof follows directly
from the definition of parallel composition taking into consideration that
IOSAus are input enabled.

Proposition 4.6. Let B be initial in I = (I1|| . . . ||In). Then, there are
B1, . . . , B2, with Bi initial of Ii, 1 ≤ i ≤ n and B =

⋃n
i=1Bi. Moreover,

uen(s0) ∩ Ao
I =

⋃n
i=1 uen(s0i ) ∩ Ao

i .

Proposition 4.6 allows us to identify the sets of initially enabled actions
in the composed IOSAu by considering the set of initially enabled actions in
its components:

{B |B initial in I1|| . . . ||In} ={
n⋃
i=1

Bi | ∀1 ≤ i ≤ n ·Bi initial in Ii

}
(4.4)

The same can be deduced for the maximal set of initial actions:

{B | B maximally initial in I1|| . . . ||In} ={
n⋃
i=1

Bi | ∀1 ≤ i ≤ n ·Bi maximally initial in Ii

}
.

(4.5)

71



We say that an urgent action triggers an urgent output action if the first
one enables the occurrence of the second one which was not enabled before.
With this, we identify not only urgent output actions that are enabled after a
non-urgent transition (spontaneous sets) but also those that become enabled
after an urgent transition.

Definition 4.12. Let a ∈ Au and b ∈ Au ∩ Ao. a triggers b in an IOSAu

I if there are potentially reachable states s1, s2, and s3 such that s1
,a,−−→

s2
,b,−−→ s3 and, if a 6= b, b /∈ uen(s1).

Notice that, for the particular case in which a = b, b /∈ uen(s1) is not
required, since it would be a contradiction. The following proposition states
that if one action triggers another one in a composed IOSAu, then the same
triggering occurs in a particular component.

Proposition 4.7. Let a ∈ Au and b ∈ Au ∩ Ao such that a triggers b in
I1|| . . . ||In.Then there is a component Ii such that b ∈ Ao

i and a triggers b
in Ii.

Proof. We only prove it for I1||I2. The generalization to any n follows easily.
Because b ∈ Au ∩ Ao necessarily b ∈ Ao

1 or b ∈ Ao
2. W.l.o.g. suppose b ∈ Ao

1.

Since a triggers b in I1||I1, s1||s2
,a,−−→ s′1||s′2

,b,−−→ s′′1||s′′2 with s1||s2, s′1||s′2,
and s′′1||s′′2 being potentially reachable.

Suppose first that a 6= b. Then b /∈ uen(s1||s2). Recall that, by Lemma 4.5,

s1, s
′
1, and s′′1 are potentially reachable in I1. Since b ∈ Ao

1, s
′
1

,b,−−→ s′′1. Sup-
pose a ∈ A2 \ A1. Then, necessarily, s1 = s′1 which gives b ∈ uen(s1) ∩Ao ⊆
uen(s1||s2), yielding a contradiction. Thus, necessarily a ∈ Au

1 and hence

s1
,a,−−→ s′1, by the definition of parallel composition. It remains to show

that b /∈ uen(s1), but this is immediate since uen(s1) ∩Ao ⊆ uen(s1||s2) and
b /∈ uen(s1||s2). Thus a triggers b in I1 in this case. If instead a = b, by the

definition of parallel composition we immediately have that s1
,b,−−→ s′1

,b,−−→
s′′1, proving thus the proposition.

Proposition 4.7 tells us that the triggering relation of a composed IOSAu

can be overapproximated by the union of the triggering relations of its com-
ponents. Thus we define:

Definition 4.13. The approximate triggering relation of I1|| . . . ||In is de-
fined by  =

⋃n
i=1{(a, b) | a triggers b in Ii}. Its reflexive transitive closure

 ∗ is called approximate indirect triggering relation.

72



We have gone through the three ways of enabling urgent output actions.
These are by spontaneous sets, by initial sets, by triggered sets. We will now
formally define the enabled sets and prove that these are indeed the only
three ways of generating them. The next definition characterizes all sets
of urgent outputs actions that are simultaneously enable in any potentially
reachable state of a given IOSAu.

Definition 4.14. A set B ⊆ Au ∩ Ao is an enabled set in an IOSAu I if
there is a potentially reachable state s such that B ⊆ uen(s).If a ∈ B, we
say that a is enabled in s. Let ESI be the set of all enable sets in I.

If an urgent output action is enabled in a potentially reachable state of
IOSAu, then it is is either initial, spontaneously enabled, or triggered by
some action, as proved by the following Theorem.

Theorem 4.4. Let b ∈ Au ∩ Ao be enabled in some potentially reachable
state of the IOSAu I. Then there is a set B with b ∈ B that is either initial,
or spontaneously enabled by some action a ∈ A \ Au, or b is triggered by
some action a ∈ Au.

Proof. Let s be potentially reachable in I such that b ∈ uen(s) ∩ Ao. We
prove the theorem for b by induction on the plausible path σ leading to s.
If |σ| = 0, then σ = s and s is the initial state. Then the set uen(s) ∩ Ao

is initial and we are done in this case. If |σ| > 0, then σ = σ′ · (s′ ,a,−−→ s)
for some s′, a, and plausible σ′. If a ∈ A \ Au then s′ is stable (since σ is
plausible) and thus uen(s) ∩ Ao is spontaneously enabled by a. If instead
a ∈ Au, we get two possibilities. If b /∈ uen(s′), then b is triggered by a. If
b ∈ uen(s′), the conditions are satisfied by induction since |σ′| = |σ| − 1.

We now present a way to construct the enabled sets of a closed IOSAu by
analyzing its components. In fact we overapproximate this sets by looking at
its components instead of looking at the composed model, thus avoiding the
state explosion problem. For this we make use of Definition 4.13, along with
overapproximation studied in Propositions 4.5 and 4.6. The next definition
is auxiliary to prove the main theorem of this section. It constructs a graph
from a closed and composed IOSAu whose vertices are sets of urgent output
actions. It has the property that, if there is a path from one vertex to another,
all actions in the second vertex are approximately indirectly triggered by
actions in the first vertex (Lemma 4.7). This allows to show that any set

73



of simultaneously enabled urgent output actions is approximately indirectly
triggered by initial actions or spontaneously enabled set (Lemma 4.8).

Definition 4.15. Let I = (I1|| . . . ||In) be a closed IOSA. The enabled graph
of I is defined by the labelled graph EGI = (V,E), where V ⊆ 2A

o∩Au
and

E ⊆ V × (Au∩Ao)× V , with V =
⋃
k≥0 Vk and E =

⋃
k≥0Ek, and, for all

k ∈ N, Vk and Ek are inductively defined by

V0 =
⋃
a∈A{

⋃n
i=1Bi | ∀1 ≤ i ≤ n :

Bi is spontaneously enabled by a and maximal in Ii}
∪ {
⋃n
i=1 uen(s0i ) ∩ Ao

i | ∀1 ≤ i ≤ n : s0i is the initial state in Ii}
Ek = {(v, a, (v\{a}) ∪ {b | a b}) | v ∈ Vk, a ∈ v}

Vk+1 = {v′ | v ∈ Vi, (v, v′) ∈ Ek, v′ /∈
⋃k
j=0 Vj}

Notice that V0 contains the maximal initial set of I and an overapprox-
imation of all its maximal spontaneously enabled sets. Notice also that, by
construction, there is a path from any vertex in V to some vertex in V0.

The set closure of V in EGI , defined by

ESI = {B | B ⊆ v, v ∈ V }

turns out to be an overapproximation of the actual set ESI of all enabled
sets in I, as proved by the following lemma.

Lemma 4.6. For any closed IOSA I = (I1|| · · · ||In), ESI ⊆ ESI .

Proof. Let B ∈ ESI . We proceed by induction on the length of the plausible
path σ that leads to the state s such that B ⊆ uen(s). If |σ| = 0 then s is the
initial state and thus B is initial in I. Thus, by Definition 4.11, Prop. 4.6,
and Definition 4.15, B ⊆ (uen(s0)∩Ao

I) = (
⋃n
i=1 uen(s0i )∩Ao

i ) ∈ V0 ⊆ ESI .
As a consequence B ∈ ESI .

If |σ| > 0 then σ = σ′ · (s′ ,a,−−→ s), for some s′, a, and plausible σ′.
If a ∈ A \ Au then s′ is stable (since σ is plausible) and thus B is spon-
taneously enabled by a. By Prop. 4.5, there are B1, . . . , Bn such that each
Bi is spontaneously enabled by a and maximal in Ii, and B ⊆

⋃n
i=1Bi.

Since
⋃n
i=1Bi ∈ V0 ⊆ ESI , then B ∈ ESI . If instead a ∈ Au, let B′ =

{a} ∪ (B ∩ uen(s′)). Notice that B′ ⊆ uen(s′) ∩Ao. Since s′ is the last state
on σ′ and |σ′| = |σ| − 1, B′ ∈ ESI by induction. Hence, there is a vertex
v′ ∈ V in EGI such that B′ ⊆ v and, by Def 4.15, v′ ∈ Vk for some k ≥ 0.

74



Let v = (v′\{a}) ∪ {b | a b}, then (v′, a, v) ∈ Ek and hence v ∈ Vk+1. We
show that B ⊆ v. Let b ∈ B. If b = a, then a ∈ uen(s) ∩ Ao and hence a
triggers a in I. By Prop. 4.7, a a which implies a ∈ v. Suppose, instead,
that b 6= a. If b ∈ uen(s′), then b ∈ B′\{a} ⊆ v′\{a} ⊆ v. If b /∈ uen(s′),
then a triggers b in I, and by Prop. 4.7, a  b which implies b ∈ v. This
proves B ⊆ v ∈ ESI and hence B ∈ ESI .

The next lemma states that if there is path from a vertex of EGI to
another vertex, every action in the second vertex is approximately indirectly
triggered by some action in the first vertex.

Lemma 4.7. Let I be a closed IOSA, let v, v′ ∈ V be vertices of EGI and
let ρ be a path following E from v to v′. Then for every b ∈ v′ there is an
action a ∈ v such that a ∗ b.

Proof. We proceed by induction in the length of ρ. If |ρ| = 0 then v = v′ and
the lemma holds since  ∗ is reflexive. If |ρ| > 0, there is a path ρ′, v′′ ∈ V ,
and c ∈ Au ∩ Ao such that ρ = ρ′ · (v′′, c, v′). By induction, for every action
d ∈ v′′ there is some a ∈ v such that a ∗ d. Because of the definition of E
in Definition 4.15, either b ∈ v′′ or c  b and c ∈ v′′. The first case follows
by induction. In the second case, also by induction, a  ∗ c for some a ∈ v
and hence a ∗ b.

Since the initial vertex of the enabled graph of an IOSAu consists in
initial sets and spontaneously enabled sets, and since by construction each
other vertex in the graph has a path to the initial vertex, the last lemma
allows us to deduce the following one. The next lemma states that every
enabled set B in a composed IOSAu is either approximately triggered by a
set of initial actions of the components of the IOSAu or by a subset of the
union of spontaneously enabled sets in each component where such sets are
spontaneously enabled by the same event.

Lemma 4.8. Let I = (I1|| . . . ||In) be a closed IOSAu and let {b1, . . . , bm} ⊆
Au∩Ao be enabled in I. Then, there are (not necessarily different) a1, . . . , am
such that aj  ∗ bj, for all 1 ≤ j ≤ m, and either (i) {a1, . . . , am} ⊆⋃n
i=1 uen(s0i ) ∩ Ao

i , or (ii) there exists e ∈ A and (possibly empty) sets
B1, . . . , Bn spontaneously enabled by e in I1, . . . , In respectively, such that
{a1, . . . , am} ⊆

⋃n
i=1Bi.

75



Proof. Because of Lemma 4.6 there is a vertex v of EGI such that {b1, . . . , bn} ⊆
v. Because of the inductive construction of E and V , there is a path
from some v′ ∈ V0 to v in EGI . From Lemma 4.7, for each 1 ≤ j ≤ m,
there is an aj ∈ v′ such that aj  ∗ bj. Because v′ ∈ V0, then either
v′ =

⋃n
i=1 uen(s0i ) ∩ Ao

i or there is some e ∈ A such that v′ =
⋃n
i=1Bi

with Bi spontaneously enabled by e in Ii

Proposition 4.2 and Lemma 4.8 give us the ingredients for the main the-
orem of this section which provides sufficient conditions to guarantee that a
closed composed IOSAu is confluent or, as stated in the theorem, necessary
conditions for the IOSA to be non-confluent.

Theorem 4.5. Let I = (I1|| · · · ||In) be a closed IOSA. If I potentially
reaches a non confluent state then there are actions a, b ∈ Au ∩ Ao such
that some Ii is not confluent w.r.t. a and b, and there are c and d such that
c ∗ a, d ∗ b, and, either

(i) c and d are initial actions in any component, or

(ii) there is e ∈ A and (possibly empty) sets B1, . . . , Bn spontaneously
enabled by e in I1, . . . , In respectively, such that c, d ∈

⋃n
i=1Bi.

Proof. Suppose I potentially reaches a non confluent state s. Then there are
necessarily a, b ∈ uen(s) that shows it and hence I is not confluent w.r.t. a
and b. By Prop. 4.2, there is necessarily a component Ii that is not confluent
w.r.t. a and b. Since {a, b} is an enabled set in I, the rest of the theorem
follows by Lemma 4.8.

Because of Prop. 4.4 and Theorem 4.3, if all potentially reachable states
in a closed IOSA I are confluent, then I is weak deterministic. Thus, if no
pair of actions satisfying conditions in Theorem 4.5 are found in I, then I is
weak deterministic.

Notice that the IOSA I = I1||I2||I3 of Fig 4.3 (see also Fig. 4.2) is
an example that does not meet the conditions of Theorem 4.5, and hence
detected as confluent. The only potential non-confluent actions are c and d
which are not confluent in state s6 of I3. The approximate indirect triggering
relation can be calculated to  ∗= {(c, c), (d, d)}. Also, {c} is spontaneously
enabled by a in I1 and {d} is spontaneously enabled by b in I2. Since both
sets are spontaneously enabled by different actions and c and d are not initial,

76



I1

I2

I3

a? b!!

a? c!!

b??

c??

c??

b??

a!

Figure 4.8: I1||I2||I3 meets conditions in Theorem 4.5

the set {c, d} does not appear in V0 of EGI which would be required to meet
the conditions of the theorem.

On the other hand, since conditions in Theorem 4.5 are not sufficient, also
confluent IOSAs may satisfy them. Consider the IOSAs in Fig. 4.8. I1||I2||I3
is a closed IOSA with a single state and no outgoing transition. Hence, it
is confluent. However, I3 is not confluent w.r.t. b and c,  ∗= {(b, b), (c, c)},
B1 = {b} is spontaneously enabled by a in I1, and B2 = {c} is spontaneously
enabled by a in I2. Hence b, c ∈

⋃n
i=1Bi, thus meeting the conditions of

Theorem 4.5.

Avoiding the state space explosion has its benefits. Indeed,there is an
algorithm to check for conditions of Theorem 4.5 in polynomial time and
space. Algorithm 1 is a revision of the one for I/O-IMC at [37, Chapter 8.6.1].
It verifies for a given closed model I = I1|| . . . ||In the algorithm verifies if
it satisfies conditions of Theorem 4.5. It does it in polynomial time and
space. For each component it computes the sets of all initial actions A(init),
of size O(|A|), and the set of nonconfluent actions which has size O(|A|2).
Computing all the spontaneous sets will take exponential size to keep. Since
we are only interested in knowing if two actions are in a same spontaneous
set, we instead compute the relation

Rsp = {(a, b) | a and b are in a same spontaneous set}

Notice that Rsp has size O(|A|2).
Roughly speaking, to calculateRsp we should compute n depth first search

for each pair of actions (e, a) ∈ A \ Au × Au, in order to mark each action
b which shares with a a same spontaneous set enabled by e. This will take
O(|A|2 ·

∑n
i=1 |Si|2) time. Computing initial actions, triggering relation, and

nonconfluent pairs of actions can be done by applying depth first search to
each component which requires O(

∑n
i=1 |Si|2) time. The approximate trig-

gering relation for I is the union of the triggering relations of its components

77



and again has O(|A|2) size. Computing the reflexive, transitive closure of
this relation has time complexity O(|A|3) [36].

After building this sets it remains to look for nonconfluent actions a and
b, in a set of size O(|A|2). Then we shold look for a pair of actions c and
d, that are either initial or contained in a spontaneous set, is also O(|A|2),
that approximately indirectly trigger a and b. This gives a time complexity
of O(|A|4) for checking conditions in loop 6-13 of the algorithm. Then the
overall time complexity is

O(|A|2 ·
n∑
i=1

|Si|2 + |A|4),

while the space complexity is

O(
n∑
i=1

|Si|2 + |A|2).

