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Abstract. We investigate zero-sum turn-based two-player stochastic
games in which the objective of one player is to maximize the amount of
rewards obtained during a play, while the other aims at minimizing it. We
focus on games in which the minimizer plays in a fair way. We believe that
these kinds of games enjoy interesting applications in software verifica-
tion, where the maximizer plays the role of a system intending to maxi-
mize the number of “milestones” achieved, and the minimizer represents
the behavior of some uncooperative but yet fair environment. Normally,
to study total reward properties, games are requested to be stopping (i.e.,
they reach a terminal state with probability 1). We relax the property to
request that the game is stopping only under a fair minimizing player. We
prove that these games are determined, i.e., each state of the game has a
value defined. Furthermore, we show that both players have memoryless
and deterministic optimal strategies, and the game value can be computed
by approximating the greatest-fixed point of a set of functional equations.
We implemented our approach in a prototype tool, and evaluated it on an
illustrating example and an Unmanned Aerial Vehicle case study.

1 Introduction

Game theory [25] admits an elegant and profound mathematical theory. In
the last decades, it has received widespread attention from computer scientists
because it has important applications to software synthesis and verification. The
analogy is appealing, the operation of a system under an uncooperative environ-
ment (faulty hardware, malicious agents, unreliable communication channels,
etc.) can be modeled as a game between two players (the system and the envi-
ronment), in which the system tries to fulfill certain goals, whereas the environ-
ment tries to prevent this from happening. This view is particularly useful for
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controller synthesis, i.e., to automatically generate decision-making policies from
high-level specifications. Thus, synthesizing a controller consists of computing
optimal strategies for a given game.

In this paper we focus on zero-sum, perfect-information, two-player, turn-
based stochastic games with (non-negative) rewards [18]. Intuitively, these games
are played in a graph by two players who move a token in turns. Some vertices
are probabilistic, in the sense that, if a token is in a probabilistic vertex, then
the next vertex is randomly selected. Furthermore, the players select their moves
using strategies. Associated with each vertex there is a reward (which, in this
paper, is taken to be non-negative). The goal of Player 1 is to maximize the
expected amount of collected rewards during the game, whereas Player 2 aims
at minimizing this value. This is what [28] calls total reward objective. These
kinds of games have been shown useful to reason about several classes of systems
such as autonomous vehicles, fault-tolerant systems, communication protocols,
energy production plants, etc. Particularly, in this paper we consider those games
in which one of the players employs fair strategies.

Fairness restrictions, understood as fair resolutions of non-determinism of
actions, play an important role in software verification and controller synthesis.
Especially, fairness assumptions over environments make possible the verifica-
tion of liveness properties on open systems. Several authors have indicated the
need for fairness assumptions over the environment in the controller synthesis
approach, e.g., [2,16]. As a simple example consider an autonomous vehicle that
needs to traverse a field where moving objects may interfere in its path. Though
the precise behavior of the objects may be unknown, it is reasonable to assume
that they will not continuously obstruct the vehicle attempts to avoid them. In
this sense, while stochastic behavior may be a consequence of the vehicle faults,
we can only assume a fair behavior of the surrounding moving objects. In this
work, we consider stochastic games in which one of the players (the one playing
the environment) is assumed to play only with strong fair strategies.

In order to guarantee that the expected value of accumulated rewards is well
defined in (perhaps infinite) plays, some kind of stopping criteria is needed. A
common way to do this is to force the strategies to decide to stop with some pos-
itive probability in every decision. This corresponds to the so-called discounted
stochastic games [18,27], and has the implications that the collected rewards
become less important as the game progresses (the “importance reduction” is
given by the discount factor). Alternatively, one may be interested in knowing the
expected total reward, that is, the expected accumulated reward without any loss
of it as time progresses. For this value to be well defined, the game itself needs to
be stopping. That is, no matter the strategies played by the players, the probabil-
ity of reaching a terminal state needs to be 1 [13,18]. We focus on this last type
of game. However, we study here games that may not be stopping in general (i.e.,
for every strategy), but instead, require that they become stopping only when the
minimizer plays in a fair way. We use a notion of (almost-sure) strong fairness,
mostly following the ideas introduced in [7] for Markov decision processes. We
show that these kinds of games are determined, i.e., each state of the game has a
value defined. Furthermore, we show that memoryless and deterministic optimal
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strategies exist for both players. Moreover, the value of the game can be calcu-
lated via the greatest fixed point of the corresponding functionals. It is important
to remark that most of the properties discussed in this paper hold when the fair-
ness assumptions are made over the minimizer. Similar properties may not hold if
the role of players is changed. However, these conditions encompass a large class
of scenarios, where the system intends to maximize the total collected reward and
the environment has the opposite objective.

In summary, the contributions of this paper are the following: (1) we intro-
duce the notion of stopping under fairness stochastic game, a generalization of
stopping game that takes into account fair environments; (2) we prove that it can
be decided in polynomial time whether a game is stopping under fairness; (3) we
show that these kinds of games are determined and both players possess optimal
stationary strategies, which can be computed using Bellman equations; and (4)
we implemented these ideas in a prototype tool embedded in the PRISM-games
toolset [22], which we used to evaluate the viability of our approach through
illustrative case studies.

The paper is structured as follows. Section 2 introduces an illustrating exam-
ple to motivate the use of having fairness restrictions over the minimizer.
Section 3 fixes terminology and introduces background concepts. In Sect. 4 we
describe a polynomial procedure to check whether a game stops under fairness
assumptions, we also prove that determinacy is preserved in these games as well
as the existence of (memoryless and deterministic) optimal strategies. Exper-
imental results are described in Sect. 5. Finally, Sects. 6 and 7 discuss related
work and draw some conclusions, respectively.

