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We introduce a formal notion of masking fault-tolerance between probabilistic transition systems

using stochastic games. These games are inspired in bisimulation games, but they also take into

account the possible faulty behavior of systems. When no faults are present, these games boil down

to probabilistic bisimulation games. Since these games could be infinite, we propose a symbolic way

of representing them so that they can be solved in polynomial time. In particular, we use this notion

of masking to quantify the level of masking fault-tolerance exhibited by almost-sure failing systems,

i.e., those systems that eventually fail with probability 1. The level of masking fault-tolerance of

almost-sure failing systems can be calculated by solving a collection of functional equations. We

produce this metric in a setting in which one of the player behaves in a strong fair way (mimicking

the idea of fair environments).

1 Introduction

Fault-tolerance [20] is an important aspect of critical systems, in which a fault may lead to important eco-

nomic, or human life, losses. Examples are ubiquitous: banking systems, automotive software, communi-

cation protocols, etc. Fault-tolerant systems typically use some kind of mechanism based on redundancy

such as data replication, duplicated messages and voting. However, these techniques do not consistently

enhance the ability of systems to effectively tolerate faults as one could expect. Hence, quantifying the
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effectiveness of fault-tolerance mechanisms is an important issue when developing critical software. Ad-

ditionally, in most cases, faults have a probabilistic nature, thus any technique designed for measuring

system fault-tolerance should be able to cope with stochastic phenomena.

In this paper we provide a framework aimed at quantifying the fault-tolerance exhibited by concur-

rent probabilistic systems. This encompasses the probability of occurrence of faults as well as the use of

randomized algorithms. Particularly, we focus on the so-called masking fault-tolerance, in which both

the safety and liveness properties are preserved by the system under the occurrence of faults [20]. Intu-

itively, faults are masked in such a way that their occurrence cannot be observed by the users. This is

often acknowledged as the most desirable kind of fault-tolerance. The aim of this paper is to provide a

framework for selecting a fault-tolerance mechanism over others as well as for balancing multiple mech-

anisms (e.g., to ponder on cost efficient hardware redundancies vs. time demanding software artifacts).

In the last years, significant progress has been made towards defining suitable metrics or distances

for diverse types of quantitative models including real-time systems [23], probabilistic models [21, 15,

6, 18, 7, 2, 32, 3], and metrics for linear and branching systems [1, 34, 27, 10, 22]. Some authors have

already pointed out that these metrics can be useful to reason about the robustness and correctness of

a system, notions related to fault-tolerance. Here we follow the ideas introduced in [8] where masking

fault-tolerance is captured by means of a tailored bisimulation game with quantitative objectives. We

extend these ideas to a probabilistic setting and define a probabilistic version of this characterization of

masking fault-tolerance which, in turn, we use to define a metric to compare the “degree” of masking

fault tolerance provided by different mechanisms.

More specifically, we characterize probabilistic masking fault-tolerance via a tailored variant of prob-

abilistic bisimulation (named masking simulation). Roughly speaking, masking simulation relates two

probabilistic transition systems. One of them acts as a system specification (i.e., a nominal model), while

the other one can be thought of as a fault-tolerant implementation that takes into account possible faulty

behavior. The existence of a masking simulation implies that the implementation masks all faults. This

relation admits a simple game characterization via a Boolean reachability game played on a stochastic

game graph.

Since in practice masking fault tolerance cannot be achieved in full, the reliability of a fault tolerance

mechanism can only be measured quantitatively. Thus, we reinterpret the same game with quantitative ob-

jectives. While previously we dealt with a Boolean reachability objective, here we introduce milestones

indicating successful progress of the model and change the objective of the game to be the expected total

collected milestones. Therefore, we transform the game into an expected total reward game. We then

take the measure of the fault-tolerant mechanism to be the solution of this expected total reward game.

In order to prove our results we have addressed several technical issues. First, the games rely on the

notion of couplings between probabilistic distributions and, as a consequence, the number of vertices

of their game graphs is infinite. To be able to deal with these infinite games, we introduce a symbolic

representation for them where couplings are captured by means of equation systems. The size of these

symbolic graphs is polynomial in the size of the input systems, which enables us to solve the (Boolean)

simulation game in polynomial time.

Besides, stochastic games with expected total reward objectives are required to be almost surely

stopping [19] or, more generally, almost surely stopping under fairness [9]. In our terms, this means that

the game needs to be almost surely failing under fairness. Intuitively, these games model systems that

will eventually fail with probability 1. This generalizes the idea that faults with some positive probability

of occurrence will eventually occur during a long enough system execution.

As our game is of infinite nature, the results in [9] cannot be applied directly. Therefore we devise a

finite discretization that allows us to partly reuse [9] and show that the value of the game is determined
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and that it can be computed by solving a collection of functional equations via an adapted value iteration

algorithm [13, 14, 11, 24]. Besides, as the game can only be solved if the game is almost surely failing

under fairness we also provide a polynomial solution to solve this problem. We remark that both checking

almost surely stopping under fairness and solving the game are calculated through the symbolic graph.

Summarizing, we define the notion of probabilistic masking simulation and provide its game charac-

terization which we show decidable in polynomial time (Sec. 3). In Sec. 4 we define an extension of the

games by considering rewards and provide a payoff function that collects the “milestones” achieved by

the implementation. We show that these games are determined provided they are almost-surely failing

under fairness, and give an algorithm to calculate the value of these games. We also give a polynomial

time algorithm to decide if a game is almost-surely failing under fairness.

2 Preliminaries

A (discrete) probability distribution µ over a denumerable set S is a function µ : S → [0,1] such that

µ(S) , ∑s∈S µ(s) = 1. Let D(S) denote the set of all probability distributions on S. ∆s ∈ D(S) denotes

the Dirac distribution for s, i.e., ∆s(s) = 1 and ∆s(s
′) = 0 whenever s′ 6= s. The support set of µ is defined

by Supp (µ) = {s | µ(s)> 0}.

A Probabilistic Transition System (PTS) [30] is a structure A = (S,Σ,→,s0) where (i) S is a denumer-

able set of states containing the initial state s0 ∈ S, (ii) Σ is a set of actions, and (iii) →⊆ S×Σ×D(S) is

the (probabilistic) transition relation. We assume that there is always some transition leaving from every

state. Here, we only consider finite PTSs, i.e., those in which the set of states S, the set of actions Σ and

the transition relation → are finite.

A distribution w ∈D(S×S′) is a coupling for (µ ,µ ′), with µ ∈ D(S) and µ ′ ∈D(S′), if w(S, ·) = µ ′

and w(·,S′) = µ . C(µ ,µ ′) denotes the set of all couplings for (µ ,µ ′). It is worth noting that this defines

a (two-way transport) polytope (i.e., a particular kind of bounded polyhedron). V(C(µ ,µ ′)) denotes the

set of all vertices of the corresponding polytope. This set is finite if S and S′ are finite. For R ⊆ S× S′,

we say that a coupling w for (µ ,µ ′) respects R if Supp (w) ⊆ R (i.e., w(s,s′) > 0 ⇒ s R s′). We define

R# ⊆ D(S)×D(S′) by µ R# µ ′ if and only if there is an R-respecting coupling for (µ ,µ ′).