4.7 Conclusions

In this chapter we have introduced a new version of Input/Output Stochastic
Automata, which extends the former IOSAs with the possibility of modeling
instantaneous transitions. We called this transitions urgent. In contrast
to non-urgent transitions, they lack of an enabling clock, and thus their
occurrence happens immediately as soon as the enabling state is reached.
This results in a much more flexible framework for modelling compositionality
in comparison with original IOSAs where many times we experienced the
impossibility to modularize a model and instead need to construct a big
monolithic model, making a very poor use of compositionality.

We showed how the introduction of urgency turned our models to be non-
deterministic even in their closed behavior. Nevertheless, we pointed out
that many times this non-determinism is introduced by confluent actions.
This turns out to be spurious non-determinism in the sense that it does
not change the stochastic behavior of the model. We then defined a notion
of weak determinism based on the confluence between urgent actions, and
proved that confluent models – those where all urgent actions are confluent
– are weak deterministic. We showed that if the components are confluent
then the composition is confluent.

78



Algorithm 1 Verifies whether a closed IOSAu I = (I1|| . . . ||In) satisfies the
conditions of Theorem 4.5. If the algorithm returns “True” then C may be
nondeterministic, otherwise I is deterministic.

1: Compute Rsp.
2: for 1 ≤ i ≤ n do
3: Compute Ainiti , and the triggering relation for Ii.
4: Compute all pairs of nonconfluent actions for Ii.
5: Compute approximate triggering relation for C.
6: Compute reflexive, transitive closure of approximate triggering relation.
7: for all nonconfluent pairs of actions a, b do
8: for all initial actions c that approximately indirectly trigger a do
9: for all initial actions d do

10: if d indirectly triggers b then
11: return True
12: for all spontaneous actions c that approximately indirectly trigger a

do
13: for all actions d in the same spontaneous set as c do
14: if d indirectly triggers b then
15: return True
16: return False

Based on [37], we obtained sufficient conditions to ensure that a net of
possibly non-confluent IOSAu components is nevertheless confluent. Further-
more, we proposed a methodology that uncovers the triggering conditions of
urgent actions, which is able to determine if a net of IOSAus meets this
confluence conditions. Finally we develop an algorithm that follows this
methodology in order to determine if the conditions are met. The algorithm
runs in polynomial time, by working directly over the components. Notice
that if the composition is confluent then we are sure that it is weakly de-
terministic. Also notice that the algorithm can return false negatives, given
that the conditions are sufficient but no necessary.

The IOSAu formalism delivers a framework to model and analyze stochas-
tic systems with general distributions by means of rare event simulation. Its
compositional nature, allows to model industrial sized systems in a com-
fortable and robust manner by concentrating in the clear behaviour of each
component and the intuitive synchronization between them. This contrasts
against monolithic approaches where the size and complexity of the models

79



quickly turn the engineering job an error-prone activity. Models with general
continuous stochastic behaviour can not be treated by model checking in the
general case. Discrete event simulation is the main alternative for analyzing
this kind of models. We proved that IOSAu is weakly deterministic and thus
amenable to discrete event simulation.

80



Chapter 5

Repairable Fault Trees

Fault Tree Analysis (FTA) is a prominent technique for analyzing reliability
and safety properties on industrial systems. The appealing characteristics
of FTA are based on its apparently easy-to-understand graphical notation.
It was first introduced by Bell Laboratories in 1962, as a mean to analyze
a ballistic system for the USA army. From then it has been used in many
fields specially where risk analysis is very important such as in aviation and
space (NASA, SPACE-X, Boeing,etc), automotive industry, pharmaceutical,
and other high-hazard industries [50, 74, 98]. It is also a promising tech-
nique for the assessment of profit and availability issues in train industry
(with maintenance fault trees) [91], for security assessment in cybersecurity
(with attack trees), and other. Fault Tree analysis is a top-down technique,
where, starting from a top-event (a fault which is of interest to analyze in the
system), we go down connecting the possible causes of this fault by means of
logical gates until we reach to basic faults (those that we can not, or do not
want to decompose anymore) known as basic events (BE). These basic events
have a known rate of failure usually described by a probability distribution.
The calculation of the probability of failure of the top event depends on the
causal relation existing between the top fault and the basic events, which is
given by the gates of the tree.

From its origins, Fault Trees have been extended in many different ways,
and used for many different purpose. Informally we can say that the origi-
nal fault trees, called Standard or Static Fault Tress (SFT) [60], are DAGs
whose leafs are called Basic Events (BE), although in this work we will con-
veniently call them Basic Elements. BEs usually represent the failure of an
atomic system component. Each leaf is equipped with a failure rate, that

81



indicates the frequency at which the component breaks, usually described
by an exponential distribution (memoryless). The rest of the nodes on the
DAG are called gates, and they model how basic events failures combine to
induce more complex system failures. The standard gates AND, OR, and
Voting gates represent simple logical combinators. Other varieties of FTs
allow for further modeling capabilities by for instance introducing new gates,
or a more complex behaviour into the BEs.

Switch Main

Backup

Figure 5.1: Energy backup.

One of the most common extensions are Dynamic Fault Trees (DFT) [52,
70], which introduce Priority AND gates to model order in faults occurrence,
Spare gates for managing spare parts for broken components, and Functional
Dependence gates that model functional dependency between BEs. A typical
use example for these new gates can be found in Figure 5.1, where we model
an electricity backup system composed from a switch that senses the main
line power and turns on the power backup, and a main power supply. We are
interested in measuring the likelihood of running out of power (top event).
This fault will occur if the switch breaks and then the main power line stops
serving electricity, or if both the main and the backup break. In the first case,

82



the time conditioning between the switch and the main supply is established
by the PAND gate. Notice that in a real world example, these BEs would
usually be decomposed into more complex subtrees, that would serve with
the means of profoundly analyzing the causes of the top event, and hence
giving hints on where to look for an improvement on the reliability of the
modeled system.

Repairable Fault Trees (RFT) [86, 9] increase FTs expressiveness by in-
troducing the possibility to represent repair events in addition to fail events.
Several ways for introducing this modeling capability have been proposed.
We will focus on the Repair Box (RBOX) model [13, 86]. A RBOX gate
models a repair unit in charge of repairing a certain set of basic elements
when they fail, following certain repair policy. Different repair policies such
as first come first serve, priority service, random or non-deterministic choice
on repair boxes allow users to analyze the impact of taking these decisions
in the real system. The introduction of these boxes greatly changes the dy-
namic of the tree, since the failure probability calculation is not a bottom-
up calculation anymore. Moreover, it allows to study the availability in a
given model. In this enhanced model, we do not only signal failures but also
repairs.

Both qualitative and quantitative analysis can be carried out on Fault
Trees. Traditionally, for SFTs, qualitative analysis has been carried out by
discovering the minimal cut sets (MCS) [96]. Moreover, many of the existent
analysis techniques on SFTs are based on this sets. A cut set is a set of basic
events that causes the occurrence of the top event of the tree. A cut set is
minimal if it has no proper subset which is also a cut set. In a SFT, if the top
event occurs it is because all the BEs in one of its MCS failed. The discovery
for instances of a minimal cut set for which the failing probabilities of its
BEs is high, might indicate the need to strengthen that part of the system.
Although it looks as a simple analysis, it is usually the case that certain MCS
could escape to a simple visual inspection of the model, reason why several
techniques have been proposed to carry out a more precise discovery of this
sets, such as boolean manipulation or BDD techniques [96].

The timing constraints introduced by dynamic gates make MCS not very
useful for DFTs. Take for example a model of a single PAND gate with two
input BE1 and BE2 as in Figure 5.2. If BE1 and BE2 fail in that order, then
we may think of them as a MCS, although it is not the case that every time
they fail the system fails. MCS do not cover all the behavior of the dynamic

83



gates and are not sufficient to analyze the failing constraints introduced by
DFTs. An alternative to MCS are Cut Sequence Sets [76]. Cut sequences
work by separating the combinatorial and the timing aspects of dynamic gates
in order to extract the MCSs and impose an order inside them afterwards.
[70] discusses some important issues related to cut sequences, which may
discourage in using them in the general case of DFTs.

BE1 BE2

Figure 5.2: Pand gate.

No MCS nor cut sequences are sufficiently interesting in the case of RFT
since they do not take into account the repairing process. This is, the proba-
bility of failure of a cut set can not be taken straightforward without a state
space analysis given the complex inter-dependent repair mechanisms. Thus
there is not much significance on obtaining the cut sets. Moreover they are
for the same reason not as relevant on quantitative analysis as they are for
SFTs.

On the other hand, quantitative analysis may be significant interest in
the analysis of RFTs. Typical quantitative analysis measures of interest
are reliability and availability. The reliability of a model is defined as the
probability that the system it represents do not fail for a certain amount of
time, while the availability of a system is defined as the probability that the
system is up and running. In the case of reliability, it is usually the case
that we would like to calculate the opposite, i.e. the long run probability
of failure of a Fault Tree and we spect it to be as small as possible. While
reliability is usually an interesting measure to take on a SFT (which has a
single run), availability is usually the interesting measure to take on a RFT
where the system may get repaired and thus a long run probability will have
a stronger meaning.

The most efficient analysis technique on non-stochastic SFTs consists in

84



building a Binary Decision Diagram (BDD) representing the same formula
as the FT and then solving the required dependability study by using sev-
eral optimized algorithms. For the case of DFT, new analysis techniques
were introduced in order to capture the temporal requirements, such as cut
sequences, translation to Markov models [52, 52, 18], Sequence Binary De-
cision Diagrams [56, 88, 105], algebraic approaches [81, 2], simulation, and
combination and optimizations of these methods [12, 59]. The cyclic be-
haviour introduced by the inter-dependency fault-repair in RFTs disallows
most of these techniques, and a state based approach such as discrete event
simulation or Model Checking has to be considered.

We find two possible approaches to analyze RFTs. A first approach
would be translating the model to a Markov model, maybe applying as
much optimizations during the modeling and analysis in order to relieve
the state explosion problem. This is the approach followed by many works
such as [10, 12, 13]. Two main drawbacks can be pointed out on this ap-
proach. The first one is that no matter which existing optimization methods
are used, there is no guarantee that there will be a significant state space
reduction in general models. This is a specially difficult situation in big and
complex industrial size systems analysis involving repair. A second drawback
is the restriction to exponentially distributed events, which does not prop-
erly capture the correct behavior of the events where timing is governed by
other continuous distributions. This is the case for example of phenomena
such as timeouts in communication protocols, hard deadlines in real-time
systems, human response times or the variability of the delay of sound and
video frames (so-called jitter) in modern multi-media communication sys-
tems, which are typically described by non-memoryless distributions such
as uniform, log-normal, or Weibull distributions [45]. A second approach
to RFT analysis would be recurring to simulation, which does not need to
construct the full state space of the model, and does not impose per se the
restriction to any particular kind of probabilistic distributions. The main
problem when confronting simulation is the great amount of computation
needed to reach a sufficiently accurate result if dealing with very low possi-
ble events. This is a most relevant issue when analyzing highly dependable or
fault tolerant systems, where the failure probability is very small and plane
Monte Carlo simulation becomes infeasible. To face this problem one can
make use of Rare Event Simulation techniques such as Importance Splitting
or Importance Sampling [102, 27, 28, 89].

85



In this section we present a formal definition of Repairable Fault Trees,
along with its semantic given in terms of Input/Output Stochastic Automata
(IOSA). We also analyze determinism on the RFT models, in order to obtain
suitable models for discrete event simulation. Many works address the prob-
lem of defining a rigorous syntax and semantic to FT, DFT, and RFT, some
of them being [35, 13, 19, 9]. They usually differ for instance in the types
and meaning of gates, expressiveness power, how spare elements are claimed
and how repair races are resolved. Presence of non-deterministic situations
is also a main discording issue. Further topics have been addressed in liter-
ature, such as compositional aggregation and modular modeling [18]. Good
surveys on state of the art on FTs and tools can be found at [93], [70] and
[8].

Although broadly used, Fault Trees still have several limitations. In par-
ticular, we focus in the following ones:

(a) The expressiveness power of RFTs comes along with a vague formal
definition of the behavior of its components. Many works address or at
least warn about this issue. It is then a main interest to completely define
the behavior of each component, in a way that no ambiguity could harm
the modeling and analysis of a model, while attempting, at the same
time, to be as permissive as possible, in order to allow modeling as many
real systems characteristics as possible. It is in our interest to pay special
attention to those underspecification that could lead to non-deterministic
behavior which would render the models not amenable for discrete event
simulation.

(b) As software and embedded systems get larger and larger, numerical and
analytic techniques become unfeasible given the enormous size of the
state space to build and explore. Other techniques, with simulation
being the most popular, present an alternative that, although resulting
on an approximate answer, present a tunable and adequate confidence
on the given result. Simulation can not be carried on non-deterministic
systems. It is then a principal matter to ensure that the models are
deterministic, i.e that at each step of the computation we can determine
a unique probabilistic next step. In the case of RFTs, non-determinism
is a very spread problem, given the under-specification on the behavior
of its components. This under-specification is many times on purpose of
allowing liberty to the modeler. Other times, it is an effective mechanism

86



to analyze different possible solutions to an unknown fact in the modeled
system.

(c) The exponential distribution does not capture many of the real life sys-
tems probabilistic behavior that FTs intend to model and analyze. Un-
fortunately most of nowadays DFT analysis tools only allow for exponen-
tial distributions, thus restricting only to Markovian models. Moreover,
the few cases where they do allow non-Markovian distributions restricts
the model to a small range of gates, and do not offer support for the
repair model [8]. Then, there is a need to confer a more general semantic
to RFT models that allows for arbitrary continuous distributions to be
adopted as failure and repair rates.

In Section 5.5 we formally define the syntax for RFTs following ideas
from [17]. Moreover, in order to define the compositional deterministic se-
mantic using IOSAu we discuss different concerns about determinism on
RFTs. Our main contribution in this chapter consists in allowing for gen-
eral probability distributions for failure and repair rates. With this we cover
points (a) and (b) from our concerns. This capability is given by our mod-
eling language IOSAu which at the same time turns to generate weakly
deterministic RFTs models, focusing also on point (c). Furthermore, we are
able to simulate these deterministic models using the FIG rare event simu-
lation tool, greatly increasing efficiency when analyzing highly dependable
systems [32, 29, 90, 102], and if the model is compatible, also in other tools
via Jani [31]. Recently [92] covered the matter of using rare event simulation
to analyze fault trees, although they restrict to exponential and Erlang dis-
tributions. At the moment we are not aware of any other approach applying
rare event simulation specifically to fault trees.

87



5.1 Repairable Fault Trees

Dependent
Inputs

Triggering
Input

FDEP
gate

Spare
Inputs

Main
Inputs

Spare
gate

SBE BE

Output

Output Output

Inputs

2/3

Output

VOTING
2/3
gate

Inputs

RBOX

Inputs

Output

PAND
gate

Inputs

Output

OR
gate

Output

Inputs

AND
gate

Figure 5.3: RFT elements

In Figure 5.3 we present the graphical representation of each possible gate in
a RFTs. Each element has a set of inputs where to connect its subtrees, and
an output to propagate the failure, repair and other signals. The propagation
of a failure and its subsequent repair starts at the leafs of the fault tree. Only
basic elements can be a leaf in a fault tree.

Basic Elements (BE) are the leaves of RFTs. They model atomic units of
failure and also the possibility of repair. They are graphically represented by
a circle, and accompanied by a failure time distribution, as well as a repair
time distribution. They usually describe a basic component of the modeled
system, for which times to failure and repair are known. BEs in Repairable
Fault Trees will signal a failure event when they fail, as in original fault trees,
and in addition, will signal a repair event when they get repaired. When a BE
fails, or gets repaired, it instantaneously propagates the event to the gates to
which it is connected. We can think that the state of a gate changes based
on the signals it receives from its inputs. Usually a fail signal may change the
gate state to failing and a repair signal may change it to a working state. At
the same time, gates may output a signal when their state changes. Again
it will be usually the case that they will output a fail signal when their state
changes from working to failing, and a repair signal when it changes the other
way round. Other signals may also be produced, as it can be in the case of
repair boxes, which may output a “start repairing” signal to any of the BEs

88



they are in charge of repairing. The intuition about the behavior of each
gate is as follows.

An AND gate fails whenever all its inputs are failing, and gets repaired
when at least one of its inputs gets so. AND gates correspond to a logical
conjunction with respect to fail signals.

An OR gate fails whenever at least one of its inputs fail and stop failing
when all of its inputs get fixed. OR gates correspond to a logical disjunction
with respect to fail signals.

A VOT gate fails whenever at least k of its n inputs fail and stop failing if,
in a state where exactly k of its inputs are failing, one of them gets repaired.
This type of gate can be replaced by an appropriate combination of AND
and OR gates.

Note that the three gates we presented so far react only based on changes
in the combination of their inputs. These are called static gates and are
already present in Static Fault Trees. In contrast, the following gates are
called dynamic gates and react to the signals of their inputs taking into
account other aspects like timings and dependence.

