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Delay-tolerant networks (DTN) are time evolving networks which do not pro-
vide continuous and instantaneous end-to-end communication [5,9]. Instead, the
topological configuration of DTN changes continuously: connections are avail-
able only during some time intervals and thus the network may suffer from fre-
quent partitions and high delay. In this sense, the DTN paradigm is fundamental
to understand deep-space [3] and near-Earth communications [4]. A particular
characteristic of space networks is that, due to the orbital and periodic behavior
of the different agents (e.g. satellites and terrestrial or lunar stations), contact
times and durations between nodes can be accurately predicted. This type of
DTNs are called scheduled and expected contacts can be imprinted in a contact
plan that exhaustively describes the future network connectivity [10].

Scheduled routing algorithms such as the Contract Graph Routing (CGR)
assumes that the future topologies of the network are highly accurate and that
communication between nodes are perfect [1]. That is, it disregards transient or
permanent faults of nodes, antenna pointing inaccuracies or unexpected interfer-
ences. The likelihood of these communication failures can normally be quantified
a priori and hence included in the contact plan. Thus, the addition of this new
information gives rise to a new type of DTN called uncertain DTN [12,13].

The behavior of the contact plan with probability failures on contacts yields
a Markov decision process (MDP) where the non-determinism corresponds pre-
cisely to the routing decisions. With this model at hand, we have developed and
studied several off-line techniques for deriving optimal and near-optimal rout-
ing solutions that ensure maximum likelihood of end-to-end message delivery. In
particular, we have devised an analytical solution that exhaustively explores the
MDP very much like probabilistic model checking does. This technique, which we
called routing under uncertain contact plans (RUCoP), was reported in [13]. As
the exhaustive solution is memory and time demanding, we have also explored
in [6] simulation based techniques using lightweight scheduler sampling (LSS) [8]
which has been implemented in the modes statistical model checker [2] within
the Modest toolset [11]. We have also studied variations of these approaches
with communication redundancy in order to increase reliability by allowing a
network-wide bounded number of message copies. In addition, an exhaustive
comparison of these and existing techniques were reported in [7].
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The objective of this presentation is to report this research as well as current
ongoing developments for multi-objective routing optimization on space DTN.
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