A stochastic game graph [12] is a tuple G = (V,E,V1,V2,VP,v0,δ ), where V is a set of vertices with

V1,V2,VP ⊆ V being a partition of V , v0 ∈ V is the initial vertex, E ⊆ V ×V , and δ : VP → D(V ) is a

probabilistic transition function such that, for all v ∈ VP and v′ ∈ V : (v,v′) ∈ E iff v′ ∈ Supp (δ (v)). V1

and V2 are the set of vertices where Players 1 and 2 are respectively allowed to play. If VP = /0, then G

is called a 2-player game graph. Moreover, if V1 = /0 or V2 = /0, then G is a Markov Decision Process

(or MDP). Finally, in case that V1 = /0 and V2 = /0, G is a Markov chain (or MC). For all states v ∈V we

define Post(v) = {v′ ∈V | (v,v′) ∈ E}, the set of successors of v. Similarly, we define Pre(v′) = {v ∈V |
(v,v′) ∈ E} as the set of predecessors of v′. We assume that Post(v) 6= /0 for every v ∈V1 ∪V2.

Given a game as defined above, a play is an infinite sequence ρ = ρ0,ρ1, . . . such that (ρk,ρk+1) ∈ E

for every k ∈N. The set of all plays is denoted by Ω, and the set of plays starting at vertex v is written Ωv.

A strategy (or policy) for Player i ∈ {1,2} is a function πi : V ∗ ·Vi → D(V ) that assigns a probabilistic

distribution to each finite sequence of states such that Supp (πi(ρ · v))⊆ Post(v) for all ρ ∈V ∗ and v ∈Vi.

The set of all the strategies for Player i is named Πi. A strategy πi is said to be pure (or deterministic) if,

for every ρ ∈V ∗ and v∈Vi, πi(ρ ·v) is a Dirac distribution, and it is called memoryless if πi(ρ ·v) = πi(v),
for every ρ ∈V ∗ and v ∈Vi. Given two strategies π1 ∈ Π1, π2 ∈ Π2 and a starting state v, the result of the

game is a Markov chain, denoted by G
π1,π2
v . As any Markov chain, G

π1,π2
v defines a probability measure

Prob
π1,π2

G ,v on the Borel σ -algebra generated by the cylinders of Ω. If A is a measurable set in such
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Borel σ -algebra, Prob
π1,π2

G ,v (A ) is the probability that strategies π1 and π2 generate a play belonging to

A from state v. It would normally be convenient to use LTL notation to define events. For instance,

3V ′ = {ρ = ρ0,ρ1, · · · ∈ Ω | ∃i : ρi ∈ V ′} defines the event in which some state in V ′ is reached. The

outcome of the game, denoted by outv(π1,π2) is the set of possible paths of G
π1,π2
v starting at vertex v

(i.e., the possible plays when strategies π1 and π2 are used). When the initial state v is fixed, we write

out(π1,π2) instead of outv(π1,π2).

A Boolean objective for G is a set Φ ⊆ Ω. A play ρ is winning for Player 1 at vertex v if ρ ∈ Φ,

otherwise it is winning for Player 2 (i.e., we consider zero-sum games). A strategy π1 is a sure winning

strategy for Player 1 from vertex v if, for every strategy π2 for Player 2, outv(π1,π2) ⊆ Φ. π1 is said

to be almost-sure winning if for every strategy π2 for Player 2, we have Prob
π1,π2

G ,v (Φ) = 1. Sure and

almost-sure winning strategies for Player 2 are defined in a similar way. Reachability games are games

with Boolean objectives of the style: 3V ′, for some set V ′ ⊆V . A standard result is that, if a reachability

game has a sure winning strategy, then it has a pure memoryless sure winning strategy [12].

A quantitative objective is a measurable function f : Ω →R. Given a measurable function we define

Eπ1,π2

G ,v [ f ] as the expectation of function f under probability Prob
π1,π2

G ,v . The goal of Player 1 is to maximize

the expected value of f , whereas the goal of Player 2 is to minimize it. Usually, quantitative objective

functions are defined via a reward function r : V → R. The value of the game for Player 1 for strategy

π1 at vertex v, denoted val1(π1)(v), is defined as: val1(π1)(v) = infπ2∈Π2
Eπ1,π2

G ,v [ f ]. Furthermore, the

value of the game for Player 1 from vertex v is defined as: supπ1∈Π1
val1(π1)(v). Analogously, the

value of the game for a Player 2 strategy π2 and the value of the game for Player 2 are defined as

val2(π2)(v) = supπ1∈Π1
Eπ1,π2

G ,v [ f ] and infπ2∈Π2
val2(π2)(v), respectively. We say that a game is determined

if both values are equal, that is, supπ1∈Π1
val1(π1)(v) = infπ2∈Π2

val2(π2)(v), for every vertex v.

3 Probabilistic Masking Simulation

We start this section by defining a probabilistic extension of the strong masking simulation introduced

in [8]. Roughly speaking, this is a variation of probabilistic bisimulation that takes into account the

occurrence of faults (named masking simulation), and captures masking behavior. This relation serves

as a starting point for defining our masking games. We prove that in the Boolean case, our games

allows us to decide masking simulation. Since these games are infinite we provide a finite symbolic

characterization of them. In Section 4, we extend these games with quantitative objectives, which allows

us to quantify the level of fault-tolerance offered by an implementation.

The relation. In simple terms, a probabilistic masking simulation is a relation between PTSs that extends

probabilistic bisimulation [28, 30] in order to account for fault masking. One of the PTSs acts as the nom-

inal model (or specification), i.e., it describes the behavior of the system when no faults are considered,

and the other one represents a possible fault-tolerant implementation of the specification, in which the

occurrence of faults are taken into account via a fault tolerance mechanism acting upon them.

Probabilistic masking simulation allows one to analyze whether the implementation is able to mask

the faults while preserving the behavior of the specification. More specifically, for non-faulty transitions,

the relation behaves as probabilistic bisimulation, which is captured by means of couplings and relations

respecting these couplings. The novel part is given by the occurrence of faults: if the implementation

performs a fault, the nominal model matches it by an idle step (this represents internal fault masking

mechanisms).

In the following, given a set of actions Σ, and a (finite) set of fault labels F , with F ∩ Σ = /0,

we define ΣF = Σ∪F . Intuitively, the elements of F indicate the occurrence of a fault in a faulty
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module NOMINAL

b : [0..1] init 0;
m : [0..1] init 0; // 0 = normal,

// 1 = refreshing

[w0] (m=0) -> (b’= 0);
[w1] (m=0) -> (b’= 1);
[r0] (m=0) & (b=0) -> true;
[r1] (m=0) & (b=1) -> true;
[tick] (m=0) -> p: (m’= 1) +

(1-p): true;
[rfsh] (m=1) -> (m’= 0);

endmodule

Figure 1: Memory cell: nominal model

module FAULTY

v : [0..3] init 0;
s : [0..2] init 0; // 0 = normal, 1 = faulty,

// 2 = refreshing
f : [0..1] init 0; // fault limiting artifact

[w0] (s!=2) -> (v’= 0) & (s’= 0);
[w1] (s!=2) -> (v’= 3) & (s’= 0);
[r0] (s!=2) & (v<=1) -> true;
[r1] (s!=2) & (v>=2) -> true;
[tick] (s!=2) -> p: (s’= 2) + q: (s’= 1)

+ (1-p-q): true;
[rfsh] (s=2) -> (s’=0)

& (v’= (v<=1) ? 0 : 3);
[fault] (s=1) & (f<1) -> (v’= (v<3) ? (v+1) : 2)

& (s’= 0) & (f’= f+1);
[fault] (s=1) & (f<1) -> (v’= (v>0) ? (v-1) : 1)

& (s’= 0) & (f’= f+1);

endmodule

Figure 2: Memory cell: fault-tolerant implementation.

implementation.