A PAND gate fails whenever all its inputs fail and they do so from left
to right, imposing an ordering condition into the failure occurrence. It gets
repaired whenever its last input gets repaired. Note this repairing condition.
Not much has been written about the repair of a PAND gate. We decided
for this possibility based on most used cases like the one on Figure 5.1, where
fixing the first input does not represent a fixing of the represented system,
while fixing the second input does. If we agree that an n inputs PAND gate
can be modeled with a sequence of n− 1 2-input PAND gates connected in
cascade, then our point is still consistent and reasonable for larger PAND
gates. Another possibility we did not follow, but still does make some sense,
is to wait until all inputs of the PAND gate get fixed. Finally, we did not
find any reasonable meaning on the remaining case, i.e. fixing the PAND
gate as soon as the first input (or other than the last one) gets fixed. That
is why our choice on the PAND gate repairing behavior.

89



M2

AUX

S2

M1

S1

Figure 5.4: A fault tolerant cooling system.

A Functional dependency gate (FDEP) has n+1 inputs. The fail signal of
one of its inputs (the triggering one) makes all the other inputs inaccessible to
the rest of the system. Note that the dependent inputs do not fail, and they
will be accessible again as soon as the triggering component gets repaired
(note the difference with [17, 92] where dependent BEs do fail). This gate
is a syntactic sugar for an OR gates system as depicted in Figure 5.5. See
Section 5.2 for further discussion on these gates.

A Spare basic element (SBE) is a special case of BEs which can be enabled
and disabled, and can be used as spare parts for other BEs by means of Spare
gates. One SBE can be shared by several Spare gates, and different sharing
policies are introduced for this purpose. It is common to distinguish three
types of SBEs, depending on whether they do not fail when disabled, named
cold SBE, or they fail but with a lower rate than when enabled, called warm
SBE, or they fail with the same frequency as they do when they are enabled,
called hot SBE.

90



Triggering
BE

Out1 Out2

1
2 3

(a)

Triggering
BE

Out1 Out2

1 2 3

(b)

Figure 5.5: A FDEP gate system (a) and an equivalent construction (b).

A Spare gate (SG) allows to backup a main basic element with several
spare basic elements in case the main one fails. Each spare gate has a main
input and n spare parts inputs. A main input can only be a BE. The spare
inputs can only be SBEs. As soon as the main input fails, the SG selects the
next available spare element to replace it. The SG will fail whenever it does
not obtain a replacement, and will inform repair whenever the main input
gets repaired or a spare input is obtained. If an in-use replacement fails the
SG will look for a new one. If the main input is repaired, the SG will free its
acquired spare input, in case there is one. An example for the use of spare
gates and SBEs can be found in Figure 5.4. It shows a RFT model of a two
water pumps (M1 and M2 ) system with a spare backup pump (AUX ) in
case any of them fail. If both subsystems fail then the whole system does
(note the AND gate at the top). Both subsystems share a spare pump which
is connected to their corresponding spare gates. When a main pump breaks,
the corresponding spare gate asks for the Auxiliary pump. If the spare pump
is not broken and available, then the spare gate enables it in order to start
working. Further description of the model and its behavior can be found in
Section 5.8.2.

A Repair Boxs (RBOX) is the unit in charge of managing the repair of
failed BEs and SBEs. It has n inputs, corresponding to each of the basic
elements it should repair, and a dummy output. A RBOX policy determines
in which order the failed BEs (or SBEs) will be repaired. The time that takes
repairing each input is defined at the at the BE (or SBE) itself. We think that
this is a better approach than defining a single repair time at the repair box,

91



since the nature of the inputs vary, and may influence its repair complexity.
Notice that simply changing policies on the Repair Boxes already opens the
possibility to compare different scenarios that much certainly would influence
on the reliability of the modeled system.

5.2 Discussion on design.

In this section, we would like to discuss some alternatives to what we have
decided on the design of the elements of a Repairable Fault Tree. We intend
to clarify and justify our choices on the semantics of the different gates.

It is noticeable that on Standard Fault Trees no reasoning about the re-
pair of a model component was consider. In effect, only the propagation and
logical combination of failures were considered. In fact, the basic elements
in SFT are the failures of the system components which then propagate and
combined, building more complex failures until reaching the top event. In
this context, the leaves of the trees represent the whole information we need
about these atomic components, i.e. the failure rates. With the introduction
of repair units (RBs) and the possibility of repairing broken components of
the system, the whole logic changes. There is first the need to introduce a
new kind of event, that is the repair event. Furthermore, now leaves need
to represent more information in order to completely model an atomic com-
ponent. The former meaning of a basic element does not cover these repair
events, and for their simplicity are named Basic Events. A leaf now has
information about both kind of events for a component, its failure event and
its repair event, which are comprised by the name Basic Element instead.

The change of dynamic also attains the different gates of the tree. In
some cases like the AND and OR gates, a clear and simple definition of the
behaviour under the repair of components is achieved without much difficulty,
and without introducing non-determinism which is of or higher interest. This
is not the case with the PAND gate for example, as we have seen above, where
many questions arise and situations involving non-determinism force a deeper
analysis.

Another gate that deserves our attention is the functional dependence
gate (FDEP). In former works such as [52] this gate was defined as to disable
the access to several components as a consequence of the failure of a triggering
component. Note that there was no explicit mention on the failing of the
dependent components, the only consequence was not being able to access

92



them anymore. In the context of a Standard Fault Tree, the failing of the
dependent components had the same effect that would have not being able
to access them, since there was no notion of repairing after the failure. In
our context, on the other hand, these two different situations have a sever
impact on the meaning of the gate. We decided to keep the meaning from
[52] in contrast to other works like [35, 92] where the failing of the triggering
basic element causes the failure of the dependent basic elements. This is,
dependent basic elements will not fail as a consequence of the failing of the
triggering basic element, but will become inaccessible instead. Choosing an
apposite approach would require analyzing the non-determinism caused by
the simultaneous failures. Our modeling desition ensures that this gate does
not introduce any non-determinism. The work [18] mentions that it is not
difficult to generalize the FDEP gate in order to accept other gates or subtrees
as dependent inputs. This could also be done in our framework but we have
decided not to work on it yet.

The spare gate and spare basic element deserve some discussion as well.
While some works allow to extend the possibilities of these constructions in
order to allow a general subtree to work as spare part of a failing subtree [19],
this would with no doubt require restricting the allowed spare subtrees in
order to avoid non-determinism. We leave this possibility for upcoming work.

All in all, many extensions and further support for gates can be analyzed
and introduced to our RFT. Nevertheless, as a first step, we intend to give
here a tight but robust framework that can be ensured to be deterministic,
and leave those possibilities for upcoming work.

5.3 IOSA symbolic language

We present a symbolic language to describe IOSAu models, which will ease
the modelling by avoiding the extensive description of the discrete state space
and numerous transitions. Since our framework (IOSAu) is compositional,
this is reflected also in the language, where each component is modeled sepa-
rately by what we call a module. A module is composed of a set of variables,
whose valuation represent the actual state of the component, a set of clocks
corresponding to the enabling clocks for non urgent transitions, and a set
of transitions which symbolically describe the possible jumps between states
(changes of valuations and reseting of clocks). Figure 5.6 models a basic
element as an example. Variables can be of integer (with finite range) or

93



boolean type. As we will see later, also arrays can be defined as variables.

1 module BE

2 fc, rc : clock;

3 signal : [0..2] init 0;

4 broken : [0..2] init 0;

5
6 [fl!] broken=0 @ fc -> (signal’=1) & (broken’=1);

7 [r??] broken=1 -> (broken’=2) & (rc’=γ);
8 [up!] broken=2 @ rc -> (signal’=2) &

9 (broken’=0) & (fc’=µ);
10
11 [f!!] signal=1 -> (signal’=0);

12 [u!!] signal=2 -> (signal’=0);

13 endmodule

Figure 5.6: Basic Element IOSA symbolic model.

An initial value for each variable is determined after the keyword init.
Clocks distributions are defined at the transitions where clocks are reset. A
transition is described by the name of the action which takes place (or no
name if not needed), a condition restricting the origin states, an enabling
clock (only for the case of output non-urgent transitions), a condition de-
scribing the target states, and the set of clocks to be reset. A fast overview
of Figure 5.6 will help to further understand our symbolic language: Two
clocks, fc and rc, are defined at line 2. these clocks will be used as enabling
clocks for transitions at lines 6 and 8, and reset on transitions at lines 7 and
8. Lines 3 and 4 define variables signal and broken, both of integer type
ranging between 0 and 2, and initialized with value 0. Line 6 defines a set
of output non-urgent transitions, which produce the output action fl. More

precisely, this line defines the set of non-urgent transitions s
{fc},f l!,∅−−−−−−→ s′,

where s meets the condition broken=0, and s′ is the result of changing the
values in state s of variables signal and broken to 1. The @ symbol precedes
the enabling clock for the transition while the −→ symbol distinguishes be-
tween conditions for the origin state and the target state. The conditions
on the target state are expressed as assignments to the next state values of
the variables, indicated with an apostrophe. Line 7 defines an urgent input

94



transition with label r. The double question marks after the name indicate
that it describes urgent input transitions. Urgent output transition are in-
dicated with double exclamation marks (!!), non urgent input transitions
with a single question mark, and non-urgent output transitions with a single
exclamation mark or no mark if no label is provided. At the end of the line
we find the reset of the clock rc to a value sampled with a probability dis-

tribution γ. This line then defines transitions s
∅,r??,{rc}−−−−−−→ s′, where s meets

with condition broken=1, s′ is identical to s except for variable broken which
has value 2, and clock rc has distribution γ. At line 10, an urgent output
transition is defined, indicating the failure of this component. We will usu-
ally use these urgent transitions to synchronize and communicate with other
modules. As a final note on the matter, we should point out that a model
as the one described at Figure 5.6 is not legally a IOSA since it is not input
enabled. In fact it is missing a transition:

[r??] broken != 1 -> ;

Nonetheless, for the sake of simplicity, we will avoid writing down this kind
of “self loop” transitions, although we will assume they exist in the model.

The full specification of the IOSA symbolic modeling language can be
found in Appendix A. An IOSA model is described by a set of modules,
each one describing a concurrent component of the system to model. The
body of a module can be clearly divided into three parts: the variables dec-
larations, the clocks declarations, and the transition specification. Arrays
are declared along with variables, with the additional requirement of defin-
ing the range of the array between brackets. Transition guards are boolean
formulas describing the origin states for the symbolic transition. In this
case the & symbol stands for the propositional conjunction operator while
| stands for the propositional disjunction operator, and ! for the negation.
Assignments (or Postconditions) on the other side, describe the changes of
the values. Each assignment is enclosed by parenthesis, and the variable’s
name is followed by an apostrophe to indicate that corresponds to the value
of the variable in the reached state after taking the transition. An amper-
sand (‘&’) separates each assignment. Notice the similarity with PRISM [72]
syntax for describing transitions. Along with the assignment of values to
future variables, we find the reset of clocks. A clock is assigned a probability
distribution (clock′ = γ) to indicate that it will be set to a value from that
probability distribution immediately before reaching the new state. For a
clock c, its probability distribution should be always the same, thus it should

95



coincide in every line where it is set. Each line that defines a variable or
array, describes a transitions or declares a clock, ends in semicolon and can
be placed wherever inside the scope of a module.

5.4 A formal definition of RFT

In this section we present a formal definition of the RFT along with its
semantic given in terms of IOSAu. We extend the DFT formalization given
by [18] with new features as repair boxes as well as some other modifications
such as conditions in order to ensure determinism. Each element of a RFT
is characterized by a tuple consisting of its type, its arity, i.e. number of
inputs, and possibly other parameters such as probability distributions for
the fail and repair events on BE.

Definition 5.1. Let n,m and k belong to N+, and let µ, ν and γ be contin-
uous probability distributions. We define the set E of elements of a RFT to
be composed of the following tuples:

• (be, 0, µ, γ) and (sbe, 0, µ, ν, γ), which represents basic and spare basic
element, with no inputs, with an active failure distribution µ, a dormant
failure distribution ν, and a repair distribution γ.

• (and, n), (or, n) and (pand, n), which represent AND, OR and PAND
gates with n inputs, respectively,

• (vot, n, k), which represent a k from n inputs voting gate,

• (fdep, n), which represents a functional dependency gate, with 1 trigger
input and n − 1 dependent ones. By convention the first input is the
triggering one,

• (sg, n), which represents a spare gate with one main input and n − 1
spare inputs. By convention the first input is the main one.

• (rbox, n), which represents a RBOX element for n BEs (or SBEs).

A RFT is a direct acyclic graph, for which every vertex v is labeled with
an element l(v) ∈ E . An edge from v to w means that the output of v is
connected to an input of w. Since the order of the inputs is relevant, we give
them in terms of a list i(w) instead of a set. Similarly, si(v) will list all the

96



spare gates to which a spare basic element v is connected as an input. Let
t(v) indicate the type of v. That is, t(v) is the first projection of l(v). Let
#(v) indicate the number of inputs of v, that is, it is the second projection
l(v).

Definition 5.2. A repair fault tree is a four-tuple T = (V, i, si, l ), where V
is a set of vertices, l : V → E is a function labeling each vertex with an RFT
element, i : V → V ∗ is a function assigning #(v) inputs to each element v
in V , and si : V → V ∗ which indicate which spare gates manage each SBE.
The set of edges E = {(v, w) ∈ V 2 | ∃j · v = (i(w))[j]} is the set of pairs
(v, w) such that v is an input of w. If such an edge exists we will say that v
is connected to w and w to v.

For a RFT T to be well formed, the following conditions should be met:

(i) The tuple (V,E) is a direct acyclic graph (DAG).

(ii) T has a unique top element, i.e. a unique element whose non dummy
output is not connected to another gate. This is, there is a unique vertex
v ∈ V such that for all w ∈ V , (v, w) /∈ E and t(v) /∈ {fdep, rbox}.

(iii) An output can not be more than once the input of a same gate. That
is, for all 1 ≤ j, k ≤ |i(w)| with i(w)[j] = i(w)[k], we have j = k.

(iv) Since FDEP and RBOX outputs are dummy, if (v, w) ∈ E then t(v) /∈
{fdep, rbox}.

(v) The inputs of a RBOX can only be basic elements. That is if (v, w) ∈ E
and t(w) = rbox then either t(v) = be or t(v) = sbe.

(vi) Each (spare) basic element can be connected to at most one RBOX.
This is if (v, w) ∈ E and (v, w′) ∈ E and t(w) = t(w′) = rbox, then
w = w′.

(vii) The spare inputs of a spare gate can only be SBEs, while its main input
can only be a BE. I.e., if (v, w) ∈ E and t(w) = sg then t(i(v)[0]) =
be and for j > 0, t(i(v)[j]) = sbe. Furthermore, a SBE can only be
connected to a spare gate or a RBOX, i.e., if (v, w) ∈ E and t(v) = sbe
then t(w) ∈ {sg, rbox}.

(viii) A spare basic element is an input of a spare gate, if and only if that
spare gate is spare input of the spare basic element, i.e. for v and v′

97



such that l(v′) = (sbe, 0, µ, ν, γ) and l(v) = (sg, n), (v′, v) ∈ E if and
only if there exists j such that v = si(v′)[j].

(ix) A basic element can be connected to at most one spare gate, i.e. if
(v, w) ∈ E and (v, w′) ∈ E with t(w) = t(w′) = sg and t(v) = be then
w = w′.

(x) If a basic element is connected to a spare gate then it can not be con-
nected to a FDEP gate, i.e. if (v, w) ∈ E and t(v) = be and t(w′) = sg,
then there is no (v, w′) ∈ E such that t(w′) = fdep.

Many of the conditions that we have imposed on Repairable Fault Trees
follow two main reasons: the RFT should not have loops and it should be
deterministic. Conditions (i), (ii) and (iii) are usual conditions for FTs, since
they ensure that the structure corresponds to a tree. Condition (iv) ensures
that dummy outputs stay free. Conditions (v) and (vi) make sure that RBOX
work correctly. In particular (vi) avoids non-deterministic situations where,
after a basic element fails, more than one RBOX is available to fix it.

Condition (vii) ensures that SBEs act only as a spare. This is, they are
connected as spare parts of a spare gate and they can be repaired as other
basic elements. Furthermore, it ensures that spare gates only manage BEs
and SBEs, since managing other gates would require a larger analysis on
determinism that is not part of this work.

The following items determine, for a given SBE, which spare gates are
able to request it. Correctly defining the function si would be essential for
this, hence condition (viii) is there to ensures so. Condition (ix) controls
that the main element of a spare gate is only managed by this same spare
gate. Finally condition (x) intends to avoid non-deterministic situations such
as the ones shown in Figure 5.7. These non-deterministic situations are a
result of the race conditions to acquire a replacement between main events
that become inaccessible at the same time. Note that since FDEP can be
replaced by an OR gates system (as we showed in 5.5), connecting main basic
elements to the FDEP would not meet condition (vii) either.