2 Roborta vs. the Fair Light (A Motivating Example)

Consider the following scenario. Roborta the robot is navigating a grid of 4 × 4
cells. Roborta’s moves respond to a traffic light: if the light is yellow, she must
move sideways (at a border cell, Roborta is allowed to wrap around to the other
side); if the light is green she ought to move forward; if the light is red, she
cannot perform any movement; finally, if the light is off, Roborta is free to move
either sideways or forward. The light and Roborta change their states in turns.
In addition, a (non-negative) reward is associated with each cell of the grid. Also,
some cells restrict the sideway movement to only one direction. Moreover, we
consider possible failures on the behavior of the robot and the light. If Roborta
fails, she loses her turn to move. If the light fails, it turns itself off. The failures
occur with a given probability and are not permanent (they only affect the
current play). The goal of Roborta is to collect as many rewards as possible. In
opposition, the light aims at minimizing this value.

The specification of this game is captured in Fig. 1 (using PRISM-like notation
[23]). In this model, WIDTH and LENGTH are constants defining the dimension
of the grid. MOVES is a two-dimensional array modeling the possible sideways
movements in the grid (0 allows the robot to move only to the left, 1, to either
side, and 2, only to the right). The light plays when it is red (light=0) and it
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module Roborta vs the light

col : [0..WIDTH] init 0;
row : [0..LENGTH] init 0;
light : [0..3] init 0; // current light color

// 0: red (light’s turn)
// 1: yellow (Roborta moves sideways)
// 2: green (Roborta moves foreward)
// 3: off (light fails, any move)

// light moves

[l y] (light=0) -> (1-Q) : (light’=1) + Q : (light’=3);

[l g] (light=0) -> (1-Q) : (light’=2) + Q : (light’=3);

// Roborta moves

[r l] ((light=1) | (light=3)) & (MOVES[col,row] <= 1)
-> (1-P) : (light’=0) & (col’=(col-1)%WIDTH) +

P : (light’=0) ;

[r r] ((light=1) | (light=3)) & (MOVES[col,row] >= 1)
-> (1-P) : (light’=0) & (col’=(col+1)%WIDTH) +

P : (light’= 0);

[r f] ((light=2) | (light=3)) & (row < LENGTH)
-> (1-P) : (light’=0) & (row’=row+1) +

P : (light’= 0);

endmodule

Fig. 1. Model for the Game

can choose whether
to turn on the yel-
low light (transition
labelled with l y)
or green (transition
labelled l g). Notice
that with any choice,
the light may fail with
probability Q, in which
case it turns itself
off (light’=3). If the
light is not red, then
it is Roborta’s turn
to play. If the light is
yellow (light=1) or
off (light=3), Roborta
can chose whether to
move left (r l) or right

(r r), provided the grid allows the movements. If the light is green (light=2)
or off (light=3), she can choose to move forward (notice that if light=2 this is
the only possible move). Like the light, each of Roborta’s choices has a failure
probability of P, in which case, she does not move and only passes the turn to
the light (by setting light’=0). For completeness, we mention that the rewards
are stored in a secondary matrix which is not shown in Fig. 1.

Figure 2 shows the assignment of rewards to each cell of the 4×4 grid as well
as the sideway movement restrictions (shown on the bottom-right of each cell
with white arrows). The game starts at the cell (0, 0) and it stops when Roborta
escapes through the end of the grid (i.e., row = LENGTH).

Fig. 2. A robot on a 4 × 4 grid

A possible scenario in this game is as follows.
Roborta starts in cell (0, 0) and, in an attempt
to minimize the rewards accumulated by the
robot, the environment switches the yellow light
on. For the sake of simplicity, we assume no fail-
ures on the light, i.e., Q = 0. Notice that, if the
environment plays always in this way (signaling
a yellow light), then Roborta does not collect
rewards (since all rewards in the first row are
0) but also she will never reach the goal and
the game never stops. This scenario occurs when the light plays in an unfair
way, i.e., an action (the one that turns the green light on) is enabled infinitely
often, but it is not executed infinitely often. Assuming fairness over the environ-
ment, we can ensure that a green light will be eventually switched on, allowing
the robot to move forward.

For the case in which Q = 0, the best strategy for Roborta when the light is
yellow is shown in black arrows on the top-right of each cells with no movement
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restrictions (restricting cells provide only one choice). As a result, when both
players play their optimal strategies, the path taken by Roborta to achieve the
goal can be observed in the yellow-highlighted portion of the grid in Fig. 2. In
Sect. 5, we evaluate this problem experimentally with different configurations of
the game.

3 Preliminaries

We introduce some basic definitions and results on stochastic games that will be
necessary across the paper.

A (discrete) probability distribution μ over a denumerable set S is a function
μ : S → [0, 1] such that μ(S) =

∑
s∈S μ(s) = 1. Let D(S) denote the set of

all probability distributions on S. Δs ∈ D(S) denotes the Dirac distribution for
s ∈ S, i.e., Δs(s) = 1 and Δs(s′) = 0 for all s′ ∈ S such that s′ �= s. The support
set of μ is defined by Supp(μ) = {s| μ(s) > 0}.

Given a set V , V ∗ (resp. V ∞) denotes the set of all finite sequences (resp.
infinite sequences) of elements of V . Concatenation is represented using juxta-
position. We use variables ω, ω′, · · · ∈ V ∞ as ranging over infinite sequences, and
variables ω̂, ω̂′, · · · ∈ V ∗ as ranging over finite sequences. The i-th element of a
finite (resp. infinite) sequence ω̂ (resp. ω) is denoted ω̂i (resp. ωi). Furthermore,
for any finite sequence ω̂, |ω̂| denotes its length. For ω ∈ V ∞, inf(ω) denotes the
set of items appearing infinitely often in ω. Given S ⊆ V ∗, Sk is the set obtained
by concatenating k times the sequences in S.