Definition 1. Let A = (S,Σ,→,s0) and A′ = (S′,ΣF ,→′,s′0) be two PTSs representing the nominal and

the implementation model, respectively. A′ is (strong) probabilistic masking fault-tolerant with respect to

A iff there exists a relation M ⊆ S×S′ such that: (a) s0 M s′0, and (b) for all s ∈ S,s′ ∈ S′ with s M s′ and

all e ∈ Σ and F ∈ F the following holds:

(1) if s
e
−→ µ , then s′

e
−→′ µ ′ and µ M# µ ′ for some µ ′;

(2) if s′
e
−→′ µ ′, then s

e
−→ µ and µ M# µ ′ for some µ;

(3) if s′
F
−→′ µ ′, then ∆s M# µ ′.

If such a relation exists we say that A′ is a (strong) probabilistic masking fault-tolerant implementation

of A, denoted A �m A′.

Note that the relation can be encoded in terms of traditional probabilistic bisimulation as follows:

saturate PTSs A and A′ by adding self-loops s
F
−→ ∆s and s′

F
−→′ ∆s′ , respectively, for every s ∈ S, s′ ∈ S′

and F ∈F . It follows from the definitions that these two new PTSs are probabilistic bisimilar iff A�m A′.

As a consequence, checking A �m A′ is decidable in polynomial time.

Example 1. Consider a memory cell storing one bit of information that periodically refreshes its value.

The memory supports both write and read operations, and when it refreshes, it performs a read operation

and overwrites the memory with the read value. This behaviour is captured by the nominal model of Fig. 1

using PRISM notation [25]. In this model, ri and wi (for i= 0,1) represent the actions of reading and

writing value i. The bit stored in the memory is saved in variable b. Action tick marks that one time

unit has passed and, with probability p, it enables the refresh action (rfsh). Variable m indicates whether

the system is in write/read mode, or producing a refresh.

A potential fault in this scenario occurs when a cell unexpectedly changes its value. In practice, the

occurrence of such an error has a certain probability. A typical technique to deal with this situation

is redundancy, e.g., using three memory bits instead of one. Then, writing operations are performed

simultaneously on the three bits while reading returns the value read by majority (or voting). Fig. 2

shows this implementation with the occurrence of the fault implicitly modeled (ignore, for the time being,

the red part). Variable v counts the votes for the value 1. In addition to enabling the refresh action, a
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tick may also enable the occurrence of a fault with probability q, with p+q ≤ 1. Variable s indicates

whether the system is in normal mode (s = 0), in a state where a fault may occur (s = 1), or producing

a refresh (s = 2). The red coloured text in Fig. 2 is an artifact to limit the number of faults to 1. Under

this condition, relation M = {〈(b,m),(v,s, f )〉 | 2b ≤ v ≤ 2b+1∧ (m = 1 ⇔ s = 2)} is a probabilistic

masking simulation (b, m, v, s, and f represent the values of variables b, m, v, s, and f, respectively.)

It should be evident that, when the red coloured text is removed, FAULTY is not a masking fault-tolerant

implementation of NOMINAL.

A characterization in terms of stochastic games. We define a stochastic masking simulation game for

any given nominal model A = (S,Σ,→,s0) and implementation model A′ = (S′,ΣF ,→′,s′0). The game is

similar to a bisimulation game [31], and it is played by two players, named for convenience the Refuter

(R) and the Verifier (V). The Verifier wants to prove that s ∈ S and s′ ∈ S′ are probabilistic masking

similar, and the Refuter intends to disprove that. The game starts from the pair of states (s,s′) and the

following steps are repeated:

1) R chooses either a transition s
a
−→ µ from the nominal model or a transition s′

a
−→′ µ ′ from the

implementation;

2a) If a /∈ F , V chooses a transition matching action a from the opposite model, i.e., a transition

s′
a
−→′ µ ′ if R’s choice was from the nominal model, or a transition s

a
−→ µ otherwise. In addition, V

chooses a coupling w for (µ ,µ ′);

2b) If a ∈ F , V can only select the Dirac distribution ∆s and the only possible coupling w for (∆s,µ
′);

3) The successor pair of states (t, t ′) is chosen probabilistically according to w.

If the play continues forever, then the Verifier wins; otherwise, the Refuter wins. (Notice, in particular,

that the Verifier loses if she cannot match a transition label, since choosing an arbitrary coupling is

always possible.) Step 2b is the only one that seems to differ from the usual bisimulation game. This

is needed because of the asymmetry produced by the transitions labeled with faults. Intuitively, if the

Refuter chooses to play a fault in the implementation, then the Verifier ought to mask the fault, thus she

cannot freely move in the nominal model. Summing up, the probabilistic step of a fault can only be

matched by a Dirac distribution on the corresponding state of the specification.

In the following we define the stochastic masking game graph that formalizes this idea. For this,

define Σi = {ei | e ∈ Σ} containing all elements of Σ indexed with superscript i.

Definition 2. Let A = (S,Σ,→,s0) and A′ = (S′,ΣF ,→′,s′0) be two PTSs. The 2-player stochastic mask-

ing game graph GA,A′ = (V G ,EG ,V G
R
,V G

V
,V G

P
,vG

0 ,δ
G ), is defined as follows:

V G = V G
R ∪V G

V ∪V G
P ,where:

V G
R = {(s, -,s′, -, -, -,R) | s ∈ S∧ s′ ∈ S′}∪{verr}

V G
V

= {(s,σ 1,s′,µ , -, -,V) | s ∈ S∧ s′ ∈ S′∧σ ∈ Σ∧ s
σ
−→ µ}∪

{(s,σ 2,s′, -,µ ′, -,V) | s ∈ S∧ s′ ∈ S′∧σ ∈ ΣF ∧ s′
σ
−→′ µ ′}

V G
P = {(s, -,s′,µ ,µ ′,w,P) | s ∈ S∧ s′ ∈ S′∧w ∈ C(µ ,µ ′)∧

∃σ∈ΣF : (s
σ
−→ µ ∨ (σ∈F ∧µ = ∆s))∧ s′

σ
−→′ µ ′}

vG
0 = (s0, -,s

′
0, -, -, -,R) (the Refuter starts playing)

δG : V G
P → D(V G

R ), defined by δG ((s, -,s′,µ ,µ ′,w,P))((t, -, t ′, -, -, -,R)) = w(t, t ′),
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where “-” fills an unused place, and EG is the minimal set satisfying the following rules:

s
σ
−→ µ ⇒ 〈(s, -,s′, -, -, -,R),(s,σ 1,s′,µ , -, -,V)〉 ∈ EG (11)

s′
σ
−→′ µ ′ ⇒ 〈(s, -,s′, -, -, -,R),(s,σ 2,s′, -,µ ′, -,V)〉 ∈ EG (12)

s′
σ
−→′ µ ′∧w ∈C(µ ,µ ′)⇒ 〈(s,σ 1,s′,µ , -, -,V),(s, -,s′ ,µ ,µ ′,w,P)〉 ∈ EG (2a1)