98



Figure 5.7: Race condition between spare gates by simultaneous failing of
main components given an FDEP connection.

For the rest of this work we will only consider well formed RFTs.

5.5 Semantics of RFT

We present now a parametric semantic for each element in E . This will be
used later to define the semantic for each vertex of RFT, and the consequent
semantic of the full model as a parallel composition of that of its components.
We only give the semantic for BEs, AND gates, OR gates, PAND gates, and
RBOX. Remember that FDEP gates are a syntax sugar, and can be replaced
using OR gates. Similarly voting gates can be modeled by a series of AND
gates and an OR gate, although a simpler model is presented here. Spare
gates and SBEs will be presented later at Section 5.7.

In the design of the IOSA modules we should take into account the com-
munication between each element of an RFT and its children and parents.
For instance a basic element has to communicate its failure and repair to
those gates for which it is an input. Similarly, a RBOX has to communicate
to its inputs a “start repairing” signal. In order to do so, the semantic of
each element will be given by a function, which takes actions as parameters.
We are going to call these actions signals, as they will represent the failing,
repairing, and other signals from RFT elements. In this sense, for an input
index i of an element e ∈ E we will name fi to the failing signal from that

99



input, ui to the up (repaired) signal, and r to the signal that repair boxes
send to their basic elements to start the repairing process. Accordingly, we
will name output signals with f for failure, u for repair, and the r for “start
repairing”.

Basic Element

For a BE element e ∈ E , its semantics is a function [[(be, 0, µ, γ)]] : A5 →
IOSA, where [[(be, 0, µ, γ)]](fl , up, f , u, r) results in the IOSA of Figure 5.8.
The state of a basic element is defined by the fail clock fc, the repair clock

1 module BE

2 fc, rc : clock;

3 signal : [0..2] init 0;

4 broken : [0..2] init 0;

5
6 [ fl!] broken=0 @ fc -> (signal’=1) & (broken’=1);

7 [ r??] broken=1 -> (broken’=2) & (rc’=γ);
8 [ up!] broken=2 @ rc -> (signal’=2) &

9 (broken’=0) & (fc’=µ);
10
11 [ f !!] signal=1 -> (signal’=0);

12 [ u!!] signal=2 -> (signal’=0);

13 endmodule

Figure 5.8: Basic Element IOSA symbolic model.

rc, a variable signal that indicates when to signal the failure or repair,
and variable broken to distinguish between broken and normal states. A
basic element fails when clock fc expires (line 6) and immediately informs
it with the urgent signal f !! at line 11. As soon as the repair begins by the
corresponding connected repair box (line 7), clock rc is set. When it expires,
the component becomes repaired. Hence, fc is set again at line 8, and the
repair is signaled with urgent action u!! at line 11. At the starting state of
an IOSA module all its clocks are set randomly according to their associated
distributions. Thus, rc is set at the initial state and could eventually expire
without having been set by a repair transition. This is why we have to

100



distinguish between cases when the BE is being repaired (broken=2) from
when it is not.

AND gate

For an AND gate element with two inputs, its semantics is a function [[(and, 2)]] :
A6 → IOSA, where [[(and, 2)]](f , u, f1, u1, f2, u2) results in the following IOSA:

1 module AND

2 singalf: bool init false;

3 signalu: bool init false;

4 count: [0..2] init 0;

5
6 [ f1??] count=1 -> (count’=2) & (signalf’=true);

7 [ f1??] count=0 -> (count’=1);

8 [ f1??] count=2 -> ;

9 [ f2??] count=1 -> (count’=2) & (signalf’=true);

10 [ f2??] count=0 -> (count’=1);

11 [ f2??] count=2 -> ;

12
13 [ u1??] count=2 -> (count’=1) & (signalu’=true);

14 [ u1??] count=1 -> (count’=0);

15 [ u1??] count=0 -> ;

16 [ u2??] count=2 -> (count’=1) & (signalu’=true);

17 [ u2??] count=1 -> (count’=0);

18 [ u2??] count=0 -> ;

19
20 [ f !!] signalf & count=2 -> (signalf’=false);

21 [ u!!] signalu & count!=2 -> (signalu’=false);

22 endmodule

At lines 6 to 11, the AND gate gets informed of the failure of either of its
inputs. When so, we distinguish between the case where the other input has
already failed (count=1) and the case where it has not (count=0). In the first
case we have to output the failure of this gate, for which we set the signalf

variable in order to enable transition at line 20. Furthermore in both cases
we increase the value of count so that we take note of the failure of an input.
A similar reasoning is done for the case of the repairing of an input at lines
13 to 18. In this case we have to set the module to signal a repair when

101



an input gets repaired at a state where both inputs where failing (lines 13
and 16), by enabling transition at line 21. In further gates modeling we will
omit writing down self loops originated by IOSA’s input enableness, such as
lines 8, 11, 15 and 18 of the AND gate model. Nevertheless, we remark that
it is necessary to take them into account when analyzing confluence on the
modules at section 5.6. While we have described an AND gate with only two
inputs, it is easy to imagine a generalization to a larger number of inputs.
Furthermore, it is easy to model an N inputs AND gate by composing several
AND gates in cascade or pyramid topologies.

OR gate

For an OR gate element e ∈ E with two inputs, its semantic is a function
[[(or, 2)]] : A6 → IOSA, where [[(or, 2)]](f , u, f1, u1, f2, u2) results in the following
IOSA:

1 module OR

2 signalf: bool init false;

3 signalu: bool init false;

4 count: [0..2] init 0;

5
6 [ f1??] count=0 -> (count’=1) & (signalf’=true);

7 [ f1??] count=1 -> (count’=2);

8 [ f2??] count=0 -> (count’=1) & (signalf’=true);

9 [ f2??] count=1 -> (count’=2);

10
11 [ u1??] count=2 -> (count’=1);

12 [ u1??] count=1 -> (count’=0) & (signalu’=true);

13 [ u2??] count=2 -> (count’=1);

14 [ u2??] count=1 -> (count’=0) & (signalu’=true);

15
16 [ f !!] signalf & count!=0 -> (signalf’=false);

17 [ u!!] signalu & count=0 -> (signalu’=false);

18 endmodule

Notice that the OR gate model is very similar to the AND gate. We take
as a premise for these models that an input will not break two times in a
row without being repaired in the middle, neither it will be repaired if it has
not failed. Just as for AND gates, OR gates with more than 2 inputs can be

102



easily modeled or replaced by a combination of 2-input OR gates.

VOT gate

The following IOSA model corresponds to a 2 from 3 voting gate. A gen-
eralization to other values of N and K can be easily obtained. Although
an alternative modeling of this gates can be obtained by a combination of
OR and AND gates, one may want to reduce the complexity of the system
modeling by using the interpretation presented here, which also happens to
be weakly deterministic.

For a 2 from 3 Voting gate element e ∈ E , its semantic is a function
[[(vot, 3, 2)]] : A8 → IOSAu, where [[(vot, 3, 2)]](f , u, f 0, u0, f 1, u1, f 2, u2) results
in the following IOSAu:

1 module VOTING

2 count: [0..3] init 0;

3 inform: bool init false;

4
5 [ f0??] -> (count’=count+1) & (inform’=(count+1=2));

6 [ f1??] -> (count’=count+1) & (inform’=(count+1=2));

7 [ f2??] -> (count’=count+1) & (inform’=(count+1=2));

8
9 [ u0??] -> (count’=count-1) & (inform’=(count=2));

10 [ u1??] -> (count’=count-1) & (inform’=(count=2));

11 [ u2??] -> (count’=count-1) & (inform’=(count=2));

12
13 [ f !!] inform & count >= 2 -> (inform’=false);

14 [ u!!] inform & count < 2 -> (inform’=false);

15 endmodule

Voting gates are modeled using a counter which counts how many inputs
have failed. This is done by listening to the corresponding fail signals at
lines 5 to 7, and repair signals at lines 9 to 11. In these same lines we take
into account if we have just reached the K value (2 in our example) or if we
have just gone down this value, which are the circumstances under which to
inform the failure and repair respectively, which is finally done at lines 13
and 14.

103



PAND gate

The semantics of a Priority AND gate with 2 inputs is defined by [[(pand, 2)]] :
A6 → IOSA, where [[(pand, 2)]](f , u, f 0, u0, f 1, u1) results in the following
IOSAu:

1 module PAND

2
3 f1: bool init false;

4 f2: bool init false;

5 st: [0..4] init 0; // 0:up, 1:inform fail, 2:failed,

6 // 3:inform up, 4:unbreakable

7
8 [_?] st=0 & f1 & !f0 -> (st’=4);

9
10 [ f0??] st=0 & !f0 & !f1-> (f0’=true);

11 [ f0??] st=0 & !f0 & f1 -> (st’=1) & (f0’=true);

12 [ f0??] st!=0 & !f0 -> (f0’=true);

13 [ f0??] f0 -> ;

14
15 [ f1??] st=0 & !f0 & !f1 -> (f1’=true);

16 [ f1??] st=0 & f0 & !f1 -> (st’=1) & (f1’=true);

17 [ f1??] st=3 & !f1 -> (st’=2) & (f1’=true);

18 [ f1??] (st==1|st==2|st=4) & !f1 -> (f1’=true);

19 [ f1??] f1 -> ;

20
21 [ u0??] st!=1 & f0 -> (f0’=false);

22 [ u0??] st=1 & f0 -> (st’=0) & (f0’=false);

23 [ u0??] !f0 -> ;

24
25 [ u1??] (st=0|st=3) & f1 -> (f1’=false);

26 [ u1??] (st=1|st=4) & f1 -> (st’=0) & (f1’=false);

27 [ u1??] st=2 & f1 -> (st’=3) & (f1’=false);

28
29 [ f !!] st=1 -> (st’=2);

30 [ u!!] st=3 -> (st’=0);

31
32 endmodule

104



Priority AND gates fail only when all their inputs fail and they do so from
left to right. This allows to condition the failure of a system not only to the
failure of subsystems but also to the ordering in time in which they occur.
Notice that an n inputs PAND gate can be modeled by a system of n − 1
two-input PAND gates connected in a cascade topology. Literature is not
always clear or even disagrees on what should be the behavior of the PAND
gate in case both inputs fail at the same time [78, 35, 70]. This situation
arises in some constructions with AND and OR gates, or when the inputs of
a PAND gate are connected to a same FDEP (see Figure 5.9), since there
is no established order in the failing of the dependent BEs. It should even
be questioned if this represents a non-deterministic behavior. Some works
do not allow these situations and discard them during early syntactic checks
[92]. Some others find that the nondeterminism is important to analyze real
scenarios where the behavior is in fact unknown [18]. Other works decided
that the PAND gate will not break unless its inputs break strictly from left to
right [17, 13]. Some works allow PAND gates to break when both inputs fail
at the same time [35, 21, 20]. In our case we agree with this last option and
decide to model our gate to be able to identify if time has passed between
the occurrence of the failures, and act consequently. In the particular case
where no time passes between the failure of the inputs, we consider that the
order in which the dependent BEs fail does not really matter and thus the
non-determinism is spurious.

Figure 5.9: Spurious non-determinism.

To identify if time has passed between the occurrence of the input failures,
our model has to listen to the output actions which indicate that a clock

105



has expired. This is done by the special input action at line 8, which will
synchronize with all urgent outputs, no matter which action they trigger.
Notice that there is only one scenario that we want to rule out, which is
when the second input fails and then time passes without the first input
failing too. This is in fact the case described by line 8 guard. Furthermore
this transition takes us to the ‘failsafe’ state (st=4), from which we can only
go back by fixing the last input. In consequence, the failure of our gate
occurs either if both inputs fail at the same time or if the first input fails,
then time passed, and then the second input fails. A variable st allows us to
distinguish between states where the PAND gate is working (value 0), from
when it needs to signal a failure (value 1), or it is failed and there is no need
to signal anymore (value 2), or if it needs to signal that it has been repaired
(value 3), or finally it is in a failsafe state, as a consequence of the inverse
order of the occurrence of the failures (value 4).

Repair Box with priority policy

The semantics of a n inputs repair box with priority policy, is a function
[[(rbox, n)]] : A3∗n → IOSA, where [[(rbox, n)]](fl0, up0, r0, ..., fln−1, upn−1, rn−1)
is the following IOSA:

1 module RBOX

2 broken[n]: bool init false;

3 busy: bool init false;

4
5 [ fl0?] -> (broken[0]’=true);

6 ...

7 [ fln−1?] -> (broken[n-1]’=true);

8
9 [ r0!!] !busy & broken[0] -> (busy’=true);

10 ...

11 [ rn−1!!] !busy & broken[n-1] & !broken[n-2]

12 & ... & !broken[0] -> (busy’=true);

13
14 [ up0?] -> (broken[0]’=false) & (busy’=false);

15 ...

16 [ upn−1?] -> (broken[n-1]’=false) & (busy’=false);

17 endmodule

106



The priority repair box uses an array to keep track of failed inputs (broken[n]),
updating it when it receives their fail signals (lines 5 to 7) and up signals
(lines 13 to 15). At the same time, when not busy, it goes on sending repair
signals to broken inputs (lines 9 to 12). Note that instead of listening to the
urgent output signals of the input BEs, it listens for the non-urgent actions
of the transitions that trigger the failure or repair. This is done with the
only purpose of facilitating the confluence analysis over this module.

Repair Box with first come first serve policy

The semantics of a repair box with first come first serve policy with n inputs, is
a function [[(rbox, n)]] : A3∗n → IOSA, where [[(rbox, n)]](fl0, up0, r0, ..., fln−1, upn−1,
rn−1) results in the following IOSA:

1 module RBOX % with first come first serve policy

2 queue[n]: [0..n] init 0;

3 busy: bool init false;

4 r: [0..n] init n;

5 dummy: [0..0] init 0;

6
7 [ fl0?] -> (dummy’=broken(queue,0));

8 ...

9 [ fln−1?] -> (dummy’=broken(queue,n-1));

10
11 [!!] some(queue,0) & r=n -> (r’=maxfrom(queue,0));

12
13 [ r 0!!] !busy & r=0 -> (busy’=true) & (queue[0]’=0);

14 ...

15 [ rn−1!!] !busy & r=n-1 -> (busy’=true) & (queue[n-1]’=0);

16
17 [ up0?] -> (queue[0]’=false) & (busy’=false) & (r’ = n);

18 ...

19 [ upn−1?] -> (queue[n-1]’=false) & (busy’=false) & (r’ = n);

20 endmodule

The model for a repair box with first come first serve policy uses an array
to mark down each broken input. Notice that each position in the queue
corresponds to each input. A value 0 on an index i means that the input i
has not failed, while a grater value on that position indicates for “how long”

107



has it been broken. Repair boxes use some syntactic elements present in
FIG simulation tool [26]. These elements do not introduce a new semantic
behavior and are there only to reduce the complexity and obfuscation that
would represent modeling this using only the grammar presented in Appendix
A. Examples of this are the function broken at line 7, which given an array,
in this case queue, and an index, in this case 0, it increases by one the value
at that index and every other value grater than 0 in the array. In this way
we can check the order in which the inputs failed by comparing the values
at the corresponding index. The grater the value the sooner they broke.
The syntactic function some, on the other hand, returns a boolean value
indicating if there is some value different to zero in the array. In this case
we use it to check if there is any failed input. If there is at least one, then
maxfrom function will return the index of the highest value in queue, which
corresponds to the input who broke first in between all the broken ones. The
dummy variable is used only to fullfil with the syntactic restrictions of IOSAs
assignments. For a quick determinism analysis we point out that all broken,
fstexclude, and maxfrom are deterministic. Furthermore all pairs of urgent
transitions in the model are confluent given that their guards are mutually
exclusive due to the value of variable r.

A general model for RBOX.

The following model can be used to model many different repair boxes with
arbitrary policies:

1 module RBOX % general policy

2 queue[n]: [0..n] init 0;

3 busy: bool init false;

4 r: [0..n] init n;

5
6 [ fl0?] -> (dummy’=broken(queue,0));

7 ...

8 [ fln−1?] -> (dummy’=broken(queue,n-1));

9
10 [!!] some(queue) & r=n -> (r’=policy(queue));

11
12 [ r 0!!] !busy & r=0 -> (busy’=true) & (queue[0]’=0);

13 ...

14 [ rn−1!!] !busy & r=n-1 -> (busy’=true) & (queue[n-1]’=0);

108



15
16 [ up0?] -> (queue[0]’=false) & (busy’=false) & (r’ = n);

17 ...

18 [ upn−1?] -> (queue[n-1]’=false) & (busy’=false) & (r’ = n);

19 endmodule

Notice that in this general RBOX model we take note not only the failed
inputs but also on their order of failure. This is done by using the broken

function already explained, along with a compatible array (queue). A simpler
model can be obtained if we are not interested on the order in which they
failed. Defining how policy selects the next input to repair from the broken
inputs marked at queue will produce the desired RBOX. In our case we are
only interested of course on deterministic policies, otherwise this function
would render the model non-deterministic.