A stochastic game [11,28] is a tuple G = (V, (V1, V2, VP), δ), where V is a
finite set of vertices (or states) with V1, V2, VP ⊆ V being a partition of V , and
δ : V × V → [0, 1] is a probabilistic transition function, such that for every
v ∈ V1 ∪ V2, δ(v, v′) ∈ {0, 1}, for any v′ ∈ V ; and δ(v, ·) ∈ D(V ) for v ∈ VP.
If VP = ∅, then G is called a two-player game graph. Moreover, if V1 = ∅ or
V2 = ∅, then G is a Markov decision process (or MDP). Finally, in case that
V1 = ∅ and V2 = ∅, G is a Markov chain (or MC). For all states v ∈ V we
define postδ(v) = {v′ ∈ V | δ(v, v′) > 0}, the set of successors of v. Similarly,
preδ(v′) = {v ∈ V | δ(v, v′) > 0} as the set of predecessors of v′, we omit the
index δ when it is clear from context. Also, when useful, we fix an initial state for
a game, in such a case we use the notation Gv to indicate that the game starts
from v. Furthermore, we assume that post(v) �= ∅ for every v ∈ V . A vertex
v ∈ V is said to be terminal if δ(v, v) = 1, and δ(v, v′) = 0 for all v �= v′. Most
results on MDPs rely on the notion of end component [5], we straightforwardly
extend this notion to two-player games: an end component of G is a pair (V ′, δ′)
such that (a) V ′ ⊆ V ; (b) δ′(v) = δ(v) for v ∈ VP; (c) ∅ �= postδ′

(v) ⊆ postδ(v) for
v ∈ V1 ∪V2; (d) postδ′

(v) ⊆ V ′ for all v ∈ V ′; (e) the underlying graph of (V ′, δ′)
is strongly connected. Note that an end component can also be considered as
being a game. The set of end components of G is denoted EC (G).

A path in the game G is an infinite sequence of vertices v0v1 . . . such that
δ(vk, vk+1) > 0 for every k ∈ N. PathsG denotes the set of all paths, and FPathsG
denotes the set of finite prefixes of paths. Similarly, PathsG,v and FPathsG,v

denote the set of paths and the set of finite paths starting at vertex v.
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A strategy for Player i (for i ∈ {1, 2}) in a game G is a function πi : V ∗Vi →
D(V ) that assigns a probabilistic distribution to each finite sequence of states
such that πi(ω̂v)(v′) > 0 only if v′ ∈ post(v). The set of all the strategies for
Player i is named Πi. A strategy πi is said to be pure or deterministic if, for
every ω̂v ∈ V ∗Vi, πi(ω̂v) is a Dirac distribution, and it is called memoryless if
πi(ω̂v) = πi(v), for every ω̂ ∈ V ∗. Let ΠM

i and ΠD
i be respectively the set of

all memoryless strategies and the set of all deterministic strategies for Player i.
ΠMD

i = ΠM
i ∩ ΠD

i is the set of all its deterministic and memoryless strategies.
Given two strategies π1 ∈ Π1, π2 ∈ Π2 and an initial vertex v, the result of

the game is a Markov chain [11], denoted Gπ1,π2
v . An event A is a measurable set

in the Borel σ-algebra generated by the cones of PathsG . The cone or cylinder
spanned by the finite path ω̂ ∈ FPathsG is the set cyl(ω̂) = {ω ∈ PathsG | ∀0 ≤
i < |ω̂| : ωi = ω̂i}. Probπ1,π2

G,v is the associated probability measure obtained when
fixing strategies π1, π2, and an initial vertex v [11]. Intuitively, Probπ1,π2

G,v (A) is
the probability that strategies π1 and π2 generates a path belonging to the set
A when the game G starts in v. When no confusion is possible, we just write
Probπ1,π2

G,v (ω̂) instead of Probπ1,π2
G,v (cyl(ω̂)). Similar notations are used for MDPs

and MCs. A stochastic game (defined as above) is said to be stopping [14] if for
all pair of strategies π1, π2 the probability of reaching a terminal state is 1. We
use LTL notation to represent specific set of paths, e.g., �T = {ω ∈ PathsG |
∃i ≥ 0 : ωi ∈ T} is the set of all the plays in the game that reach vertices in T .

A quantitative objective or payoff function is a measurable function f : V ∞ →
R. Let E

π1,π2
G,v [f ] be the expectation of measurable function f under probability

Probπ1,π2
G,v . The goal of Player 1 is to maximize this value whereas the goal of

Player 2 is to minimize it. Sometimes quantitative objective functions can be
defined via rewards. These are assigned by a reward function r : V → R

+. We
usually consider stochastic games augmented with a reward function. Moreover,
we assume that for every terminal vertex v, r(v) = 0.

The value of the game for Player 1 at vertex v under strategy π1 is
defined as the infimum over all the values resulting from Player 2 strate-
gies in that vertex, i.e., infπ2∈Π2 E

π1,π2
G,v [f ]. The value of the game for

Player 1 is defined as the supremum of the values of all Player 1 strate-
gies, i.e., supπ1∈Π1

infπ2∈Π2 E
π1,π2
G,v [f ]. Similarly, the value of the game for

a Player 2 under strategy π2 and the value of the game for Player 2
are defined as supπ1∈Π1

E
π1,π2
G,v [f ] and infπ2∈Π2 supπ1∈Π1

E
π1,π2
G,v [f ], respectively.

We say that a game is determined if both values are the same, that is,
supπ1∈Π1

infπ2∈Π2 E
π1,π2
G,v [f ] = infπ2∈Π2 supπ1∈Π1

E
π1,π2
G,v [f ]. Martin [24] proved

the determinacy of stochastic games for Borel and bounded objective functions.
In this paper we focus on the total accumulated reward payoff function, i.e.,

rew(ω) =
∑∞

i=0 r(ωi). Since rew is unbounded, the results of Martin [24] do
not apply to this function. In this paper we restrict ourselves to non-negative
rewards, as shown in the next sections, non-negative rewards are enough to deal
with interesting case studies, we briefly discuss in Sect. 7 the possible extension
of the results presented here to games having negative rewards.
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4 Stopping Games and Fair Strategies

We begin this section by introducing the notions of (almost sure) fair strategy
and stopping games under fairness. From now on, we assume that Player 2 repre-
sents the environment, which tries to minimize the amount of rewards obtained
by the system, thus fairness restrictions will be applied to this player.