σ /∈ F ∧ s
σ
−→ µ ∧w ∈C(µ ,µ ′)⇒ 〈(s,σ 2,s′, -,µ ′, -,V),(s, -,s′,µ ,µ ′,w,P)〉 ∈ EG (2a2)

F ∈ F ∧w ∈ C(∆s,µ
′)⇒ 〈(s,F2,s′, -,µ ′, -,V),(s, -,s′ ,∆s,µ

′,w,P)〉 ∈ EG (2b)

(s, -,s′,µ ,µ ′,w,P) ∈V G
P ∧ (t, t ′) ∈ Supp (w)⇒ 〈(s, -,s′,µ ,µ ′,w,P),(t, -, t ′, -, -, -,R)〉 ∈ EG (3)

v ∈ (V G
V ∪{verr})∧ (∄v′ 6= verr : 〈v,v′〉 ∈ EG )⇒ 〈v,verr〉 ∈ EG (err)

Some words about this definition are useful, it mainly follows the idea of the game previously de-

scribed. A round of the game starts in the Refuter’s state vG
0 . Notice that, at this point, only the current

states of the nominal and implementation models are relevant (all other information is not yet defined in

this round and hence marked with “-”). Step 1 of the game is encoded in rules (11) and (12), where the

Refuter chooses a transition, thus defining the action and distribution that need to be matched, this moves

the game to a Verifier’s state. A Verifier’s state in V G
V

is a tuple containing which action and distribution

need to be matched, and which model the Refuter has played. Step 2a of the game is given by rules (2a1)

and (2a2) in which the Verifier chooses a matching move from the opposite model (hence defining the

other distribution) and an appropriate coupling, moving to a probabilistic state. Step 2b of the game is

encoded in rule (2b). Here the Verifier has no choice since she is obliged to choose the Dirac distribution

∆s and the only available coupling in C(∆s,µ
′). A probabilistic state in V G

P
contains the information

needed to probabilistically resolve the next step through function δG (rule (3)). Finally, rule (err) states

that, if a player has no move, then she reaches an error state (verr). Note that this can only happen in a

Verifier’s state or in verr.

The notion of probabilistic masking simulation can be captured by the corresponding stochastic

masking game with the appropriate Boolean objective.

Theorem 1. Let A=(S,Σ,→,s0) and A′ =(S′,ΣF ,→′,s′0) be two PTSs. Then, A�m A′ iff the Verifier has

a sure (or almost-sure) winning strategy for the stochastic masking game graph GA,A′ with the Boolean

objective ¬3verr.

Note that this theorem holds for both sure and almost-sure strategies of the Verifier, this follows from

the fact that for stochastic reachability objectives the two kinds of strategies are equivalent.

Example 2. Consider the graph in Fig. 3 (ignoring the blue shading for now). It represents a frag-

ment of the masking game graph between NOMINAL and FAULTY of Example 1. The vertices repre-

sent the variable values in the following order: ((b,m), ,(v,s,f), , , , ). First, consider the graph

disregarding the red highlighted numbers. For example, ((0,0), -,(0,0,0), -, -, -,R) should be read as

((0,0), -,(0,0), -, -, -,R). In this case we obtain the masking game graph when the red part in FAULTY

is removed. Notice that, in the majority of the vertices, many outgoing edges are omitted. In particular,

the Verifier vertex
(

(0,0),tick1,(0,0),µ , -, -,V
)

has infinitely many outgoing edges leading to proba-

bilistic vertices of the form
(

(0,0),tick1,(0,0),µ ,µ ′,w,P
)

, where w is a coupling for (µ ,µ ′). In the

graph, we have chosen to distinguish coupling w0 which is optimal for the Verifier (similarly later for

w2). We highlighted the path leading to error state verr. Notice that this occurs as a consequence of

the Refuter choosing to do a second fault in vertex ((0,0), -,(1,1), -, -, -,R) steering the game to the

red shadowed part of the graph. Later, the Refuter chooses to read 0 in the NOMINAL model (at vertex

((0,0), -,(2,0), -, -, -,R)) which the Verifier cannot match.
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((0,0),-,(0,0,0),-,-,-,R)

(

(0,0),tick1,(0,0,0),µ ,-,-,V
)

(

(0,0),tick1,(0,0,0),µ ,µ ′,w0,P
)

((0,0),-,(0,1,0),-,-,-,R)((0,1),-,(0,2,0),-,-,-,R)

(

(0,0),fault2,(0,1,0),-,∆(1,0,1),-,V
)

(

(0,0),fault2,(0,1,0),∆(0,0),∆(1,0,1),w1,P
)

((0,0),-,(1,0,1),-,-,-,R)

(

(0,0),tick1,(1,0,1),µ ,-,-,V
)

(

(0,0),tick1,(1,0,1),µ ,µ ′′,w2,P
)

((0,0),-,(1,1,1),-,-,-,R)((0,1),-,(1,2,1),-,-,-,R)

(

(0,0),fault2,(1,1),-,∆(2,0) ,-,V
)

(

(0,0),fault2,(2,1),∆(0,0) ,∆(2,0),w3,P
)

((0,0),-,(2,0),-,-,-,R)

(

(0,0),r01,(2,0),∆(0,0) ,-,-,V
)

verr

qp
1−p−q

qp
1−p−q

µ = p · (0,1)+ (1−p) · (0,0)

µ ′ =

{

p · (0,2,0)+q · (0,1,0)+

(1−p−q) · (0,0,0)

µ ′′ =

{

p · (1,2,1)+q · (1,1,1)+

(1−p−q) · (1,0,1)

w0 =

{

p · ((0,1),(0,2,0))+q · ((0,0),(0,1,0))+

(1−p−q) · ((0,0),(0,0,0))

w1 = ∆((0,0),(1,0,1))

w2 =

{

p · ((0,1),(1,2,1))+q · ((0,0),(1,1,1))+

(1−p−q) · ((0,0),(1,0,1))

w3 = ∆((0,0),(2,0))

Figure 3: A fragment of a masking game graph

Now, consider the masking game graph between NOMINAL and fault-limited FAULTY model (i.e., take

now into account the red part). This graph includes the red values corresponding to variable f. Notice

that here, the Refuter cannot produce a fault transition from vertex ((0,0), -,(1,1,1), -, -, -,R). Thus, in

this case, the Verifier manages to avoid reaching the error state verr.

A symbolic game graph. The graph for a stochastic masking game could be infinite since each proba-

bilistic node includes a coupling between the two contending distributions, and there can be uncountably

many of them. In the following, we introduce a finite description of stochastic masking games through a

symbolic representation that omits explicit reference to couplings. The definition of the symbolic game

graph is twofold. The first part captures the non-stochastic behaviour of the game by removing the

stochastic choice (δG ) of the graph as well as the couplings on the vertices. The second part appends an

equation system to each probabilistic vertex whose solution space is the polytope defined by the set of

all couplings for the contending distributions.