Semantic of RFT

The semantic of a RFT is that of the parallel composition of the semantic of
its components, being conveniently synchronized.

Definition 5.3. Given a RFT T = (V, i, si, l) we define the semantic of T
as [[T ]] = ||v∈V [[v]] where [[v]] is defined by:

[[v]] =



[[l(v)]](flv, upv, fv, uv, rv) if l(v) = (be, 0, µ, γ)

[[l(v)]](fv, uv, fi(v)[0], ui(v)[0], ..., fi(v)[n−1], ui(v)[n−1])

if l(v) ∈ {(and, n), (or, n)}
[[l(v)]](fv, uv, fi(v)[0], ui(v)[0], fi(v)[1], ui(v)[1]) if l(v) = (pand, 2)

[[l(v)]](fli(v)[0], upi(v)[0], ri(v)[0], ..., fli(v)[n−1], upi(v)[n−1], ri(v)[n−1])

if l(v) = (rbox, n)

Notice that the function i is used to conveniently synchronize to each
input. In fact, i(v) is an ordered list of the inputs of v. Suppose as an example
that v is an AND gate, and that the BE w is the first input of v. Then the
name assigned to the fail signal of w will be f w, since l(w) = (be, 0, µ, γ) (see
Definition 5.3). Conveniently, the name of the first failing input signal of v
will be named f w, since lv = (and, n) and i(v) = [w, ...] and thus i(v)[0] = w.
In Section 5.7, we extend the semantics to spare gates and SBEs.

109



5.6 RFTs are deterministic

In this section we show that RFTs composed only by BEs, AND gates,
OR gates, PAND gates, and RBOX, are weakly deterministic. We make
use of the results on IOSA given in Section 4.5. Since voting and FDEP
gates can be constructed using OR and AND gates, we are also proving that
they can be modeled deterministically. We will work under the premise that
we can build the reachable states space for each component in reasonable
time and space. This is not a strange assumption since compositionality
allows us to keep components small enough. In the following propositions
we enumerate the sets of initially and spontaneously enabled actions in a
RFT. Afterwards we analyze the possible cases of non confluent actions in
a RFT, and furthermore we describe their approximate indirect triggering
relation. With all these ingredients we can finally prove that RFTs are weakly
deterministic by applying Theorem 4.5.

Proposition 5.1. Let T be a RFT. [[T ]] has no initially enabled actions.
Moreover, the only spontaneous sets of actions are singletons of the form
{f v} and {uv}, for t(v) = be, which are spontaneously enabled by flv and
upv, respectively.

Proof. As a consequence of Proposition 4.6, the initially enabled actions of
[[T ]] are contained in the union of the sets of initially enabled actions of its
components [[v]], v ∈ V , and the spontaneously enabled actions of [[T ]] are
contained in the union of the spontaneously enabled sets of [[v]]. It is direct
to see that, for any element e ∈ E , none of the urgent outputs are enabled
at the initial state of [[e]], since their guards are initially false. Furthermore,
the only non-urgent output transition in our models are at lines 6 and 8 of
the BE (Figure 5.6). Let v ∈ V be such that t(v) = be. Then, after taking
transition at line 6 the only urgent output enabled is fv (on the instance [[v]]),
while after taking transition at line 8 the only one is uv, and thus these are
the only possible spontaneous enabled actions.

Proposition 5.2. Let T be a RFT. The only possible pairs of non-confluent
actions in [[T ]] are:

• {(fv, uv′) | v, v′ ∈ i(w), t(w) ∈ {and, or, pand}}, and

• {(fw, uv), (uw, fv) | v ∈ i(w), t(w) ∈ {and, or}}.

110



Proof. Parallel composition does not introduce new non-confluent pair of
actions and, moreover, it preserves the confluence of its components (Propo-
sition 4.2). Thus, we look at the components in isolation. First notice that
transitions in a IOSA module are defined symbolically. Each symbolic tran-
sition in a module describes, in fact, a set of IOSA transitions, which become
concrete when the symbolic transition is evaluated on a state that satisfies the
guard. Notice also that a state in a module is defined by the current values of
its variables. When analyzing that two urgent actions a and b are confluent
in a module, for each symbolic transition ta and tb defined for those actions in
that module, we look for a non-confluence witness, i.e, a state that satisfies
the guards of ta and tb and shows that a and b are not confluent (i.e., the
pair does not satisfy Def. 4.5). Note that by only checking reachable states
in the component, we are already overapproximating the reachable states in
the composition.

For this proof we only analyze the case of the AND gate. For other RFT
elements, the proof follows similarly. Let v be a vertex in a RFT such that
l(v) = (and, 2).

We analyze f1 against u1 in [[(and, 2)]] (see the semantics of AND) and
show that they are not confluent. Take for instance state s defined by
count=1, signalf=false and signalu=false, which can be easily checked
to be reachable. There, we find that it enables symbolic transitions at lines
6 (with label f1) and 14 (with label u1). On the one hand, transition at
line 6 moves to the state where count=2, signalf=true and signalu=false

is reached. At this point action u1 can only be performed through transi-
tion at line 13, which yields state s′ defined by count=1, signalf=true and
signalu=true. On the other hand, transition at line 14 moves to the state
where count=0, signalf=false and signalu=false. This state only enables
f1 at line 7, which yields state s′′ defined by count=1, signalf=false and
signalu=false. Since s′ and s′′ are two different states, we have proved that
f1 and u1 are not confluent. Similarly, we can show that the pairs (f, ui) and
(u, fi), for i = 1, 2, are not confluent.

All other pairs are confluent. Take for instance transitions at lines 7 and
10 which are defined for actions f1 and f2 respectively, and the state s defined
by count=0, signalf=false and signalu=false. On the one hand, line 7 leads
to the state where count=1, signalf=false and signalu=false which in turns
enables f2 only at line 9 yielding state s′ defined by count=2, signalf=true
and signalu=false. On the other hand, line 10 at state s moves to the
state where count=1, signalf=false and signalu=false which only enables

111



f1 at line line 6 yielding the same state s′. The proof follows similarly from
any other reachable state enabling f1 and f2 showing, thus, that f1 and f2

are confluent. In some other cases the proof of confluence follows from the
fact that the pair of actions are never enabled simultaneously, as it is the
case, e.g., of f and u (notice that the guards enablyng each one of them are
mutually exclusive).

Proposition 5.3. Let T be a RFT. For each v ∈ V , the triggering relation
of [[v]] is given by:

• {}, if l(v) ∈ {(be, 0, µ, γ), (rbox, n)},

• {(fw, fv) | w ∈ i(v)} ∪ {(uw, uv) | w ∈ i(v)}, if l(v) ∈ {(and, n), (or, n)},
and

• {(uw, uv) | w = i(v)[1]} ∪ {(fw, fv) | w ∈ i(v)}, if l(v) = (pand, 2).

Proof (sketch). It suffices to make a satisfiability analysis over guards and
postconditions of each pair (ta, tb) with tb an output urgent symbolic transi-
tion and ta any urgent symbolic transition, taking into account only reachable
states.

Theorem 5.1. Let T be a RFT. Then [[T ]] is weakly deterministic.

Proof. We look for a, b, c, d and e as well as sets Bi with i = 1 . . . n as
Theorem 4.5 suggests. Since Prop. 5.1 ensures that there are no initially
enabled actions in [[T ]], c and d should be spontaneously enabled actions.
By the same proposition either e is of the form flv for some v and then⋃1
i=1Bi = B1 = {fv}, or e is of the form upv for some v and then

⋃1
i=1Bi =

B1 = {uv}. In the first case, we get c = d = fv for some v, and in the
second case c = d = uv. Furthermore, by Prop. 5.2, either a is of the form
fw for some w and b is of the form uw′ for some w′ or the other way around.
As shown by Prop. 5.3, fail actions (fv for some v) only trigger fail actions,
and up actions (uv for some v) only trigger up actions, thus it is impossible
that c and d indirectly trigger both a and b respectively. Therefore, it is
not possible to find actions a, b, c, d, and e satisfying conditions 1 to 3 in
Theorem 4.5, and hence [[T ]] is confluent. Since [[T ]] is also closed, then it is
weakly deterministic.

112



5.7 An extended semantics

In this section we extend the semantics of RFTs to spare gates and spare basic
elements. As before, we aim to guarantee that IOSA models derived from
the RFT is weakly deterministic. In order to do so, we need to bring special
attention to two particular scenarios that could introduce non-determinism.

The first scenario arises when a main basic element fails at a spare gate
which is served with several spare basic elements. At this point, we have the
question of which of the available spare basic elements should be taken by
the spare gate. Traditionally, spare elements are selected in order from an
ordered set. To generalize this mechanism for the selection of the spares we
intend to allow for more complex state-involved policies. It should be always
the case that this policy chooses deterministically. The second scenario arises
when several spare gates have requested are available SBE, being it broken or
bussy by yet another spare request. The non-deterministic situation will arise
when the SBE gets repaired or freed by the holding spare gate respectively.
At this point, it is unclear which of the requesting spare gates will take the
newly available SBE. For this, we define sharing policies on the SBE. Thus, to
provide semantics to an SBE, we actually introduce two IOSA modules: one
extending the behavior of a BE with the posibility of changing from dormant
to enabled state and vice versa, and another one, the so-called multiplexer
module, which manages the sharing of the SBE.

The Spare basic element (SBE)

The semantics of a SBE is a function [[(sbe, n, µ, ν, γ)]] : A7+5∗n → IOSA,
where [[(sbe, n, µ, ν, γ)]](fl , up, f , u, r , e, d , rq0, asg0, rel0, acc0, rj0, ..., rqn−1, asgn−1,
reln−1, accn−1, rjn−1) results in the following pair of IOSA modules:

1 module SBE
2 fc, dfc, rc : clock;
3 inform : [0..2] init 0;
4 active : bool init false;
5 broken : [0..2] init 0;
6
7 [ e??] !active -> (active’=true) & (fc’=µ);
8 [ d??] active -> (active’=false) & (dfc’=ν);
9

10 [ fl!] active & broken=0 @ fc -> (inform’=1) & (broken’=1);
11 [ fl!] !active & broken=0 @ dfc -> (inform’=1) & (broken’=1);
12 [ r??] -> (broken’=2) & (rc’=γ);
13 [ up!] active & broken=2 @ rc -> (inform’=2) & (broken’=0) & (fc’=µ);

113



14 [ up!] !active & broken=2 @ rc -> (inform’=2) & (broken’=0) & (dfc’=µ);
15
16 [ f !!] inform=1 -> (inform’=0);
17 [ u!!] inform=2 -> (inform’=0);
18 endmodule

1 module MUX

2 queue[n]: [0..3] init 0; % idle, requesting, reject, using

3 avail: bool init true;

4 broken: bool init false;

5 enable: [0..2] init 0;

6
7 [ fl?] -> (broken’=true);

8 [ up?] -> (broken’=false);

9
10 [ e!!] enable=1 -> (enable’=0);

11 [ d!!] enable=2 -> (enable’=0);

12
13 [ rq0??] queue[0]=0 & (broken | !avail) -> (queue[0]’=2);

14 [ rq0??] queue[0]=0 & !broken & avail -> (queue[0]’=1);

15 [ asg0!!] queue[0]=1 & !broken & avail -> (queue[0]’=3) & (avail’=false);

16 [ rj0!!] queue[0]=2 -> (queue[0]’=1);

17 [ rel0??] queue[0]=3 -> (queue[0]’=0) & (avail’=true) & (enable’=2);

18 [ acc0??] -> (enable’=1);

19 ...

20 [ rqn−1??] queue[n-1]=0 & (broken | !avail) -> (queue[n-1]’=2);

21 [ rqn−1??] queue[n-1]=0 & !broken & avail -> (queue[n-1]’=1);

22 [ asgn−1!!] queue[n-1]=1 & queue[n-2]=0 & ... & queue[0]=0 & !broken & avail

23 -> (queue[n-1]’=3) & (avail’=false);

24 [ rjn−1!!] queue[n-1]=2 -> (queue[n-1]’=1);

25 [ reln−1??] queue[n-1]=3 -> (queue[n-1]’=0) & (avail’=true) & (enable’=2);

26 [ accn−1??] -> (enable’=1);

27
28 endmodule

Apart from the new MUX model, the model of the SBE differs with the
previously given model of the BE in the introduction of a new failing clock
(dfc) controlling failures in the disabled mode, a new variable (enabled)
distinguishing between enabled and disabled states, and a few somehow mir-
rored lines in order to distinguish between active and disabled states and act
accordingly (lines 11 and 12, 14 and 16). Furthermore two new actions and
their corresponding transitions are introduced in order to be able to enable
or disable the SBE when needed (lines 8 and 9).

In the case of the multiplexer, we decided to model it with a priority
policy, which prioritizes lower index input spare gates to higher indexed ones
(notice assignment transitions at line 16 and 25 of the multiplexer module.)

114



Other kinds of policies can be defined as for repair box gates. In the model,
actions rqi indicate that the spare gate input i is requesting the spare. acci
indicates that input i accepts the spare that has previously been assigned to
it through action asgi. On the other hand action rji indicates that it rejects
it. Action reli indicates that input i is releasing the spare that has previously
been assigned to such input. Finally actions e and d enable and disable the
spare basic element when needed.

Notice that no multiplexer would have been needed in the absences of
repair boxes. Since in such cases SBEs do not become available after they
are taken or fail, there would be no need to solve any non-determinism. No
non-determinism would have arrisen if spare elements where not shared by
different spare gates [13, 12]. An other possibile situation of non-determinism
would have been race conditions between two spare gates that fail at the same
time, as studied in [70]. Nevertheless, we have discarded this race conditions
from our semantics by introducing the last two conditions of Definition 5.2
along with the fact that two simultaneous failures of basic elements is not
possible in the IOSA deterministic semantics.

The Spare Gate (SG)

The semantics of a spare gate with priority policy is a function [[(sg, n)]] :
A4+7∗n → IOSA, where [[(sg, n)]](f , u, fl0, up0, fl1, up1, rq1, asg1, acc1, rj1, rel1
..., fln, upn, rqn, asgn, accn, rjn, reln) is the following IOSA:

1 module SPAREGATE
2 state: [0..4] init 0; // on main, request, wait, on spare, broken
3 inform: [0..2] init 0;
4 release: [-n..n] init 0;
5 idx: [1..n] init 1;
6
7 [ fl0?] state=0 -> (state’=1) & (idx’=1);
8 [ up0?] state=4 -> (state’=0) & (inform’=2);
9 [ up0?] state=3 & idx=1 -> (state’=0) & (idx’=1) & (release’=1);

10 ...
11 [ up0?] state=3 & idx=n -> (state’=0) & (idx’=1) & (release’=n);
12
13 [ fl1?] state=3 & idx=1 -> (release’=1);
14 ...
15 [ fln?] state=3 & idx=n -> (release’=n);
16
17 [ rq1!!] state=1 & idx=1 -> (state’=2);
18 ...
19 [ rqn!!] state=1 & idx=n -> (state’=2);
20
21 [ asg1??] state=0 | state=1 | state=3 -> (release’=1);

115



22 [ asg1??] state=2 & idx=1 -> (release’=-1) & (state’=3);
23 [ asg1??] state=4 -> (release’=-1) & (state’=3) & (idx’=1) & (inform’=2);
24 ...
25 [ asgn??] state=0 | state=1 | state=3 -> (release’=n);
26 [ asgn??] state=2 & idx=n -> (release’=-n) & (state’=3);
27 [ asgn??] state=4 -> (release’=-n) & (state’=3) & (idx’=n) & (inform’=2);
28
29 [ rj1??] state=2 & idx=1 -> (idx’=2) & (state’=1);
30 [ rj2??] state=2 & idx=2 -> (idx’=3) & (state’=1);
31 ...
32 [ rjn??] state=2 & idx=n -> (state’=4) & (idx’=1) & (inform’=1);
33
34 [ rel1!!] release=1 & !(state=3 & idx=1) -> (release’= 0);
35 [ rel1!!] release=1 & state=3 & idx=1 -> (release’= 0) & (state’=1) & (idx’=1);
36 ...
37
38 [ reln!!] release=n & !(state=3 & idx=n) -> (release’=0);
39 [ reln!!] release=n & state=3 & idx=n -> (release’= 0) & (state’=1) & (idx’=1);
40
41 [ acc1!!] release=-1 -> (release’= 0);
42 ...
43 [ accn!!] release=-n -> (release’=0);
44
45 [ f !!] inform = 1 -> (inform’=0);
46 [ u!!] inform = 2 -> (inform’=0);
47 endmodule

The model of the spare gate uses a priority policy over the available Spare
BEs. This means that when looking for a Spare BE, it will start asking for
it from the lower index input to the higher index input until obtaining a
replacement. Other policies can be defined on the spare gate too, just as
with the multiplexer and the repair box. In the model of a SG, the variable
state distinguishes if the SG is working with its main BE, requesting a SBE,
waiting for a response from its inputs, working on a SBE or broken. The
vector release indicates for each SBE input i when the SG has to release
(value i) or accept (value −i) the assignment of that SBE. Variable idx

indicates which of the inputs to request next. Line 7 defines the transition
which starts with the SBE acquiring protocol whenever the main BE fails.
The following transitions up to line 15 release the acquired SBEs whenever
they fail or the main BE is repaired. Transitions from lines 17 to 19 request
the next possible SBE. After doing so, we need to wait for a response from
the corresponding multiplexer (state’=2). The request can be rejected (lines
29 to 32), and we proceed by asking for the next SBE by setting idx to the
corresponding value if there is one, or by failing in case none of the SBE
where available (state’=4 at line 32). A SBE can be assigned to the SG
when not needed anymore (lines 21 and 25), or when the SG has requested it

116



in order to avoid failing (lines 22 and 26), or when the SG had already failed
and thus it is repaired by using it (lines 23 and 27). I SG may want to release
a SBE when it is being assigned to it but it does not need the SBE (lines
34 and 38) or when the SBE fails while the SG is using it (lines 35 and 39).
The SG may accept assigned SBEs at lines 41 to 43. Finally, the SG signals
failure at line 45 and repair at line 46. To further understand the meaning
and intuition of each transition we refer the reader to the SBE description.