Definition 1. Given a stochastic game G = (V, (V1, V2, VP), δ). The set of fair
plays for Player 2 (denoted FP2) is defined as follows:

FP2 = {ω ∈ PathsG | ∀v′ ∈ V2 : v′ ∈ inf(ω) ⇒ post(v′) ⊆ inf(ω)}

Alternatively, if we consider each vertex as a proposition, FP2 can be written
using LTL notation as:

∧
v∈V2

∧
v′∈post(v)(��v ⇒ ��v′). This property is ω-

regular, thus it is measurable in the σ-algebra generated by the cones of PathsG
(see e.g., [5, p.804]). This is a state-based notion of fairness, but it can be straight-
forwardly extended to settings where transitions are considered. For the sake of
simplicity we do not do so in this paper.

Next, we introduce the notion of (almost-sure) fair strategies for Player 2.

Definition 2. Given a stochastic game G = (V, (V1, V2, VP), δ), a strategy
π2 ∈ Π2 is said to be almost-sure fair (or simply fair) iff it holds that:
Probπ1,π2

G,v (FP2) = 1, for every π1 ∈ Π1 and v ∈ V .

The set of all the fair strategies for Player 2 is denoted by ΠF
2 . We combine this

notation with the notation introduced in Sect. 3, e.g., ΠMF
2 refers to the set of

all memoryless and fair strategies for Player 2. The previous definition is based
on the notion of fair scheduler as introduced for Markov decision processes [5,7].

Note that for stopping games, every strategy is fair, because the probability
of visiting a vertex infinitely often is 0. Also notice that there are games which
are not stopping, but they become stopping if Player 2 uses only fair strategies.
This is the main idea behind the notion of stopping under fairness as introduced
in the following definition.

Definition 3. A stochastic game G = (V, (V1, V2, VP), δ) is said to be stopping
under fairness iff for all strategies π1 ∈ Π1, π2 ∈ ΠF

2 and vertex v ∈ V , it holds
that Probπ1,π2

G,v (�T ) = 1, where T is the set of terminal vertices of G.

Checking stopping criteria. This section is devoted to the effective characteriza-
tion of games that are stopping under fairness. The following lemma states that,
for every game that is not stopping under fairness, there is a memoryless deter-
ministic strategy for Player 1 and a fair strategy for Player 2 that witnesses it.

Lemma 1. Let G = (V, (V1, V2, VP), δ) be a stochastic game, v ∈ V , and T
the set of terminal states of G. If Probπ1,π2

G,v (�T ) < 1 for some π1 ∈ Π1 and
π2 ∈ ΠF

2 , then, for some memoryless and deterministic strategy π′
1 ∈ ΠMD

1 and
fair strategy π′

2 ∈ ΠF
2 , Probπ′

1,π′
2

G,v (�T ) < 1.
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The proof of this lemma follows by noticing that, if Probπ1,π2
G,v (�T ) < 1, there

must be a finite path that leads with some probability to an end component not
containing a terminal state and which is a trap for the fair strategy π2. This part
of the game enables the construction of a memoryless deterministic strategy for
Player 1 by ensuring that it follows the same finite path (but skipping loops)
and that it traps Player 2 in the same end component.

The next theorem states that checking stopping under fairness in a stochastic
game G can be reduced to check the stopping criteria in a MDP, which is obtained
from G by fixing a strategy in Player 2 that selects among the output transitions
according to a uniform distribution. Thus, this theorem enables a graph solution
to determine stopping under fairness.

Theorem 1. Let G = (V, (V1, V2, VP), δ) be a stochastic game and T its set of
terminal states. Consider the Player 2 (memoryless) strategy πu

2 : V2 → D(V )
defined by πu

2 (v)(v′) = 1
#post(v) , for all v ∈ V2 and v′ ∈ post(v). Then, G is

stopping under fairness iff Probπ1,πu
2

G,v (�T ) = 1 for every v ∈ V and π1 ∈ Π1.

While the “only if” part of the theorem is direct, the “if” part is proved by
contraposition using Lemma 1.

Theorem 1 introduces an algorithm to check if the stochastic game G is
stopping under fairness: transform G into the MDP Gπu

2 by fixing πu
2 in G and

check whether Probπ1

Gπu
2 ,v

(�T ) = 1 for all v ∈ V . As a consequence, we have the
following theorem.

Theorem 2. Checking whether the stochastic game G is stopping under fairness
or not is in O(poly(size(G))).

Alternatively, we can use Theorem 1 to provide a direct algorithm on G and
avoiding the construction of the intermediate MDP. The main idea is to use a
modification of the standard pre operator, as shown in the following definition:

∃Pref (C) = {v ∈ V | δ(v, C) > 0}
∀Pref (C) = {v ∈ V2∪VP | δ(v, C) > 0} ∪ {v ∈ V1 | ∀v′∈V : δ(v, v′) > 0 ⇒ v′∈C}
As usual we consider the transitive closures of these operators denoted ∃Pre∗

f

and ∀Pre∗
f , respectively.

Theorem 3. Let G = (V, (V1, V2, VP), δ), be a stochastic game and let T be the
set of its terminal states. Then, (1) Probπ1,π2

G,v (�T ) = 1 for every π1 ∈ Π1 and
π2 ∈ ΠF

2 iff v ∈ V \ ∃Pre∗
f (V \ ∀Pre∗

f (T )), and (2) G is stopping under fairness
iff ∃Pre∗

f (V \ ∀Pre∗
f (T )) = ∅.