Definition 3. Let A = (S,Σ,→,s0) and A′ = (S′,ΣF ,→′,s′0) be two PTSs. The symbolic game graph for

the stochastic masking game GA,A′ is defined by S G A,A′ = (V S G ,ES G ,V S G
R

,V S G
V

,V S G
P

,vS G
0 ), where:

V S G = V S G
R ∪VS G

V ∪V S G
P , where:
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V S G
R = {(s, -,s′, -, -,R) | s ∈ S∧ s′ ∈ S′}∪{verr}

V S G
V = {(s,σ 1,s′,µ , -,V) | s ∈ S∧ s′ ∈ S′∧σ ∈ Σ∧ s

σ
−→ µ}∪

{(s,σ 2,s′, -,µ ′,V) | s ∈ S∧ s′ ∈ S′∧σ ∈ ΣF ∧ s′
σ
−→′ µ ′}

V S G
P = {(s, -,s′,µ ,µ ′,P) | s ∈ S∧ s′ ∈ S′∧∃σ∈ΣF : (s

σ
−→ µ ∧ (σ∈F ∨µ = ∆s))∧ s′

σ
−→′ µ ′}

vS G
0 = (s0, -,s

′
0, -, -,R),

and ES G is the minimal set satisfying the following rules:

s
σ
−→ µ ⇒ 〈(s, -,s′, -, -,R),(s,σ 1,s′,µ , -,V)〉 ∈ ES G

s′
σ
−→′ µ ′ ⇒ 〈(s, -,s′, -, -,R),(s,σ 2,s′, -,µ ′,V)〉 ∈ ES G

s′
σ
−→′ µ ′ ⇒ 〈(s,σ 1,s′,µ , -,V),(s, -,s′ ,µ ,µ ′,P)〉 ∈ ES G

σ /∈ F ∧ s
σ
−→ µ ⇒ 〈(s,σ 2,s′, -,µ ′,V),(s, -,s′,µ ,µ ′,P)〉 ∈ ES G

F ∈ F ⇒ 〈(s,F2,s′, -,µ ′,V),(s, -,s′,∆s,µ
′,P)〉 ∈ ES G

(s, -,s′,µ ,µ ′,P) ∈V S G
P ∧ t ∈ Supp(µ)∧ t ′ ∈ Supp

(

µ ′
)

⇒ 〈(s, -,s′,µ ,µ ′,P),(t, -, t ′, -, -,R)〉 ∈ ES G

v ∈ (V S G
V ∪{verr})∧ (∄v′ 6= verr : 〈v,v′〉 ∈ ES G )⇒ 〈v,verr〉 ∈ ES G

In addition, for each v = (s, -,s′,µ ,µ ′,P) ∈ V S G
P

, consider the set of variables X(v) = {xsi,s j
| si ∈

Supp(µ)∧ s j ∈ Supp(µ ′)}, and the system of equations

Eq(v) =
{

∑s j∈Supp(µ ′) xsk ,s j
= µ(sk) | sk ∈ Supp (µ)

}

∪
{

∑sk∈Supp(µ) xsk,s j
= µ ′(s j) | s j ∈ Supp (µ ′)

}

∪
{

xsk,s j
≥ 0 | sk ∈ Supp (µ)∧ s j ∈ Supp (µ ′)

}

Notice that {x̄sk ,s j
}sk,s j

is a solution of Eq(v) if and only if there is a coupling w ∈ C(µ ,µ ′) such that

w(sk,s j) = x̄sk ,s j
for all sk ∈ Supp (µ) and s j ∈ Supp (µ ′).

Furthermore, given a set of game vertices V ′ ⊆V S G
R

, we define Eq(v,V ′) by extending Eq(v) with an

equation limiting the couplings in such a way that vertices in V ′ are not reached. Formally, Eq(v,V ′) =
Eq(v)∪

{

∑(s,-,s′,-,-,R)∈V ′ xs,s′ = 0
}

. By properly defining a family of sets V ′, we will show that the stochas-

tic masking game can be solved in polynomial time through the symbolic game graph.

Example 3. The fragment of the symbolic game graph of Example 1 in Fig. 3 is the same as de-

picted there only that all blue shaded components should be removed. (We also have the two vari-

ants here: one with the red values and the other one without them.) In the symbolic graph, ver-

tex v = ((0,0),tick,(0,0,0),µ , -,V), for example, has only one successor, in contraposition to vertex

((0,0),tick,(0,0,0),µ , -, -,V) that has uncountably many in the original game graph. Instead, v has

associated the set Eq(v) containing the following equations

x(0,1),(0,2,0)+ x(0,1),(0,1,0)+ x(0,1),(0,0,0) = p x(0,1),(0,2,0)+ x(0,0),(0,2,0) = p

x(0,0),(0,2,0)+ x(0,0),(0,1,0)+ x(0,0),(0,0,0) = 1−p x(0,1),(0,0,0)+ x(0,0),(0,0,0) = 1−p−q

x(0,1),(0,2,0) ≥ 0 x(0,1),(0,1,0) ≥ 0 x(0,1),(0,0,0) ≥ 0 x(0,1),(0,1,0)+ x(0,0),(0,1,0) = q

x(0,0),(0,2,0) ≥ 0 x(0,0),(0,1,0) ≥ 0 x(0,0),(0,0,0) ≥ 0

In particular, notice that, if w0 is as defined in Example 2, x̄s,s′ = w0(s,s
′) is a solution for this set of

equations.
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In the following we propose to use the symbolic game graph to solve the infinite game. By doing so,

we obtain a polynomial time procedure. We provide an inductive construction of vertex regions U i (for

i ∈ N) containing the collection of vertices from which the Refuter has a strategy for reaching the error

state with probability greater than 0 in at most i steps.

Let S G A,A′ = (V S G ,ES G ,V S G
R

,V S G
V

,V S G
P

,vS G
0 ) be a symbolic game graph for PTSs A and A′.

Define U =
⋃

i≥0U i where, for all i ≥ 0,

U0 = {verr} U i+1 = {v′ | v′ ∈V S G
R

∧PostS G (v′)∩ (
⋃

j≤iU
j) 6= /0}∪ (1)

{v′ | v′ ∈V S G
V

∧PostS G (v′)⊆
⋃

j≤iU
j}∪

{v′ | v′ ∈V S G
P

∧Eq(v′,PostS G (v′)∩ (
⋃

j≤iU
j)) has no solution}

The first line in U i+1 corresponds to the Refuter and adds a vertex if some successor is in some previous

level U j. The second line corresponds to the Verifier and adds a vertex if all its successors lie in some

previous U j. The last line corresponds to the probabilistic player. Notice that, if Eq(v′,Post(v′)∩U i) has

no solution, then every possible coupling will inevitably lead with some probability to a “losing” state of

a smaller level since, in particular, equation ∑(s,-,s′,-,-,R)∈(Post(v′)∩U i) xs,s′ = 0 cannot be satisfied.

The following theorem provides an algorithm to decide the stochastic masking game.

Theorem 2. Let GA,A′ be a stochastic game graph for PTSs A and A′, and let S G A,A′ be the correspond-

ing symbolic game graph. Then, the Verifier has a sure (or almost-sure) winning strategy in GA,A′ for

¬3verr if and only if vS G
0 /∈U.