Extended semantics of RFT

We extend the semantic of the RFT with the SBE and SG elements as follows.

Definition 5.4. Given a RFT T = (V,E), we extend Definition 5.3 with the
following cases:

[[v]] =



· · ·
[[l(v)]](flv, upv, fv, uv, rv, ev, dv, rq(si(v)[0],v), asg(v,si(v)[0]),

rel(si(v)[0],v), acc(si(v)[0],v), rj(v,si(v)[0]), .., rj(v,si(v)[n−1]))

if l(v) = (sbe, n, µ, ν, γ)

[[l(v)]](fv, uv, fli(v)[0], upi(v)[0], fli(v)[1], upi(v)[1], rq(v,i(v)[1]), asg(i(v)[1],v),

acc(v,i(v)[1]), rj(i(v)[1],v), rel(v,i(v)[1]), ..., rel(v,i(v)[n−1]))

if l(v) = (sg, n)

Notice that in the case of the SBE and SG, several signals are indexed
by a pair of elements. This pair indicates who performs the action and who
listens to it at synchronization. As an example, as(v,i(v)[0]) will indicate that
the multiplexer that manages v, assigns its spare basic element to its first
connected spare gate (i(v)[0]).

Determinism

Unfortunately, we could not find a direct way to prove that this extension is
indeed weak deterministic, as we did with the RFT without spares. While
the SBE module can be easily proved to be confluent, this is not the case
of the models of the multiplexer and the spare gate. In fact, models with
spare gates and SBEs are cases of false positive for Theorem 4.5 with respect

117



to weak determinism. Suppose for instance a simple model of a single input
spare gate connected to its corresponding BE and to a single input SBE,
with both basic elements connected to the same RBOX (Figure 5.10). In
such a model, actions asg1 and rj1 are not confluent in the spare gate model,
and rq1 is spontaneously enabled by fl0 in the same model. Moreover rq1

approximately indirectly triggers both asg1 and rj1 in the multiplexer model
of the first input to such a spare gate. Thus conditions of Theorem 4.5 are
not met. Nevertheless, it is the case that after composition such a closed
model does not have non-conflent actions, and is thus weakly deterministic.

(V = {v0, v1, v2, v3}
, i = {(v0, []), (v1, []), (v2, [v0, v1]), (v3, [v0, v1])}
, si = {(v1, [v2])}
, l = {(v0, be), (v1, sbe), (v2, sg), (v3, rbox)})

Figure 5.10: False positive model for Theo. 4.5

Although as stated, we have not been able to prove weak determinism
in the generality of combinations between spare gates and SBEs, we have
proved confluence for some particular compositions of this models by means
of as simple program in Python. We enumerate this results:

• All combinations of up to 3 spare gates connected to up to 3 SBEs are
confluent (examples in Figure 5.11).

118



• A model with a single spare gate connected to up to 8 SBEs is conflu-
ent (Figure 5.12).

• A model with a single SBE shared by up to 8 spare gates is conflu-
ent (Figure 5.12).

The state space explosion limits our possibilities to check for larger combina-
tions. The FIG rare event simulation tool (http://dsg.famaf.unc.edu.ar/fig)
also supports checking for confluence, and hence can be used to check for
further combinations, which can be then safely used as parts of larger mod-
els.

Figure 5.11: Confluent settings.

...

...

Figure 5.12: Confluent settings.

119



5.8 RFT Analysis in FIG Simulator

IOSAu are intended to be a useful and rigorous mean for modeling general
continuous distributed systems for the purpose of formal analysis by simula-
tion techniques. In this chapter we present an application example. For this
we will first briefly present the FIG simulator, developed at FAMAF-UNC
[26, 42] (http://dsg.famaf.unc.edu.ar/fig). We then present a toy example of
a cooling system and go through all the steps from defining the model and
the properties of interest, to examining the results given by the tool. The
FIG simulator is specially tailored to analyzing rare event systems, i.e. sys-
tems where the probability of occurrence of the property of interest is very
small. Hence we set our RFT example model so that the probability of its
top event is very small.

5.8.1 Rare Event Simulation and FIG Simulator

FIG stands for Finite Improbability Generator as a homage to Douglas Adam’s
masterpiece. It is a discrete event simulation tool tailored to rare event prop-
erties and it is freely available at (http://dsg.famaf.unc.edu.ar/fig). The tool
has been developed by the dependable system group at FAMAF UNC.

RARE

tT0

T1

T2

A

B

CDZ 0

Z 1

Z 2

Figure 5.13: Importance Splitting

The high resilience and depend-
ability required by nowadays sys-
tem resolve into analyzing proper-
ties that fail with an extremely small
probability. The complexity of the
models make the analysis computa-
tionally very demanding. Standard
Monte Carlo simulation requires an
enormous amount of sampling to ac-
quire a significant confidence level on
the estimated probability, in order to
compensate for the high variance in-
duced by the rare occurrences of such event. This turns this technique ex-
tremely inefficient. Some optimizations over Monte Carlos simulation have
been studied in oder to deal with rare events. One of these techniques, the
one implemented by FIG, is called Importance Splitting, more precisely the
so called RESTART method [101, 102]. Importance splitting (IS for short)
aims to speed up the occurrence of a rare event without modifications on the

120



system dynamics [54, 32]. The general idea of IS is to favor the “promising
runs” that approach the rare event by saving the states they visit at certain
predefined checkpoints. To do so, IS divides the state space in ascending
levels, where ideally as the run goes up from one level to another, the prob-
ability of reaching the rare event gets considerably higher. The estimation
of the rare probability is obtained as the product of the estimates of the
(not so rare) conditional probabilities of moving one level up. The effective-
ness of the technique, highly depends on an optimal grouping of the sates.
The importance function is in charge of such task. Formerly, the task of
defining an importance function was given to the engineer who modeled the
system or any expert capable of doing so. The FIG tool is capable of building
an importance function automatically from the model [32, 29], turning the
whole verification process into a push button technique, once the model and
the properties of interest have been described. In doing so, FIG ensembles
the importance function from local importance function for each component,
overcoming the problems emerged from the state space explosion.

5.8.2 The Water Cooling System case study

In this section we present a model of a Water Cooling System is presented.
This system is in charge of cooling a high pressure chamber by circulating
water around it. The system consists in two replicated subsystems each
one composed of a main water fig:water-cooling-system and a switch. Both
subsystems share a spare auxiliary water pump as a mechanism to increase
their fault tolerance by means of replication. If both subsystems fail, then
the colling system fails as no water will be passing around the chamber. In
a favorable scenery, if a main water pump fails the auxiliary pump would
automatically replace it, while the switch would change the water pipes in
order to redirect the water from the auxiliary pipe into the colling section
and the subsystem would remain working. Nevertheless some less favorable
scenarios can be found, where the auxiliary pump is either broken or already
taken by the other subsystem, or the switch is broken and thus the subsystem
in question has no way of directing the pipes.

Figure 5.4 shows the graphical description of the RFT model for the Water
Cooling System. We are interested in knowing how tolerant to failures this
system is, given the corresponding probabilities of failure and repair of its
components. A single repair box is connected to all basic elements (by dotted
lines in order to ease the understanding of the picture), which are the pumps

121



and the switches. We study the behaviour of our system in a steady state
situation, i.e. the portion of time that it spends on failing states over the
amount of time of the whole long run. As explained in [29], let SYS FAIL be
the proposition that describes these failing states, i.e. the failing of our top
event in our case, then the CSL formula S(SYS FAIL) describes the property
to analyze.

Instead of describing the model in a graphical way, we can do so in a
textual description language for fault trees. This will ease the compilation to
IOSA modules. The syntax for the Kepler Fault Trees Description Language
can be found at Appendix B. This language is mainly inspired in Galileo’s
textual description language [95]. The description in the Kepler language of
the Water Cooling model can be found in Figure 5.14. We have developed a
compiler that translates Kepler models into IOSAu models following the the-
ory introduced in this chapter. We have compiled our Kepler model and the
obtained IOSAu model was fed as input into FIG along with the aforemen-
tioned property in order to automatically analyze the Water Cooling model
without any more user intervention needed.

1 toplevel "FAIL";

2 "FAIL" and "S1" "S2";

3 "S1" or "SS1" "PS1";

4 "S2" or "SS2" "PS2";

5 "SS1" pand "SW1" "M1";

6 "PS1" sg "M1" "AUX";

7 "SS2" pand "SW2" "M2";

8 "PS2" sg "M2" "AUX";

9 "M1" exponential(0.01) uniform(1,5);

10 "M2" exponential(0.01) uniform(1,5);

11 "AUX" exponential(0.01) exponential(0.0025) uniform(1,5);

12 "SW1" exponential(0.003) uniform(1,2);

13 "SW2" exponential(0.003) uniform(1,2);

14 "RBOX" priority_rbox "M1" "M2" "SW1" "SW2" "AUX";

Figure 5.14: Kepler description of the Water Cooling System.

We wrote a simple program in Python to translate this models writen in
Kepler language to a IOSA model in the RFT formalism described in this

122



Estimated value: 2.39e-08
Confidence Precision Confidence Interval

80% 1.49e-08 [ 1.64e-08, 3.14e-08]
85% 2.04e-08 [ 1.37e-08, 3.41e-08]
90% 2.60e-08 [ 1.09e-08, 3.69e-08]
99% 4.08e-08 [ 3.49e-09, 4.43e-08]

Table 5.1

chapter. We ran a Montercarlo analysis on such model using the FIG tool.
The property under analysis we chose is S(SYS FAIL), in order to quantify
for the availability of the cooling system. The results delivered by the FIG
tool are shown in Table 5.1. The time limit for the experiment was 5 minutes.
The obtained value for the top event was 2.39e-08. The experiment was run
on a 2.5GHz Intel i5-4200M machine.

5.9 Conclusions

In this chapter, we provided a formal definition of a Repairable version of
fault trees. We also embedded it with a formal semantics whose domain
are IOSA with urgency. Furthermore, we prove that any RFT model is
weak deterministic if the model does not use Spare gates and spare basic
elements. Unfortunately, we could not provide such general result when spare
systems are used in the model. However, we have proved confluence on several
configurations of spare gates and spare basic elements, and hinted on how any
possible configuration can be verified for confluency. The chapter ends with a
case study that makes use of the FIG tool for the analysis of a rare property.
For what we know, this is the first study on rare events simulation analysis
of repairable fault trees with general fail and repair probability distributions.

The introduction of the repair model along with general distributions to
the analysis of fault trees, turn the models into what Christos Cassandras
[33] calls “real world” systems. For this kind of models, usual assumptions
and abstractions made in order to ease the analysis have to be dropped,
and persuing an analytical solution is not possible any more. Another work
that investigates the use of rare event simulation applied to the specific case
of Fault Trees is [92]. It includes a repair model, involving complex repair
strategies like inspection [91], but it restricts probability measures to Expo-

123



nential and Erlang.
A possible direction for future work could be introducing Fail dependency

gates (like in [17, 92]). This should be done in a way that they do not produce
non-determinism. Notice that at the moment no order in the dependent
failures has been defined and therefor the non-determinism is intrinsic to the
definition. Another line of work would be defining an automatic translation
from a graphical modeling tool for fault trees into the IOSA models, in order
to automate and ease the engineering of modeling and analysis of RFTs.
Furthermore, more complex repair mechanisms could be introduced with the
maintenance model of [91].

124



Chapter 6

Concluding Discussions

A journey from rigorous math to industrial application

In this thesis we presented a framework that allows us to traverse all
the way from the essential mathematical foundations, until eventually giving
mathematical rigor to the analysis of complex industrial systems. In order
to do so we defined a specialization of Stochastic Automata, which we called
Input/Output Stochastic Automata (IOSA), tailored to analyzing stochastic
systems with general distributions by means of discrete event simulation.
Analysis through discrete event simulation requires the models to be deter-
ministic. Hence, a considerable part of this thesis works on developing and
joining together the mathematical tools to prove that a model in IOSA is
deterministic. Finally we use our deterministic modeling language to elab-
orate a deterministic version of Repairable Fault Trees (RFT), a prominent
technique for the analysis of industrial fault tolerant systems. IOSA allows
RFT models to endow arbitrary continuous distributions to failure and re-
pair events. RFT models can then be analyzed, for instance, using the Rare
Event Simulation tool FIG.

6.1 Achievements

Figure 6.1 graphically resumes the achievements of this thesis. IOSA and
IOSAu build their semantics over NLMP, just as Stochastic Automata (SA)
do (arrows going into NLMP). IOSA is a specialization of SA with input
and output transitions which happens to be deterministic (arrow from SA to

125



SA IOSA IOSAu

NLMP

RFT

FIG

[[]]
[[]]

[[]]

+ ?, ! + ??, !!

[[]]

Figure 6.1: Graphical synthesis of the work in this thesis (inside the dashed
rectangle).

IOSA). IOSAu is obtained by extending IOSA with urgent transitions (arrow
from IOSA to IOSAu). RFT were formalized in this work and were given a
weak deterministic semantics in terms of IOSAu (arrow from RFT to IOSAu).
Finally IOSAu are the input language for the FIG rare event simulation tool
(arrow from IOSAu to FIG). The dashed rectangle in Figure 6.1 encloses the
contribution of this thesis.

We presented the first version of Input/Output Stochastic Automata
(IOSA) in Chapter 3. IOSA is compositional and supports arbitrary con-
tinuous probability distributions to model the stochastic timed behavior of a
system. We defined its semantics in terms of NLMP, imposing a set of condi-
tions in the definition. This conditions finally ensured that a closed IOSA, i.e.
a model where all synchronizations have been resolved and no inputs remain,
is deterministic. The possibility of using arbitrary continuous distributions,
makes IOSA highly suitable for modeling and simulating systems with more
realistic results than Markov models such as CTMCs. Moreover, in case the
model uses only exponential distributions, the closed IOSA is amenable to
numerical analysis since it reduces to a CTMC. The compositional nature of
IOSA allows us to concentrate on the clear behavior of the components and
the intuitive communication between them, in contrast to error-prone mono-
lithic modeling techniques. Reutilization and maintainability are mentioned
as further benefits of compositional modeling. All of this characteristics are

126



of great advantage when modeling extensive and complex industrial models.
We also extended IOSA with urgent actions. We called this new model

IOSAu. Urgent actions were introduced as a solution to the compositional
modeling limitations of the original IOSA, which urged to introduce a de-
lay when synchronizing components. Synchronization through urgent actions
drop this condition. Though such extension introduces non-determinism even
if the IOSAu is closed, it does so in a limited manner. We were able to char-
acterize when a IOSA is weak deterministic, which is an important concept
since weak deterministic IOSAs are amenable to discrete event simulation.
In particular, we showed that closed and confluent IOSAs are weak deter-
ministic. We provided conditions to check compositionally if a closed IOSA
is confluent.

Finally we formalized Repairable Fault Trees (RFT) and endowed them
with a semantics in terms of IOSAu. Although Fault Trees are a pervasive
formalism in RISK analysis of industrial size systems to the best of our
knowledge, there is no other work involving arbitrary continuous distributions
for fail and repair times and complex interdependent repairs. Furthermore
we have shown that our semantics produces weak deterministic models which
are hence amenable for discrete event simulation.