Determinacy of Stopping Games under Fairness. The determinacy of stochastic
games with Borel and bounded payoff functions follows from Martin’s results [24].
The function rew is unbounded, so Martin’s theorems do not apply to it. In [18],
the determinacy of a general class of stopping stochastic games (called transient)
with total rewards is proven. However, note that we restrict Player 2 to only play
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with fair strategies and hence, the last result does not apply either. In [26] the
authors classify Player 2’s strategies into proper (those ensuring termination)
and improper (those prolonging the game indefinitely). For proving determinacy,
the authors assume that the value of the game for Player 2’s improper strategies
is ∞. It is worth noting that, for proving the results below, we do not make any
assumption about unfair strategies. In the following we prove that the restriction
to fair plays does not affect the determinacy of the games.

Lem. 2 Lem. 3

Lem. 4

Lem. 5

Lem. 6 Lem. 7

Prop. 1 Thm. 4

Thm. 5

reduction
to S
strats. problem

is
transient

infimum
is
bounded

exists min.
MDF strat.

towards
MD strats.

Bellman op.
well
behaved

solution in
MD strats.
determinacy and
algorithmic
solution

Fig. 3. A roadmap to proving
Theorems 4 and 5

Figure 3 shows the dependencies of the
lemmas that eventually lead to our main
results, namely, Theorem 4, which states
that the general problem can be limited to
only memoryless and deterministic strate-
gies, and Theorem 5, which establishes
determinacy and the correctness of the algo-
rithmic solution through the Bellman equa-
tions. To prove Theorem 4 we use the inter-
midiate notion of semi-Markov strategies
[18] and a first step to this reduction is
presented in Lemma 2. Lemmas 3 and 4
ensure the transient carachteristics of stop-
ping under fairness problems. They are essential to prove that every possible
total reward play yields a solution (Lemma 5). Already approaching Theorem 4,
Lemma 6 states that there is always a minimizing fair strategy that is memo-
ryless and deterministic, and Lemma 7 helps to reduce the problem from the
domain of semi-Markov strategies to the domain of memoryless deterministic
strategies. Using Theorem 4 and Proposition 1, which states that the Bellman
equations are well behaved in the lattice of solutions, Theorem 5 is finally proved.

Intuitively, a semi-Markov strategy only takes into account the length of a
play, the initial state, and the current state to select the next step in the play.

Definition 4. Let G = (V, (V1, V2, VP), δ) be a stochastic game. A strategy πi ∈
Πi is called semi-Markov if: πi(vω̂v′) = πi(vω̂′v′), for every v ∈ V and ω̂, ω̂′ ∈
V ∗ such that |ω̂| = |ω̂′|.

Notice that, by fixing an initial state v, a semi-Markov strategy πi can be
thought of as a sequence of memoryless strategies π0,v

i π1,v
i π2,v

i . . . where πi(v) =
π0,v

i (v) and πi(vω̂v′) = π
|ω̂|+1,v
i (v′). The set of all semi-Markov (resp. semi-

Markov fair) strategies for player i is denoted ΠS
i (resp. ΠSF

i ).
The importance of semi-Markov strategies lies in the fact that, when Player 2

plays a semi-Markov strategy, any Player 1’s strategy can be mimicked by a
semi-Markov strategy as stated in the following lemma.

Lemma 2. Let G be a stopping under fairness stochastic game, and let π2 ∈
ΠSF

2 be a fair and semi-Markov strategy. Then, for any π1 ∈ Π1, there is a
semi-Markov strategy π∗

1 ∈ ΠS
1 such that Eπ1,π2

G,v [rew] = E
π∗
1 ,π2

G,v [rew].
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Proof (Sketch). The proof follows the arguments of Theorem 4.2.7 in [18]
adapted to our setting.

Consider the event �kv′ = {ω ∈ PathsG | ωk = v′}, for k ≥ 0. That is, the
set of runs in which v′ is reached after exactly k steps. We define π∗

1 as follows.
For v′ with Probπ1,π2

G,v (�kv′) > 0 and |ω̂v′| = k,

π∗
1(ω̂v′)(v′′) = Probπ1,π2

G,v (�k+1v′′ | �kv′).

For v′ with Probπ1,π2
G,v (�kv′) = 0 and |ω̂v′| = k we define π∗

1(ω̂v′) to be the
uniform distribution on post(v′). Notice that π∗

1 is a semi-Markov strategy. We
prove that π∗

1 is the strategy that satisfies the conclusion of the lemma. For this,
we first show that Probπ1,π2

G,v (�kv′) = Probπ∗
1 ,π2

G,v (�kv′) by induction on k, and
use it to conclude the following.

E
π1,π2
G,v [rew] =

∞∑

N=0

∑

ω̂∈V N+1

Probπ1,π2
G,v (ω̂)r(ω̂N ) =

∞∑

N=0

∑

v′∈V

Probπ1,π2
G,v (�Nv′)r(v′)

=
∞∑

N=0

∑

v′∈V

Probπ∗
1 ,π2

G,v (�Nv′)r(v′) = E
π∗
1 ,π2

G,v [rew] ��

In a stopping game, all non-terminal states are transient (a state is transient
if the expected time that both players spend in it is finite). In fact, [18] defines a
stopping game with terminal states in T as a transient game, i.e., a game in which∑∞

N=1

∑
ω̂∈(V \T )N Probπ1,π2

G,v (ω̂) < ∞ for all strategies π1 ∈ Π1 and π2 ∈ Π2.
Obviously, this generality does not hold in our case since unfair strategies make
the game dwell infinitely on a set of non-terminal states. Therefore, we prove a
weaker property in our setting. Roughly speaking, the next lemma states that,
in games that stop under fairness, non-terminal states are transient, provided
that the two players play memoryless strategies, and in particular, that Player 2
plays only fair.

Lemma 3. Let G = (V, (V1, V2, VP), δ) be a stochastic game that is stopping
under fairness with T being the set of terminal states. Let π1 ∈ ΠM

1 be a mem-
oryless strategy for Player 1 and π2 ∈ ΠMF

2 a memoryless fair strategy for
Player 2. Then

∑∞
N=1

∑
ω̂∈(V \T )N Probπ1,π2

G,v (ω̂) < ∞.