Theorems 1 and 2 provide an alternative algorithm to decide whether there is a probabilistic masking

simulation between A and A′. This can be done in polynomial time, since Eq(v,C) can be solved in

polynomial time (e.g, using linear programming) and the number of iterations to construct U is bounded

by |V S G |. Since V S G linearly depends on the transitions of the involved PTSs, the complexity is in

O(Poly(|−→| · |−→′|)).

4 Quantifying Fault Tolerance

Probabilistic masking simulation determines whether a fault-tolerant implementation is able to com-

pletely mask faults. However, in practice, this kind of masking fault-tolerance is uncommon. Usually,

fault-tolerant systems are able to mask a number of faults before exhibiting a failure. In this section we

extend the game theory presented above to provide a measure for the system effectiveness on masking

faults. To do this, we extend the stochastic masking game with a quantitative objective function. The ex-

pected value of this function collects the (weighted) “milestones” that the fault-tolerant implementation

is expected to cross before failing. A milestone is any interesting event that may occur during a system

execution. For instance, a milestone may be the successful masking of a fault. In this case, the measure

will reflect the number of faults that are tolerated by the system before crashing. Another milestone

may be successful acknowledgments in a transmission protocol. This measures the expected number of

chunks that the protocol is able to transfer before failing. Thus, milestones are some designated action

labels on the implementation model and, as they may reflect different events, their value may depend on

the importance of such events.

Definition 4. Let A′ = (S′,ΣF ,→′,s′0) be a PTS modeling an implementation. A milestone is a function

m : ΣF → N0.
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Given a milestone m for A′, the reward rG
m on GA,A′ = (V G ,EG ,V G

R
,V G

V
,V G

P
,vG

0 ,δ
G ) is defined by

rG
m(v) = m(σ) if v ∈ V G

V
and v[1] ∈ {σ 1,σ 2}; otherwise, rG

m(v) = 0. Function rG
m collects milestones

(when available) only once for each round of the game. This can be done only at Verifier’s vertices

since they are the only ones that save the label that it is being played in the round. The masking payoff

function is then defined by fm(ρ) = limn→∞(∑
n
i=0 rG

m(ρi)). Therefore, the payoff function fm represents

the total of weighted milestones that a fault-tolerant implementation is able to achieve until an error state

is reached. This type of payoff functions are usually called total rewards in the literature. One may

think of this as a game played by the fault-tolerance built-in mechanism and a (malicious) player that

chooses the way in which faults occur. In this game, the Verifier is the maximizer (she intends to obtain

as many milestones as possible) and the Refuter is the minimizer (she intends to prevent the Verifier from

collecting milestones).

Thus, the game aims to optimize EπV,πR

G ,vG
0

[ fm], i.e., the expected value of random variable fm. One

technical issue with total rewards objectives is that the game value may be not well-defined in R. For

instance, there could be plays not reaching an end state wherein the players collect an infinite amount

of rewards. A usual condition for ensuring that the game value is well-defined is that of almost-surely

stopping, i.e., the game has to reach a sink vertex with probability 1, for every pair of strategies [19].

In [9], we have generalized this condition to that of almost-surely stopping under fairness, that is, the

error state verr is reached with probability 1 provided the Refuter plays fair. In this case the games are

well-defined in R and determined. In simple words, determination means that the knowledge of the

opponent’s strategy gives no benefit for the players.

It is worth noting that fairness is necessary to prevent the Refuter from stalling the game. For instance,

consider Example 1 and the stochastic masking game between the nominal and faulty models of Figs. 1

and 2 (omitting the red part). One would expect that the game leads to a failure with probability 1.

However, the Refuter has strategies to avoid verr with positive probability. For instance, the Refuter may

always play the reading action forcing the Verifier to mimic it forever and hence making the probability

of reaching the error equals 0. By doing this, the Refuter stalls the game, forbidding progress and hence

avoiding the occurrence of the fault. Clearly, this is against the intuitive behavior of faults which one

expects will eventually occur if waiting long enough. The assumption of fairness over Refuter plays rules

out this counter-intuitive behavior of the Refuter. Roughly speaking, a Refuter’s fair play is one in which

the Refuter commits to follow a strong fair pattern, i.e., that includes infinitely often any transition that is

enabled infinitely often. Then, a fair strategy for the Refuter is a strategy that always measures 1 on the

set of all the Refuter’s fair plays, regardless of the strategy of the Verifier. The definitions below follow

the style in [5, 4, 9].

Definition 5. Given a masking game GA,A′ = (V G ,EG ,V G
R
,V G

V
,V G

P
,vG

0 ,δ
G ), the set of all Refuter’s fair

plays is defined by RFP = {ρ ∈ Ω | v ∈ inf(ρ)∩V G
R

⇒ Post(v) ⊆ inf(ρ)}. A Refuter strategy πR is said

to be almost-sure fair iff, for every Verifier’s strategy πV, Prob
πR,πV

G ,vG
0

(RFP) = 1. We let Πf
R

denote the set

of all fair strategies for the Refuter.

Under this concept, the stochastic masking game is almost-sure failing under fairness if for every

Verifier’s strategy and every Refuter’s fair strategy, the game leads to an error with probability 1. This is

formally defined as follows.

Definition 6. Let A and A′ be two PTSs. We say that the stochastic masking game GA,A′ is almost-sure

failing under fairness iff, for every strategy πV ∈ΠV and any fair strategy πR ∈ Πf
R

, Prob
πV,πR

G ,vG
0

(3verr) = 1.

Interestingly, under the strong fairness assumption, the determinacy of games is preserved for finite

stochastic games [9]. The rest of the section is precisely devoted to bring our setting to the framework

of [9] and thus provide an algorithmic solution.
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A strategy πi, i ∈ {R,V}, is semi-Markov if for every ρ̂, ρ̂ ′ ∈ (V G )∗ and v ∈ V G
i , |ρ̂ | = |ρ̂ ′| implies

πi(ρ̂v) = πi(ρ̂
′v), that is, the decisions of πi depend only on the length of the run and its last state. Thus,

we write πi(n,v) instead of πi(ρ̂v) if |ρ̂ | = n. Let ΠS
i denote the set of all semi-Markov strategies for

Player i and ΠSf
i the set of all its fair semi-Markov strategies.

The next lemma states that, if the Refuter plays a semi-Markov strategy, the Verifier achieves equal

results regardless whether she plays an arbitrary strategy or limits to playing only semi-Markov strategies.

The proof resembles that of [9, Lemma 2] taking care of the fact that the set of vertices of the stochastic

masking game is uncountable. Since probabilities are anyway discrete, this is not a major technical issue,

but it deserves attention in the proof.

Lemma 1. Let GA,A′ be a stochastic masking game graph and let πR ∈ ΠS
R

be a semi-Markov strategy.

Then, for any πV ∈ ΠV, there is a semi-Markov strategy π∗
V
∈ ΠS

V
such that EπV,πR

G ,v [ fm] = E
π∗
V
,πR

G ,v [ fm].