6.2 Future Work

The complexity and necessities of today industrial systems represent an enor-
mous challenge to formal verification. On the one hand, not only qualitative
failure analysis is desired, but also quantitative analysis such as costs and
performance are usually required. Some future work in this direction would
be upgrading IOSA to support costs, rewards, and internal probabilities. In
the same direction we could modify our RFT formalism in order to involve
maintenance and phase degradation such as [24, 25, 58, 91] suggest. Phase
degradation seems to be a simple upgrade which would not affect the weak
determinism in the model. On the other hand, especial care has to be taken
when upgrading into maintainability, since it involves the dynamics of the
interdependent complex repairs. Hence, this extension is more prone to in-
troducing non-determinism into the model.

Proving that the Spare gate model is confluent and thus weak determin-
istic in the general case is a debt of this work. Spares are used to model
redundancy which is of major importance in fault tolerant systems designs.

127



We emphasized that the intuitive graphical representation of Fault Trees
is one of its more appealing characteristics. An interesting work would be
developing a graphical interface for the modeling of RFT and a compiler
into the IOSA semantics. The FIG simulator could then be used to analyze
the compiled model. A graphical interface for modeling and designing the
analysis would be an enormous step into the possibilities of delivering a
complete tool for industrial use.

Experimentation with RFT in FIG has evidenced the need to enhance
the automatic constructions of importance functions for RESTART method.
While it was expected a higher efficiency by using RESTART method, the
experiments showed that the times to obtain the results did not differ much
from those of simple Montecarlo. Analyzing the reasons behind this phe-
nomena might help to build better automatic importance functions for other
systems that share similar characteristics with RFTs.

128



Bibliography

[1] Rajeev Alur and David L. Dill. The theory of timed automata. In
J. W. de Bakker, Cornelis Huizing, Willem P. de Roever, and Grzegorz
Rozenberg, editors, Real-Time: Theory in Practice, REX Workshop,
Mook, The Netherlands, June 3-7, 1991, Proceedings, volume 600 of
Lecture Notes in Computer Science, pages 45–73. Springer, 1991.

[2] Suprasad Amari, Glenn Dill, and Eileen Howald. A new approach to
solve dynamic fault trees. In Reliability and Maintainability Sympo-
sium, 2003. Annual, pages 374–379. IEEE, 2003.

[3] R.B. Ash and C. Doléans-Dade. Probability and Measure Theory. Har-
court/Academic Press, 2000.

[4] Franz Baader and Tobias Nipkow. Term rewriting and all that. Cam-
bridge University Press, 1998.

[5] Jos C. M. Baeten and Jan Willem Klop, editors. CONCUR ’90, The-
ories of Concurrency: Unification and Extension, Amsterdam, The
Netherlands, August 27-30, 1990, Proceedings, volume 458 of Lecture
Notes in Computer Science. Springer, 1990.

[6] Christel Baier, Boudewijn R. Haverkort, Holger Hermanns, and Joost-
Pieter Katoen. Model-checking algorithms for continuous-time markov
chains. IEEE Trans. Software Eng., 29(6):524–541, 2003.

[7] Christel Baier and Joost-Pieter Katoen. Principles of model checking.
MIT Press, 2008.

[8] Anis Baklouti, Nga Nguyen, Jean-Yves Choley, Fäıda Mhenni, and Ab-
delfattah Mlika. Free and open source fault tree analysis tools survey.

129



In 2017 Annual IEEE International Systems Conference, SysCon 2017,
Montreal, QC, Canada, April 24-27, 2017, pages 1–8. IEEE, 2017.

[9] Marco Beccuti, Daniele Codetta-Raiteri, Giuliana Franceschinis, and
Serge Haddad. Non deterministic repairable fault trees for computing
optimal repair strategy. In Proceedings of the 3rd international confer-
ence on performance evaluation methodologies and tools, page 56. ICST
(Institute for Computer Sciences, Social-Informatics and Telecommu-
nications Engineering), 2008.

[10] Marco Beccuti, Daniele Codetta Raiteri, Giuliana Franceschinis, and
Serge Haddad. Non deterministic repairable fault trees for computing
optimal repair strategy. In John S. Baras and Costas Courcoubetis,
editors, 3rd International ICST Conference on Performance Evalua-
tion Methodologies and Tools, VALUETOOLS 2008, Athens, Greece,
October 20-24, 2008, page 56. ICST/ACM, 2008.

[11] Richard Blute, Josee Desharnais, Abbas Edalat, and Prakash Panan-
gaden. Bisimulation for labelled markov processes. In Proceedings,
12th Annual IEEE Symposium on Logic in Computer Science, War-
saw, Poland, June 29 - July 2, 1997, pages 149–158. IEEE Computer
Society, 1997.

[12] Andrea Bobbio, Giuliana Franceschinis, Rossano Gaeta, and Luigi
Portinale. Parametric fault tree for the dependability analysis of re-
dundant systems and its high-level petri net semantics. IEEE Trans.
Software Eng., 29(3):270–287, 2003.

[13] Andrea Bobbio and D Codetta Raiteri. Parametric fault trees with
dynamic gates and repair boxes. In Reliability and Maintainability,
2004 Annual Symposium-RAMS, pages 459–465. IEEE, 2004.

[14] Jonathan Bogdoll, Luis Maŕıa Ferrer Fioriti, Arnd Hartmanns, and
Holger Hermanns. Partial Order Methods for Statistical Model Check-
ing and Simulation, pages 59–74. Springer Berlin Heidelberg, Berlin,
Heidelberg, 2011.

[15] Henrik C. Bohnenkamp, Pedro R. D’Argenio, Holger Hermanns, and
Joost-Pieter Katoen. MODEST: A compositional modeling formal-
ism for hard and softly timed systems. IEEE Trans. Software Eng.,
32(10):812–830, 2006.

130



[16] Tommaso Bolognesi and Ed Brinksma. Introduction to the ISO speci-
fication language LOTOS. Computer Networks, 14:25–59, 1987.

[17] Hichem Boudali, Pepijn Crouzen, and Mariëlle Stoelinga. A composi-
tional semantics for dynamic fault trees in terms of interactive markov
chains. In Kedar S. Namjoshi, Tomohiro Yoneda, Teruo Higashino, and
Yoshio Okamura, editors, Automated Technology for Verification and
Analysis, 5th International Symposium, ATVA 2007, Tokyo, Japan,
October 22-25, 2007, Proceedings, volume 4762 of Lecture Notes in
Computer Science, pages 441–456. Springer, 2007.

[18] Hichem Boudali, Pepijn Crouzen, and Mariëlle Stoelinga. Dynamic
fault tree analysis using input/output interactive markov chains. In
The 37th Annual IEEE/IFIP International Conference on Dependable
Systems and Networks, DSN 2007, 25-28 June 2007, Edinburgh, UK,
Proceedings, pages 708–717. IEEE Computer Society, 2007.

[19] Hichem Boudali, Pepijn Crouzen, and Mariëlle Stoelinga. A rigorous,
compositional, and extensible framework for dynamic fault tree analy-
sis. IEEE Trans. Dependable Sec. Comput., 7(2):128–143, 2010.

[20] Hichem Boudali and Joanne Bechta Dugan. A discrete-time bayesian
network reliability modeling and analysis framework. Reliability Engi-
neering & System Safety, 87(3):337–349, 2005.

[21] Hichem Boudali and Joanne Bechta Dugan. A continuous-time
bayesian network reliability modeling, and analysis framework. IEEE
transactions on reliability, 55(1):86–97, 2006.

[22] Mario Bravetti. Specification and analysis of stochastic real-time sys-
tems. PhD thesis, PhD thesis, Dottorato di Ricerca in Informatica.
Universita di Bologna, Padova, Venezia, 2002.

[23] Mario Bravetti and Pedro R. D’Argenio. Tutte le Algebre Insieme:
Concepts, Discussions and Relations of Stochastic Process Algebras
with General Distributions, pages 44–88. Springer Berlin Heidelberg,
Berlin, Heidelberg, 2004.

[24] K. Buchacker. Combining fault trees and petri nets to model safety-
critical systems. High Performance Computing 1999, pages 439–444,
1999. Cited By :17.

131



[25] K. Buchacker. Modeling with extended fault trees. In Proceedings.
Fifth IEEE International Symposium on High Assurance Systems En-
gineering (HASE 2000), pages 238–246, Nov 2000.

[26] Carlos E. Budde. Automation of Importance Splitting Techniques for
Rare Event Simulation. PhD thesis, Universidad Nacional de Córdoba,
Argentina, 2017.

[27] Carlos E. Budde. Automation of Importance Splitting Techniques for
Rare Event Simulation. PhD thesis, Universidad Nacional de Córdoba,
2017.

[28] Carlos E. Budde, Pedro R. D’Argenio, and Holger Hermanns. Rare
event simulation with fully automated importance splitting. In Marta
Beltrán, William J. Knottenbelt, and Jeremy T. Bradley, editors,
EPEW 2015, volume 9272 of LNCS, pages 275–290. Springer, 2015.

[29] Carlos E. Budde, Pedro R. D’Argenio, and Raúl E. Monti. Composi-
tional construction of importance functions in fully automated impor-
tance splitting. In Antonio Puliafito, Kishor S. Trivedi, Bruno Tuffin,
Marco Scarpa, Fumio Machida, and Javier Alonso, editors, Procs. of
VALUETOOLS 2016. ACM, 2017.

[30] Carlos E. Budde, Pedro R. D’Argenio, Pedro Sánchez Terraf, and
Nicolás Wolovick. A Theory for the Semantics of Stochastic and Non-
deterministic Continuous Systems, pages 67–86. Springer Berlin Hei-
delberg, Berlin, Heidelberg, 2014.

[31] Carlos E. Budde, Christian Dehnert, Ernst Moritz Hahn, Arnd Hart-
manns, Sebastian Junges, and Andrea Turrini. JANI: quantitative
model and tool interaction. In Axel Legay and Tiziana Margaria, ed-
itors, Tools and Algorithms for the Construction and Analysis of Sys-
tems - 23rd International Conference, TACAS 2017, Held as Part of
the European Joint Conferences on Theory and Practice of Software,
ETAPS 2017, Uppsala, Sweden, April 22-29, 2017, Proceedings, Part
II, volume 10206 of Lecture Notes in Computer Science, pages 151–168,
2017.

[32] Carlos E Budde, Pedro R D’Argenio, and Holger Hermanns. Rare event
simulation with fully automated importance splitting. In European
Workshop on Performance Engineering, pages 275–290. Springer, 2015.

132



[33] Edwin K. P. Chong. Discrete event systems: Modeling and performance
analysis - by christos g. cassandras, richard d. irwin, inc., and aksen
associates, inc., homewood, il, 1993. xix + 790 pp. ISBN 0-256-11212-6.
Discrete Event Dynamic Systems, 4(1):113–116, 1994.

[34] Edmund M Clarke, Orna Grumberg, and Doron Peled. Model checking.
MIT press, 1999.

[35] David Coppit, Kevin J Sullivan, and Joanne Bechta Dugan. Formal
semantics of models for computational engineering: A case study on
dynamic fault trees. In Software Reliability Engineering, 2000. ISSRE
2000. Proceedings. 11th International Symposium on, pages 270–282.
IEEE, 2000.

[36] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clif-
ford Stein. Introduction to Algorithms, Third Edition. The MIT Press,
3rd edition, 2009.

[37] Pepijn Crouzen. Modularity and Determinism in Compositional
Markov Models. PhD thesis, Universität des Saarlandes, Saarbrücken,
2014.

[38] Pedro R. D’ Argenio, Joost P. Katoen, and Hendrik Brinksma. A
Stochastic Automata Model and its Algebraic Approach, pages 1–16.
Technical Report. Centre for Telematics and Information Technology
(CTIT), Netherlands, 1997.

[39] Vincent Danos, Josée Desharnais, François Laviolette, and Prakash
Panangaden. Bisimulation and cocongruence for probabilistic systems.
Information and Computation, 204(4):503 – 523, 2006. Seventh Work-
shop on Coalgebraic Methods in Computer Science 2004.

[40] Pedro D’Argenio, Axel Legay, Sean Sedwards, and Louis-Marie
Traonouez. Smart sampling for lightweight verification of markov deci-
sion processes. International Journal on Software Tools for Technology
Transfer, 17(4):469–484, Aug 2015.

[41] Pedro R. D’Argenio. Algebras and Automata for Timed and Stochastic
Systems. PhD thesis, University of Twente, Enschede, 1999.

133



[42] Pedro R. D’Argenio, Carlos E. Budde, Matias David Lee, Raúl E.
Monti, Leonardo Rodŕıguez, and Nicolás Wolovick. The road from
stochastic automata to the simulation of rare events. In Joost-Pieter
Katoen, Rom Langerak, and Arend Rensink, editors, ModelEd, TestEd,
TrustEd - Essays Dedicated to Ed Brinksma on the Occasion of His 60th
Birthday, volume 10500 of Lecture Notes in Computer Science, pages
276–294. Springer, 2017.

[43] Pedro R. D’Argenio and Joost-Pieter Katoen. A theory of stochastic
systems part I: Stochastic automata. Inf. Comput., 203(1):1–38, 2005.

[44] Pedro R. D’Argenio, Joost-Pieter Katoen, and Ed Brinksma. An alge-
braic approach to the specification of stochastic systems. In David Gries
and Willem P. de Roever, editors, Programming Concepts and Meth-
ods, IFIP TC2/WG2.2,2.3 International Conference on Programming
Concepts and Methods (PROCOMET ’98) 8-12 June 1998, Shelter Is-
land, New York, USA, volume 125 of IFIP Conference Proceedings,
pages 126–147. Chapman & Hall, 1998.

[45] Pedro R. D’Argenio and Raúl E. Monti. Input/output stochastic au-
tomata with urgency – confluence and weak determinism, 2018. In
preparation.

[46] Pedro R. D’Argenio, Pedro Sánchez Terraf, and Nicolás Wolovick.
Bisimulations for non-deterministic labelled markov processes. Mathe-
matical Structures in Computer Science, 22(1):43–68, 2012.

[47] Pedro R. D’Argenio, Nicolás Wolovick, Pedro Sánchez Terraf, and
Pablo Celayes. Nondeterministic labeled markov processes: Bisimula-
tions and logical characterization. In QEST 2009, Sixth International
Conference on the Quantitative Evaluation of Systems, Budapest, Hun-
gary, 13-16 September 2009, pages 11–20. IEEE Computer Society,
2009.

[48] Josée Desharnais. Labelled markov processes. PhD thesis, McGill Uni-
versity, Montréal, 1999.

[49] Josee Desharnais, Abbas Edalat, and Prakash Panangaden. Bisimu-
lation for labelled markov processes. Inf. Comput., 179(2):163–193,
2002.

134



[50] E. S. DIAMANT and L. M. HEROLD. Thermal performance of cork
insulation on minuteman missiles. Journal of Spacecraft and Rockets,
3(5):679–684, May 1966.

[51] Ernst-Erich Doberkat and Pedro Sánchez Terraf. Stochastic non-
determinism and effectivity functions. J. Log. Comput., 27(1):357–394,
2017.

[52] J. B. Dugan, S. J. Bavuso, and M. A. Boyd. Dynamic fault-tree models
for fault-tolerant computer systems. IEEE Transactions on Reliability,
41(3):363–377, Sep 1992.

[53] Christian Eisentraut, Holger Hermanns, Julia Krämer, Andrea Tur-
rini, and Lijun Zhang. Deciding bisimilarities on distributions. In
Kaustubh R. Joshi, Markus Siegle, Mariëlle Stoelinga, and Pedro R.
D’Argenio, editors, Quantitative Evaluation of Systems - 10th Inter-
national Conference, QEST 2013, Buenos Aires, Argentina, August
27-30, 2013. Proceedings, volume 8054 of Lecture Notes in Computer
Science, pages 72–88. Springer, 2013.

[54] Marnix Joseph Johann Garvels. The splitting method in rare event
simulation. PhD thesis, University of Twente, Enschede, Netherlands,
2000.

[55] Daniel Gburek, Christel Baier, and Sascha Klüppelholz. Composition
of stochastic transition systems based on spans and couplings. In Ioan-
nis Chatzigiannakis, Michael Mitzenmacher, Yuval Rabani, and Davide
Sangiorgi, editors, 43rd International Colloquium on Automata, Lan-
guages, and Programming, ICALP 2016, July 11-15, 2016, Rome, Italy,
volume 55 of LIPIcs, pages 102:1–102:15. Schloss Dagstuhl - Leibniz-
Zentrum fuer Informatik, 2016.

[56] Daochuan Ge, Meng Lin, Yanhua Yang, Ruoxing Zhang, and Qiang
Chou. Quantitative analysis of dynamic fault trees using improved
sequential binary decision diagrams. Rel. Eng. & Sys. Safety, 142:289–
299, 2015.

[57] Michèle Giry. A categorical approach to probability theory. In Cate-
gorical aspects of topology and analysis (Ottawa, Ont., 1980), volume

135



915 of Lecture Notes in Mathematics, pages 68–85. Springer, Berlin,
1982.