This result can be extended to all the strategies of Player 1. The main idea
behind the proof is to fix a stationary fair strategy for Player 2 (e.g., a uniform
distributed strategy). This yields an MDP that stops for every strategy of Player 1,
and furthermore, it can be seen as a one-player transient game (as defined in [18]).
Hence, the result follows from Lemma 3 and Theorem 4.2.12 in [18].

Lemma 4. Let G be a stochastic game that is stopping under fairness and
let T be the set of terminal states. In addition, let π1 ∈ Π1 be a strategy for
Player 1 and π2 ∈ ΠMF

2 be a fair and memoryless strategy for Player 2. Then∑∞
N=0

∑
ω̂∈v(V \T )N Probπ1,π2

G,v (ω̂) < ∞.
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Using the previous lemma, some fairly simple calculations lead to the fact
that the value of the total accumulated reward payoff game is well-defined for
any strategy of the players. As a consequence, the value of the game is bounded
from above for any Player 1’s strategy. This is stated in the next lemma.

Lemma 5. Let G = (V, (V1, V2, VP), δ, r) be a stochastic game that is stopping
under fairness, π1 ∈ Π1 a strategy for Player 1. Then, for all memoryless fair
strategy π2 ∈ ΠMF

2 for Player 2 and all v ∈ V , Eπ1,π2
G,v [rew] < ∞. Moreover, for

every vertex v ∈ V , infπ2∈ΠF
2
E

π1,π2
G,v [rew] < ∞.

The following lemma is crucial and plays an important role in the rest of
the paper. Intuitively, it states that, when Player 1 plays with a memoryless
strategy, Player 2 has an optimal deterministic memoryless fair strategy. This
lemma is the guarantee of the eventual existence of a minimizing memoryless
deterministic fair strategy for Player 2 in general.

Lemma 6. Let G = (V, (V1, V2, VP), δ, r) be a stochastic game that is stop-
ping under fairness and let π1 ∈ ΠM

1 be a memoryless strategy for Player 1.
There exists a deterministic memoryless fair strategy π∗

2 ∈ ΠMDF
2 such that

infπ2∈ΠF
2
E

π1,π2
G,v [rew] = E

π1,π∗
2

G,v [rew], for every v ∈ V .

Proof (Sketch). Though it differs in the details, the proof strategy is inspired
by the proof of Lemma 10.102 in [5]. We first construct a reduced MDP Gπ1

min

which preserves exactly the optimizing part of the MDP Gπ1 . Thus δπ1
min(v, v′) =

δπ1(v, v′) if v ∈ V1 ∪ VP, or v ∈ V2 and xv = r(v) + xv′ , where, for every
v ∈ V , xv = infπ2∈ΠF

2
E

π1,π2
G,v [rew] (which exists due to Lemma 5). Otherwise,

δπ1
min(v, v′) = 0. Gπ1

min can be proved to be stopping under fairness.
Then, the strategy π∗

2 for Gπ1
min is constructed as follows. For every v ∈ V , let

‖v‖ be the length of the shortest path fragment to some terminal vertex in T in
the MDP Gπ1

min. Define π∗
2(v)(v′) = 1 for some v′ such that δπ1

min(v, v′) = 1 and
‖v‖ = ‖v′‖ + 1. By definition, π∗

2 is memoryless. We prove first that π∗
2 yields

the optimal solution of Gπ1 by showing that the vector (xv)v∈V (i.e., the optimal
values of Gπ1) is a solution to the set of equations for expected rewards of the
Markov chain Gπ1,π∗

2 . Being the solution unique, we have that xv = EGπ1,π∗
2 ,v

[rew]
for all v ∈ V and hence the optimality of π∗

2 . To conclude the proof we show by
contradiction that π∗

2 is fair. ��
As already noted, semi-Markov strategies can be thought of as sequences of

memoryless strategies. The next lemma uses this fact to show that, when Player 2
plays a memoryless and fair strategy, semi-Markov strategies do not improve the
value that Player 1 can obtain via memoryless deterministic strategies. The proof
of the following lemma adapts the ideas of Theorem 4.2.9 in [18] to our games.

Lemma 7. For any stochastic game G that is stopping under fairness, and ver-
tex v, it holds that:

sup
π1∈ΠS

1

inf
π2∈ΠMDF

2

E
π1,π2
G,v [rew] = sup

π1∈ΠMD
1

inf
π2∈ΠMDF

2

E
π1,π2
G,v [rew]
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Using the previous lemma, we can conclude that the problem of finding
supπ1∈Π1

infπ2∈ΠF
2
E

π1,π2 [rew], for any vertex v, can be solve by only focusing on
deterministic memoryless strategies as stated and proved in the following theorem.

Theorem 4. For any stochastic game G that is stopping under fairness we have:

sup
π1∈Π1

inf
π2∈ΠF

2

E
π1,π2
G,v [rew] = sup

π1∈ΠMD
1

inf
π2∈ΠMDF

2

E
π1,π2
G,v [rew]

Proof. First, we prove that the left-hand term is less than or equal to the right-
hand one:

sup
π1∈Π1

inf
π2∈ΠF

2

E
π1,π2
G,v [rew] ≤ sup

π1∈Π1

inf
π2∈ΠMDF

2

E
π1,π2
G,v [rew]

≤ sup
π1∈ΠS

1

inf
π2∈ΠMDF

2

E
π1,π2
G,v [rew]

≤ sup
π1∈ΠMD

1

inf
π2∈ΠMDF

2

E
π1,π2
G,v [rew].

The first inequality follows from ΠMDF
2 ⊆ ΠF

2 , the second inequality is due to
Lemma 2 and the fact that memoryless strategies are semi-Markov, and the last
inequality is obtained by applying Lemma 7.

To prove the other inequality, we calculate:

sup
π1∈ΠMD

1

inf
π2∈ΠMDF

2

E
π1,π2
G,v [rew] = sup

π1∈ΠMD
1

inf
π2∈ΠF

2

E
π1,π2
G,v [rew]

≤ sup
π1∈Π1

inf
π2∈ΠF

2

E
π1,π2
G,v [rew].