A Verifyier strategy π∗
V
∈ΠV is extreme if it only moves to probabilistic vertices containing couplings

that are on the polytope vertices, that is, if for all ρ̂ ∈ (V G )∗×V G
V

, π∗
V
(ρ̂)((s, -,s′,µ ,µ ′,w,P))> 0 implies

that w ∈ V(C(µ ,µ ′)). Let ΠXS
V

be the set of all extreme semi-Markov strategies for the Verifier.

Lemma 1 can be strengthened. Thus, if the Refuter plays a semi-Markov strategy, the Verifier can

achieve the same result as the general case by restricting herself to play only extreme semi-Markov

strategies.

Lemma 2. Let GA,A′ be a stochastic masking game graph and let πR ∈ ΠS
R

be a semi-Markov strategy.

Then, for any πV ∈ ΠS
V

, there is an extreme semi-Markov strategy π∗
V
∈ ΠXS

V
such that for all v ∈ V G

R
,

EπV,πR

G ,v [ fm] = E
π∗
V
,πR

G ,v [ fm].

The key of the proof of Lemma 2 lies on the construction of π∗
V

which is defined so that, for every

n ∈N and v1 ∈V G
V

, the probabilistic decision made by π∗
V
(n,v1) corresponds to a proper composition of

the probabilistic decisions of πV(n,v1), and each convex combination of vertex couplings that define the

coupling within each probabilistic successor v2 ∈ Supp(πV(n,v1)).
Notice that, by traveling only through probabilistic vertices on GA,A′ that are defined by vertex cou-

plings, only a finite number of the game vertices are touched when the Verifier uses extreme strategies.

Thus, we let the stochastic game graph HA,A′ be the vertex snippet of GA,A′ and define it to be the same

as GA,A′ only that probabilistic vertices are limited to those that contain couplings in the vertices of the

polytope, that is,

V H
P = {(s, -,s′,µ ,µ ′,w,P) | s ∈ S∧ s′ ∈ S′∧w ∈ V(C(µ ,µ ′))∧

∃σ∈ΣF : (s
σ
−→ µ ∨ (σ∈F ∧µ = ∆s))∧ s′

σ
−→′ µ ′}.

The rest of the elements of HA,A′ are defined by properly restricting the domain of the respective compo-

nents in GA,A′ . Notice that HA,A′ is finite.

Now observe that, if the Verifier semi-Markov strategies are considered as functions with domain

in (N×V G
V
), then the set of all extreme semi-Markov strategies in GA,A′ corresponds to the set of all

semi-Markov strategies of HA,A′ . That is: ΠXS
V,G = ΠS

V,H , where subscripts G and H indicate whether

the strategies belong to GA,A′ or HA,A′ , respectively. Similarly, the same holds for the set of all extreme

deterministic memoryless strategies, that is: ΠXMD
V,G = ΠMD

V,H . Given the fact that V G
R

= V H
R

and V G
V

=

V H
V

, the set of all Refuter’s deterministic memoryless fair strategies are the same in both game graphs,

i.e., ΠMDf
R,G = ΠMDf

R,H . The following proposition follows directly from these observations.

Proposition 1. Let GA,A′ be a stochastic game graph and HA,A′ its vertex snippet. Then, for all v ∈V G
R

(=
V H
R

), we have:
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1. for all πR ∈ ΠMDf
R,G ,(= ΠMDf

R,H ), supπV∈ΠXS
V,G

EπV,πR

G ,v [ fm] = supπV∈ΠS
V,H

EπV,πR

H ,v [ fm]; and

2. for all πV ∈ ΠXMD
V,G (= ΠMD

V,H ), infπR∈Πf
R,G

EπV,πR

G ,v [ fm] = infπR∈Πf
R,H

EπV,πR

H ,v [ fm].

The following theorem not only states that the game for optimizing the expected value of the masking

payoff function is determined, but it also guarantees that it can be solved using the finite vertex snippet

of the stochastic game subgraph.

Theorem 3. Let GA,A′ be a stochastic game graph whose vertex snippet HA,A′ is almost-sure failing

under fairness. Then, for all v ∈V G
R

(=V H
R

),

inf
πR∈Πf

R,G

sup
πV∈ΠV,G

EπV,πR

G ,v [ fm] = inf
πR∈ΠMDf

R,H

sup
πV∈ΠMD

V,H

EπV ,πR

H ,v [ fm]

= sup
πV∈ΠMD

V,H

inf
πR∈ΠMDf

R,H

EπV,πR

H ,v [ fm] = sup
πV∈ΠV,G

inf
πR∈Πf

R,G

EπV,πR

G ,v [ fm].

Proof. We first recall that the almost-sure failing under fairness property is equivalent to the stopping

under fairness property in [9]. That is why we can safely apply the results from [9] on HA,A′ in the

calculations below.

infπR∈Πf
R,G

supπV∈ΠV,G
EπV,πR

G ,v [ fm]≤ infπR∈ΠMDf
R,G

supπV∈ΠV,G
EπV ,πR

G ,v [ fm] (ΠMDf
R,G ⊆ Πf

R,G ) (⋆)

= infπR∈ΠMDf
R,G

supπV∈ΠS
V,G

EπV ,πR

G ,v [ fm] (by Lemma 1)

= infπR∈ΠMDf
R,G

supπV∈ΠXS
V,G

EπV ,πR

G ,v [ fm] (by Lemma 2)

= infπR∈ΠMDf
R,H

supπV∈ΠS
V,H

EπV,πR

H ,v [ fm] (by Prop. 1.1)

≤ infπR∈ΠMDf
R,H

supπV∈ΠMD
V,H

EπV,πR

H ,v [ fm] (by [9, Thm. 5]) (⋆)

= supπV∈ΠMD
V,H

infπR∈ΠMDf
R,H

EπV,πR

H ,v [ fm] (by [9, Thm. 5]) (⋆)

= supπV∈ΠMD
V,H

infπR∈Πf
R,H

EπV,πR

H ,v [ fm] (by [9, Lemma 6])

= supπV∈ΠXMD
V,G

infπR∈Πf
R,G

EπV,πR

G ,v [ fm] (by Prop. 1.2)

≤ supπV∈ΠV,G
infπR∈Πf

R,G
EπV ,πR

G ,v [ fm] (ΠXMD
V,G ⊆ ΠV,G ) (⋆)

≤ infπR∈Πf
R,G

supπV∈ΠV,G
EπV ,πR

G ,v [ fm] (prop. inf/sup)

Formulas marked with (⋆) are those in the statement of the theorem and, because the first and last formu-

las are the same, all of them are equal.

Theorem 3 guarantees that the stochastic masking game can be solved through its finite vertex snippet

using the algorithm proposed in [9]. The next theorem uses this fact to provide a set of Bellman equa-

tions based on the symbolic game graph whose greatest fixpoint solution is the solution of the original

stochastic masking game.

Theorem 4. Let GA,A′ be a stochastic masking game graph whose vertex snippet is almost-sure failing
under fairness and let m be a milestone for A′. Let S G A,A′ be the corresponding symbolic game graph.