[58] Dennis Guck, Joost-Pieter Katoen, Mariëlle IA Stoelinga, Ted Luiten,
and Judi Romijn. Smart railroad maintenance engineering with
stochastic model checking. Proceedings of RAILWAYS. Saxe-Coburg
Publications, pages 950–953, 2014.

[59] Rohit Gulati and Joanne Bechta Dugan. A modular approach for ana-
lyzing static and dynamic fault trees. In Reliability and Maintainability
Symposium. 1997 Proceedings, Annual, pages 57–63. IEEE, 1997.

[60] David F Haasl, NH Roberts, WE Vesely, and FF Goldberg. Fault tree
handbook. Technical report, Nuclear Regulatory Commission, Wash-
ington, DC (USA). Office of Nuclear Regulatory Research, 1981.

[61] Ernst Moritz Hahn, Arnd Hartmanns, Holger Hermanns, and Joost-
Pieter Katoen. A compositional modelling and analysis framework
for stochastic hybrid systems. Formal Methods in System Design,
43(2):191–232, 2013.

[62] Arnd Hartmanns. On the analysis of stochastic timed systems. PhD
thesis, Saarland University, 2015.

[63] Thomas A. Henzinger. The theory of hybrid automata. In Proceedings,
11th Annual IEEE Symposium on Logic in Computer Science, New
Brunswick, New Jersey, USA, July 27-30, 1996, pages 278–292. IEEE
Computer Society, 1996.

[64] Thomas A. Henzinger, Xavier Nicollin, Joseph Sifakis, and Sergio
Yovine. Symbolic model checking for real-time systems. Inf. Comput.,
111(2):193–244, 1994.

[65] Holger Hermanns. Interactive Markov Chains: The Quest for Quan-
tified Quality, volume 2428 of Lecture Notes in Computer Science.
Springer, 2002.

[66] Holger Hermanns, Ulrich Herzog, and Vassilis Mertsiotakis. Stochas-
tic process algebras - between LOTOS and markov chains. Computer
Networks, 30(9-10):901–924, 1998.

136



[67] Ulrich Herzog. Formal description, time and performance analysis.
A framework. In Theo Härder, Hartmut Wedekind, and Gerhard Zim-
mermann, editors, Entwurf und Betrieb verteilter Systeme, Fachtagung
des Sonderforschungsbereiche 124 und 182, Dagstuhl, 19.-21. Septem-
ber 1990, Proceedings, volume 264 of Informatik-Fachberichte, pages
172–190. Springer, 1990.

[68] C. A. R. Hoare. Communicating Sequential Processes. Prentice-Hall,
1985.

[69] André Joyal, Mogens Nielsen, and Glynn Winskel. Bisimulation from
open maps. Inf. Comput., 127(2):164–185, 1996.

[70] Sebastian Junges, Dennis Guck, Joost-Pieter Katoen, and Mariëlle
Stoelinga. Uncovering dynamic fault trees. In 46th Annual IEEE/IFIP
International Conference on Dependable Systems and Networks, DSN
2016, Toulouse, France, June 28 - July 1, 2016, pages 299–310. IEEE
Computer Society, 2016.

[71] Sebastian Junges, Joost-Pieter Katoen, Mariëlle Stoelinga, and
Matthias Volk. One net fits all - A unifying semantics of dynamic fault
trees using gspns. In Victor Khomenko and Olivier H. Roux, editors,
Application and Theory of Petri Nets and Concurrency - 39th Inter-
national Conference, PETRI NETS 2018, Bratislava, Slovakia, June
24-29, 2018, Proceedings, volume 10877 of Lecture Notes in Computer
Science, pages 272–293. Springer, 2018.

[72] M. Kwiatkowska, G. Norman, and D. Parker. PRISM: Probabilistic
symbolic model checker. In P. Kemper, editor, Proc. Tools Session
of Aachen 2001 International Multiconference on Measurement, Mod-
elling and Evaluation of Computer-Communication Systems, pages 7–
12, September 2001.

[73] Kim Guldstrand Larsen and Arne Skou. Bisimulation through proba-
bilistic testing. Inf. Comput., 94(1):1–28, 1991.

[74] Wen-Shing Lee, Doris L Grosh, Frank A Tillman, and Chang H Lie.
Fault tree analysis, methods, and applications - a review. IEEE trans-
actions on reliability, 34(3):194–203, 1985.

137



[75] Axel Legay, Benôıt Delahaye, and Saddek Bensalem. Statistical model
checking: An overview. In Howard Barringer, Yliès Falcone, Bernd
Finkbeiner, Klaus Havelund, Insup Lee, Gordon J. Pace, Grigore Rosu,
Oleg Sokolsky, and Nikolai Tillmann, editors, Runtime Verification -
First International Conference, RV 2010, St. Julians, Malta, Novem-
ber 1-4, 2010. Proceedings, volume 6418 of Lecture Notes in Computer
Science, pages 122–135. Springer, 2010.

[76] Dong Liu, Weiyan Xing, Chunyuan Zhang, Rui Li, and Haiyan Li.
Cut sequence set generation for fault tree analysis. In Yann-Hang
Lee, Heung-Nam Kim, Jong Kim, Yongwan Park, Laurence Tianruo
Yang, and Sung Won Kim, editors, Embedded Software and Systems,
[Third] International Conference, ICESS 2007, Daegu, Korea, May 14-
16, 2007, Proceedings, volume 4523 of Lecture Notes in Computer Sci-
ence, pages 592–603. Springer, 2007.

[77] Nancy A. Lynch and Mark R. Tuttle. Hierarchical correctness proofs for
distributed algorithms. In Fred B. Schneider, editor, Proceedings of the
Sixth Annual ACM Symposium on Principles of Distributed Comput-
ing, Vancouver, British Columbia, Canada, August 10-12, 1987, pages
137–151. ACM, 1987.

[78] Ragavan Manian, David W Coppit, Kevin J Sullivan, and J Bechta
Dugan. Bridging the gap between systems and dynamic fault tree mod-
els. In Reliability and Maintainability Symposium, 1999. Proceedings.
Annual, pages 105–111. IEEE, 1999.

[79] Zohar Manna and Amir Pnueli. The temporal logic of reactive and
concurrent systems - specification. Springer, 1992.

[80] Kenneth L. McMillan. Symbolic model checking. Kluwer, 1993.

[81] Guillaume Merle, Jean-Marc Roussel, Jean-Jacques Lesage, and An-
drea Bobbio. Probabilistic algebraic analysis of fault trees with priority
dynamic gates and repeated events. IEEE Trans. Reliability, 59(1):250–
261, 2010.

[82] R. Milner. Communication and Concurrency. Prentice-Hall, Inc., Up-
per Saddle River, NJ, USA, 1989.

138



[83] Michael K. Molloy. Performance analysis using stochastic petri nets.
IEEE Trans. Computers, 31(9):913–917, 1982.

[84] Tadao Murata. Petri nets: Properties, analysis and applications. Pro-
ceedings of the IEEE, 77(4):541–580, 1989.

[85] Michael O. Rabin. Probabilistic automata. Information and Control,
6(3):230–245, 1963.

[86] Daniele Codetta Raiteri, Giuliana Franceschinis, Mauro Iacono, and
Valeria Vittorini. Repairable fault tree for the automatic evaluation
of repair policies. In Dependable Systems and Networks, 2004 Interna-
tional Conference on, pages 659–668. IEEE, 2004.

[87] Daniele Codetta Raiteri, Mauro Iacono, Giuliana Franceschinis, and
Valeria Vittorini. Repairable fault tree for the automatic evaluation of
repair policies. In DSN 2004, pages 659–668. IEEE Computer Society,
2004.

[88] Antoine Rauzy. Sequence algebra, sequence decision diagrams and dy-
namic fault trees. Rel. Eng. & Sys. Safety, 96(7):785–792, 2011.

[89] Gerardo Rubino and Bruno Tuffin. Rare Event Simulation Using Monte
Carlo Methods. Wiley Publishing, 2009.

[90] Gerardo Rubino and Bruno Tuffin. Rare event simulation using Monte
Carlo methods. John Wiley & Sons, 2009.

[91] E. Ruijters, D. Guck, P. Drolenga, and M. Stoelinga. Fault maintenance
trees: Reliability centered maintenance via statistical model checking.
In 2016 Annual Reliability and Maintainability Symposium (RAMS),
pages 1–6, Jan 2016.

[92] Enno Ruijters, Daniël Reijsbergen, Pieter-Tjerk de Boer, and Mariëlle
Stoelinga. Rare event simulation for dynamic fault trees. In Ste-
fano Tonetta, Erwin Schoitsch, and Friedemann Bitsch, editors, Com-
puter Safety, Reliability, and Security - 36th International Conference,
SAFECOMP 2017, Trento, Italy, September 13-15, 2017, Proceedings,
volume 10488 of Lecture Notes in Computer Science, pages 20–35.
Springer, 2017.

139



[93] Enno Ruijters and Mariëlle Stoelinga. Fault tree analysis: A survey of
the state-of-the-art in modeling, analysis and tools. Computer Science
Review, 15:29–62, 2015.

[94] Roberto Segala. Modeling and verification of randomized distributed
real-time systems. PhD thesis, Massachusetts Institute of Technology,
Cambridge, MA, USA, 1995.

[95] K. J. Sullivan, J. B. Dugan, and D. Coppit. The galileo fault tree
analysis tool. In Digest of Papers. Twenty-Ninth Annual International
Symposium on Fault-Tolerant Computing (Cat. No.99CB36352), pages
232–235, June 1999.

[96] Zhihua Tang and J. B. Dugan. Minimal cut set/sequence generation
for dynamic fault trees. In Annual Symposium Reliability and Main-
tainability, 2004 - RAMS, pages 207–213, Jan 2004.

[97] Rob J. van Glabbeek, Scott A. Smolka, and Bernhard Steffen. Reac-
tive, generative and stratified models of probabilistic processes. Inf.
Comput., 121(1):59–80, 1995.

[98] W. Vesely, J. Dugan, J. Fragola, Minarick, and J. Railsback. Fault Tree
Handbook with Aerospace Applications. Handbook, National Aeronau-
tics and Space Administration, Washington, DC, 2002.

[99] Ignacio Viglizzo. Coalgebras on Measurable Spaces. PhD thesis, Indiana
University, USA, 2005.

[100] Ignacio Dario Viglizzo. Coalgebras on measurable spaces. 2010.

[101] Manuel Villen-Altamirano and Jose Villen-Altamirano. Restart: A
method for accelerating rare event simulations. Analysis, 3(3), 1991.

[102] Manuel Villén-Altamirano and José Villén-Altamirano. The rare event
simulation method RESTART: efficiency analysis and guidelines for
its application. In Demetres D. Kouvatsos, editor, Network Perfor-
mance Engineering - A Handbook on Convergent Multi-Service Net-
works and Next Generation Internet, volume 5233 of LNCS, pages 509–
547. Springer, 2011.

140



[103] Nicolás Wolovick. Continuous probability and nondeterminism in la-
beled transaction systems. Phd, Universidad Nacional de Córdoba,
Córdoba, 2012.

[104] Sue-Hwey Wu, Scott A. Smolka, and Eugene W. Stark. Composition
and behaviors of probabilistic I/O automata. Theor. Comput. Sci.,
176(1-2):1–38, 1997.

[105] Liudong Xing, Akhilesh Shrestha, and Yuanshun Dai. Exact combina-
torial reliability analysis of dynamic systems with sequence-dependent
failures. Rel. Eng. & Sys. Safety, 96(10):1375–1385, 2011.

[106] Wang Yi. Real-time behaviour of asynchronous agents. In Baeten and
Klop [5], pages 502–520.

[107] H̊akan LS Younes and Reid G Simmons. Probabilistic verification of
discrete event systems using acceptance sampling. In International
Conference on Computer Aided Verification, pages 223–235. Springer,
2002.

141



Appendix A

IOSA Syntax

The context free grammar from figure A.1 defines the complete IOSAu sym-
bolic modeling language. Here * stands for “as many times as you want”, +
for “at least one time”, ? means optional, | separates options, and parenthe-
ses group productions and elements.

MODEL = (MODULE)+

MODULE = (VARIABLE | ARRAY | CLOCK | TRANSITION)+

VARIABLE = NAME : TYPE init VALUE ;

ARRAY = NAME[INT]: TYPE init VALUE ;

CLOCK = NAME : clock ;

TRANSITION = [ (NAME (?|??|!|!!)?)? ] PRE (@ NAME)? −→ POS ;

PRE = ((NAME = EXPR)(& NAME = EXPR)∗)?
POS = (( NAME’ = EXPR )(& ( NAME’ = EXPR ))∗)?

EXPR = VALUE | NAME | EXPR OP EXPR | ( EXPR ) | ! EXPR |
DISTR

OP = | | & | + | - | * | / | =
NAME = (a|b|...|z|A|B|...|Z)(a|b|...|z|A|B|...|Z|1|...|9| |-)∗
TYPE = boolean | [ INT .. INT ]

142



VALUE = true | false | INT

INT = (1|2|...|9)(0|1|...|9)∗
FLOAT = (0|1|...|9) + (.(0|1|...|9)+)?

DISTR = normal(FLOAT,FLOAT) | exponential(FLOAT) |
uniform(FLOAT,FLOAT) | ...

Figure A.1: IOSAu symbolic language grammar.

143



Appendix B

Kepler Syntax

The following grammar defines the syntax for the Fault Tree Description
Language Kepler. The grammar is defined in Parsing Expression Grammar
notation (PEG). Productions are described by up case words while any other
alphabetic word is a string that goes as it is, as well as other types of words
and characters enclosed by simple quotation marks. Parenthesis group pro-
ductions and slashes separate options. The + symbol indicates the preceding
pattern has to be produced at list one time, * indicates one or more time in
the same sense, while ? indicates optional.

The top event is written on the top line. Each successive line will describe
either a gate, a basic event, or a repair box. A BE starts with its name,
then the word be to indicate its a basic event and finally the probability
distribution for its fail and repair clocks. A spare be is similar except for
that the second probability distribution corresponds to its dormant mode
fail clock and a third one corresponds to the failing distribution. There
are only seven types of distributions defined, which are the ones currently
implemented at FIG rare event simulator. Nevertheless, the language can
be simply extended to any other continuous distribution and it will still
be possible to compile it into IOSA models. Finally gates are defined by a
name, a string determining the type of the gate and a list of its inputs names.
Particularly, spare gates and repair boxes require to specify their operational
mode, which can be “first come first serve”, or “priority”.

144



1 KEPLER = TOPLEVEL (GATE / MODEGATE / BE / SBE)+

2 TOPLEVEL = toplevel NAME ’;’

3 BE = NAME be DIST DIST ’;’

4 SBE = NAME sbe DIST DIST DIST ’;’

5 GATE = NAME ( and / or / pand / vot / fdep) NAME* ’;’

6 MODEGATE = ( sg / rbox ) MODE NAME* ’;’

7 INT = 0 / (1/.../9)(0/.../9)*

8 FLOAT = INT+ (. INT+( (e/E) -? INT+)? )?

9 NAME = (a / ... / z / A / ... / Z)+ ( _ / INT / NAME)*

10 MODE = fcfs / priority

11 DIST = exponential ’(’ FLOAT ’)’ /

12 normal ’(’ FLOAT , FLOAT ’)’ /

13 erlang ’(’ FLOAT , FLOAT ’)’/

14 uniform ’(’ FLOAT , FLOAT ’)’/

15 lognormal ’(’ FLOAT , FLOAT ’)’/

16 weibull ’(’ FLOAT , FLOAT ’)’/

17 rayleigh ’(’ FLOAT ’)’/

18 gamma ’(’ FLOAT , FLOAT ’)’/

Figure B.1: FTDL Syntax.

145


	Introduction
	Motivation
	Needs and Means for Formal Analysis
	Contribution
	Related work
	Thesis layout

	Preliminaries
	Probability and Measure theory
	-algebras (or -fields)
	Probability measure
	Measurable functions and Lebesgue integrals

	Non-deterministic Labeled Markov Process

	Input/Output Stochastic Automata
	Clocks
	Open vs Closed model
	Input/Output Stochastic Automata
	Semantics
	Composition and bisimulation as a congruence
	Determinism
	Conclusion

	IOSA with Urgency 
	Input/Output Stochastic Automata with urgency (IOSAu)
	Semantics of IOSAu
	Parallel Composition
	Confluence
	Weak Determinism
	Sufficient conditions for weak determinism
	Conclusions

	Repairable Fault Trees
	Repairable Fault Trees
	Discussion on design.
	IOSA symbolic language
	A formal definition of RFT
	Semantics of RFT
	RFTs are deterministic
	An extended semantics
	RFT Analysis in FIG Simulator
	Rare Event Simulation and FIG Simulator
	The Water Cooling System case study

	Conclusions

	Concluding Discussions
	Achievements
	Future Work

	IOSA Syntax
	Kepler Syntax