The first equality is a consequence of Lemma 6 and the second inequality is due
to properties of suprema. ��

The standard technique to prove the determinacy of stopping games is by
showing that the Bellman operator

Γ (f)(v) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

r(v) +
∑

v′∈post(v) δ(v, v′)f(v′) if v ∈ VP \ T

max{r(v) + f(v′) | v′ ∈ post(v)} if v ∈ V1 \ T,

min{r(v) + f(v′) | v′ ∈ post(v)} if v ∈ V2 \ T,

0 if v ∈ T.

has a unique fixpoint. However, in the case of games stopping under fairness, Γ
has several fixpoints as shown by the next example.

Fig. 4. A game with infinite fixpoints

Example 1. Consider the (one-player)
game in Fig. 4, where Player 1’s vertices
are drawn as boxes, Player 2’s vertices
are drawn as diamonds, and probabilis-
tic vertices are depicted as circles. Note
that, in that game, the greatest fixpoint
is (1, 1, 1, 0). Yet, (0.5, 0.5, 1, 0) is also a
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fixpoint as Γ (0.5, 0.5, 1, 0) = (0.5, 0.5, 1, 0). In fact, the Bellman operator for
this game has infinite fixpoints: any f of the form (x, x, 1, 0) with x ∈ [0, 1].

Thus, the standard approach cannot be used here. Instead, we use the greatest
fixpoint for proving determinacy, but this cannot be done directly onΓ . A main dif-
ficulty is that the Knaster-Tarski theorem does not apply for Γ since (RV ,≤) is not
a complete lattice. Using instead the extended reals ((R∪{∞})V ) is not a solution,
as in some cases the greatest fixpoint will assign ∞ to some vertices (e.g., (∞,∞, 0)
would be the greatest fixpoint in the Markov chain of Fig. 5). One possible app-
roach is to approximate the greatest fixpoint from an estimated upper bound via
value iteration. Unfortunately, there may not be an order relation between f and
Γ (f) and it may turn out that for some vertex v, Γ (f)(v) > f(v) before converging
to the fixpoint. This is shown in the next example.

Example 2. Consider the game depicted in Fig. 5. The (unique) fixpoint in this
case is (100, 90, 0). Observe that, we have that Γ (120, 100, 0) = (110, 108, 0),
thus the value at v1 increases after one iteration. Several iterations are needed
then to reach the greatest fixpoint. Thus, in general, starting value iteration
from an estimated upper bound does not guarantee a monotone convergence to
the greatest fixpoint.

Fig. 5. A game where value
iteration may go up

We overcome the aforementioned issues by
using a modified version of Γ . Roughly speaking,
we modify the Bellman operator in such a way
that it operates over a complete lattice.

Notice that, by Lemma 5, the value Eπ1,π2
G,v [rew]

is finite for every stopping game under fairness
G and strategies π1 ∈ ΠMD

1 , π2 ∈ ΠMDF
2 . Furthermore, because the number

of deterministic memoryless strategies is finite, we also have that the number
max{infπ2∈ΠMDF

2
supπ1∈ΠMD

1
E

π1,π2
G,v [rew] | v ∈ V } is well defined. From now on,

fix a number U ≥ max{infπ2∈ΠMDF
2

supπ1∈ΠMD
1

E
π1,π2
G,v [rew] | v ∈ V }. We define a

modified Bellman operator Γ ∗ : [0,U]V → [0,U]V as follows.

Γ ∗(f)(v) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

min
(
r(v) +

∑
v′∈post(v) δ(v, v′)f(v′), U

)
if v ∈ VP \ T

min
(
max{r(v) + f(v′) | v′ ∈ post(v)}, U

)
if v ∈ V1 \ T,

min
(
min{r(v) + f(v′) | v′ ∈ post(v)}, U

)
if v ∈ V2 \ T,

0 if v ∈ T.

Note that Γ ∗ is monotone, which can be proven by observing that maxima,
minima and convex combinations are all monotone operators. Furthermore, Γ ∗

is also Scott continuous (it preserves suprema of directed sets), this can be proven
similarly as in [10]. The following proposition formalizes these properties.

Proposition 1. Γ ∗ is monotone and Scott-continuous.

Note that ([0,U]V ,≤) is a complete lattice. Thus by Proposition 1 and the
Knaster-Tarski theorem [15], the (non-empty) set of fixed points of Γ ∗ forms a
complete lattice, and the greatest fixpoint of the operator can be approximated
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by successive applications of Γ ∗ to the top element (i.e., U) [15]. In the following
we denote by νΓ ∗ the greatest fixed point of Γ ∗.

The following theorem states that games restricted to fair strategies on
Player 2 are determinate. Furthermore, the value of the game is given by the
greatest fixpoint of Γ ∗.

Theorem 5. Let G be a stochastic game that is stopping under fairness. It holds
that:

inf
π2∈ΠF

2

sup
π1∈Π1

E
π1,π2
G,v [rew] = sup

π1∈Π1

inf
π2∈ΠF

2

E
π1,π2
G,v [rew] = νΓ ∗(v)

Proof. First, note that infπ2∈ΠMDF
2

supπ1∈ΠMD
1

E
π1,π2
G,v [rew] is a fixed point of Γ ∗.

Thus we have:

sup
π1∈Π1

inf
π2∈ΠF

2

E
π1,π2
G,v [rew] ≤ inf

π2∈ΠF
2

sup
π1∈Π1

E
π1,π2
G,v [rew]

≤ inf
π2∈ΠMDF

2

sup
π1∈ΠMD

1

E
π1,π2
G,v [rew] ≤ νΓ ∗(v)

for any v. The first inequality is a standard property of suprema and infima [21],
the second inequality holds because ΠMDF

2 ⊆ ΠF
2 and standard properties of

MDPs: by fixing a deterministic memoryless fair strategy for Player 2 we obtain
a transient MDP, the optimal strategy for Player 1 in this MDP is obtained
via a deterministic memoryless strategy [20]. The last inequality holds because
infπ2∈ΠMDF

2
supπ1∈ΠMD

1
E

π1,π2
G,v [rew] is a fixpoint of Γ ∗.