Let νΓ be the greatest fixpoint of the functional Γ defined, for all v ∈V S G , as follows:

Γ( f )(v) =



















min
(

U,maxw∈V(C(v[3],v[4])) ∑v′∈Post(v) w(v′[0],v′[2]) f (v′)
)

if v ∈VS G
P

min
(

U,rS G
m (v)+max{ f (v′) | v′ ∈ Post(v)}

)

if v ∈VS G
V

min(U,min{ f (v′) | v′ ∈ Post(v))} if v ∈VS G
R

\{verr}

0 if v = verr
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where v[i] is the i-th coordinate of v (i ≥ 0), rS G
m (v[0],v[1],v[2],v[3],v[4],v[6]) = rG

m(v) for every v ∈V G ,

and U ∈R such that U ≥ infπR∈ΠMDf
R

supπV∈ΠMD
V

EπV,πR

GA,A′ ,v
[ fm], for every v ∈V G . Then, the value of the game

GA,A′ at its initial state is equal to νΓ(vS G
0 ).

Constant U is an upper bound needed so Knaster-Tarski applies on the complete lattice [0,U]V [9].

Notice that Theorems 3 and 4 only require HA,A′ to be almost-sure failing under fairness,

and if GA,A′ is almost-sure failing under fairness, necessarily so is HA,A′ , which makes the theo-

rems stronger. Nonetheless, one would expect that also if HA,A′ is almost-sure failing under fair-

ness, so is GA,A′ . That is, we would like that infπV∈ΠV,πR∈Πf
R

Prob
πV,πR

G ,vG
0

(3verr) = 1 if and only if

infπV∈ΠV,πR∈Πf
R

Prob
πV ,πR

H ,vH
0

(3verr) = 1. Unfortunately we were not able to prove this equivalence, and

the most we know (thanks to variants of Lemmas 1 and 2) is that infπV∈ΠV ,πR∈Πf
R

Prob
πV ,πR

H ,vH
0

(3verr) = 1

implies both infπV∈ΠV ,πR∈ΠSf
R

Prob
πV,πR

G ,vG
0

(3verr) = 1 and infπV∈ΠS
V
,πR∈Πf

R

Prob
πV ,πR

G ,vG
0

(3verr) = 1, that is, at

least one of the set of strategies needs to be restricted to the semi-Markov ones.
Since HA,A′ is finite, it can be checked whether it is almost-sure failing under fairness by using

directly the algorithm proposed in [9, Theorem 3]. However, we could alternatively check it avoiding
the explosion introduced by the vertex couplings through the symbolic game graph. Thus, we define the
predecessor sets in S G A,A′ for a given set C of symbolic vertices, as follows:

∃PreS G
f (C) = {v ∈V S G | Post(v)∩C 6= /0}

∀PreS G
f (C) = {v ∈V S G

V
| Post(v)⊆C}∪{v ∈VS G

R
| Post(v)∩C 6= /0}

∪{v ∈VS G
P

| Eq(v,C) has no solution }

∃PreS G
f (C) collects all vertices v for which there is a coupling that leads to a vertex v′ in C, and do

so by simply using the edge ES G (through Post) even for the probabilistic vertices. The definition of

∀PreS G
f (C) is more assorted. The first set collects all the Verifier vertices v that inevitably lead to C.

The second set collects all Refuter vertices v that leads to some state in C (since the Refuter is fair, any

successor of v will eventually be taken). The last set collects all probabilistic vertices v for which there is

no coupling “avoiding” C. This is encoded by checking that Eq(v,C) cannot be solved, since a coupling

solving Eq(v,C) defines a probabilistic transition that avoids C with probability 1.

The next theorem provides an algorithm to check whether a vertex snippet is almost-sure failing

under fairness using ∃PreS G
f and ∀PreS G

f .

Theorem 5. The vertex snippet HA,A′ of the stochastic masking game GA,A′ is almost-sure failing under

fairness if and only if vS G
0 ∈V S G \∃PreS G

f

∗
(V S G \∀PreS G

f

∗
({verr})), where vS G

0 is the initial state

of S G A,A′ (the symbolic version of GA,A′) and V S G is the sets of vertices of S G A,A′ .

As Eq(v,C) can be computed in polynomial time, so do ∃PreS G
f (C) and ∀PreS G

f (C). As a conse-

quence, the problem of deciding whether a vertex snippet HA,A′ is almost-sure failing under fairness is

polynomial on the sizes of A and A′.

5 Related Work

Since our metric is a bisimulation-based notion aimed at quantifying how robust a masking fault tolerant

algorithm is, the idea of approximate bisimulation immediately shows up. In this category it is worth

mentioning ε-bisimulations [21, 16], in which related states that imitate each other do not differ more

than an ε ∈ [0,1] on the probabilistic value. Therefore ε-bisimulations are not able to accumulate the

difference produced in each step. So, these relations cannot measure to what extent faults can be tolerated
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over time. The principle of (1-bounded) bisimulation metrics [17, 7] is different as they aim to quantify

the similarity of whole models rather than single steps. Nonetheless, if the models inevitably differ (as

it is the case of almost-sure failing systems) the metric always equals 1 (maximum difference), which

again cannot measure how long faults are tolerated. Instead, bisimulation metrics with discount [17, 7]

do give an idea of robustness since the discount factor inversely weights how distant in a trace the

difference between the models is eventually witnessed. However, these metrics only provide a relative

value (smaller values mean more robust) and cannot focus on particular events as our metric does. In

any case, all these notions have been characterized by games which served as a base for algorithmic

solutions [16, 7, 3, 33]. In [16] a non-stochastic game for ε-bisimulation is provided where each round

is divided in five steps in which both Refuter and Verifier alternate twice. Therein the difference is

quantified independently in each step, so it is easy to avoid the use of couplings. Instead, the stochastic

games for bisimulation metrics [7] are very much similar to ours with the difference that the Verifier

only chooses a vertex coupling instead of any possible coupling as we do here, and it considers only

deterministic memoryless strategies.

In [26] a weak simulation quasimetric is introduced and used to reason about the evolution of gossip

protocols to compare protocols with similar behavior up to a certain tolerance. Though its purpose

is close to ours, the quasimetric suffers the same problem as bisimulation metrics returning 1 when

comparing protocols with almost-sure failing implementations.

Metrics like Mean-Time To Failure (MTTF) [29] are normally used. However, our framework is

more general than such metrics since it is not limited to count time units as other events may be set as

milestones. In addition, the computation of MTTF would normally require the identification of failure

states in an ad hoc manner while we do this at a higher level of abstraction.

6 Concluding remarks

We presented a relation of masking fault-tolerance between probabilistic transition systems and a corre-

sponding stochastic game characterization. As the game could be infinite, we proposed an alternative

finite symbolic representation by means of which the game can be solved in polynomial time. We ex-

tended the game with quantitative objectives based on collecting “milestones” thus providing a way

to quantify how good an implementation is for masking faults. We proved that the resulting game is

determined and can be computed by solving a collection of functional equations. We also provided a

polynomial technique to decide whether a game is almost-sure failing under fairness. In this article we

focused on the theoretical contribution. We leave as further work the description of the implementation

of this idea.

Though it does not affect our result of determinacy nor the algorithmic solution proposed here, it

remains open to show whether it holds that whenever the vertex snippet is almost-sure failing under

fairness so is the general stochastic masking game. Also, notice that our solution is based on a strong

version of bisimulation. A characterization based on probabilistic weak bisimulation would facilitate the

application of our approach to complex systems.
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