Rest to prove that supπ1∈Π1
infπ2∈ΠF

2
E

π1,π2
G,v [rew] ≥ νΓ ∗(v). Note that, if

there is π1 ∈ Π1 such that infπ2∈ΠF
2
E

π1,π2
G,v [rew] ≥ νΓ ∗(v) the property above

follows by properties of supremum. Consider the strategy π∗
1 defined as follows:

π∗
1(v) ∈ argmax{νΓ ∗(v′) + r(v) | v′ ∈ post(v)}. Note that π∗

1 is a memoryless
and deterministic strategy. For any memoryless, deterministic and fair strategy
π2 ∈ ΠMDF

2 we have νΓ ∗(v) ≤ E
π∗
1 ,π2

G,v [rew] (by definition of Γ ∗). Thus, νΓ ∗(v) ≤
infπ2∈ΠMDF

2
E

π∗
1 ,π2

G,v [rew] and then: νΓ ∗(v) ≤ supπ1∈ΠMD
1

infπ2∈ΠMDF
1

E
π1,π2
G,v [rew].

Finally, by Theorem 4 we get: νΓ ∗(v) ≤ supπ1∈Π1
infπ2∈ΠF

2
E

π1,π2
G,v [rew]. ��

Considerations for an algorithmic solution. Value iteration [9] has been used
to compute maximum/minimum expected accumulated reward in MDPs, e.g.,
in the PRISM model checker. Usually, the value is computed by approximating
the least fixpoint from below using the Bellman equations [9]. In [6], the authors
propose to approach these values from both a lower and an upper bound (known
as interval iteration [19]). To do so, [6] shows a technique for computing upper
bounds for the expected total rewards for MDPs. This approach is based on the
fact that, given a stopping MDP G, Eπ1

G,v[rew] =
∑

v′∈R(v) ζπ1
v (v′) ∗ r(v′), where

R(v) denotes the set of reachable states from v, and ζπ1
v (v′) denotes the expected

number of times to visit v′ in the Markov chain induced by π1 when starting at v.
[6] describes how to compute a value ζ∗

v (v′), such that ζ∗
v (v′) ≥ supπ1∈Π1

ζπ1
v (v′).

Thus,
∑

v′∈R(v) ζ∗
v (v′)∗r(v′) gives an upper bound for supπ1

E
π1
G,v[rew]. Our algo-

rithm uses these ideas to provide an upper bound for two-player games. Roughly
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speaking, the above defined functional Γ ∗ presents a form of Bellman equa-
tions that enables a value iteration algorithm to solve these games. We need
to start with some value vector larger than such a fixpoint. Given a stopping
under fairness game, we fix a (memoryless) fair strategy for the environment,
thus obtaining an MDP. We then use the techniques described above to find an

Algorithm 1 Algorithm for computing
GFP
Require: G is a stopping under fairness game

δ′ ← λ(v, v′).(v ∈ V1∪VP) ? δ(v, v′) : 1
|postG(v)|

G′ ← (V, (V1, ∅, V2∪VP)), δ
′)

x′ ← λv :
∑

v′∈R(v) : ζ∗
v (v′) ∗ r(v′)

repeat
x ← x′

x′ ← Γ ∗(x)
until ||x − x′|| ≤ ε
return x′

upper bound for this MDP, which
in turn is an upper bound in
the original game. The obvious
fair strategy to use is the one
based on the uniform distribu-
tion (as in Theorem 1). This idea
is described in Algorithm 1. It
is worth noting that, instead of
using a unique upper bound for
every vertex (as in the defini-
tion of Γ ∗), the algorithm may
use a different upper bound for
each component of the value vec-
tor, this improves the number of iterations performed by the algorithm. We
have implemented Algorithm 1 as a prototype embedded in the PRISM-games
toolset [22], as described in the next section.

5 Experimental Validation

In order to evaluate the viability of our approach we have extended the model
checker PRISM [22,23] with an operator to compute the expected rewards for
stochastic games that stop under fairness. The prototype also allows one to
check whether a game is stopping under fairness. The tool takes as input a
model describing the game in PRISM notation and returns as output the optimal
expected total reward for a given initial state as well as the synthesized optimal
controller strategy (under fairness assumptions). The experimental evaluation
shows that our approach can cope with non-trivial case studies. For computing
these values we set a relative error of at most ε = 10−6.

Roborta vs. the Fair Light. Table 1 shows the results of the example introduced
in Sect. 2 for multiple configurations. We considered three variants of the case
study: version A (the light does not fail), version B (the light can only fail when
trying to signal a green light), and version C (the light can fail when trying to
signal any kind of light). We assumed that, when Roborta fails, she cannot move
(this is beneficial to Roborta since she can re-collect the reward); when the light
fails, the robot can freely move into any allowed direction. The grid configuration
(movement restrictions and rewards) are randomly generated. For each setting,
Table 1 describes the results for three different scenarios generated starting at
different seeds. For the grid configuration shown in Sect. 2 with parameters
P = 0.1 and Q = 0, the tool derived the optimal strategy depicted in Fig. 2 and
reports an expected total reward of 5.55.
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Autonomous UAV vs. Human Operator. We adapted the case study analyzed in
[17]. A remotely controlled Unmanned Aerial Vehicle (UAV) is used to perform
intelligence, surveillance, and reconnaissance (ISR) missions over a road net-
work. The UAV performs piloting functions autonomously (selecting a path to
fly between waypoints). The human operator (environment) controls the onboard

Fig. 6. UAV Network for ISR mis-
sions adapted from [17]

sensor to capture imagery at a waypoint as well
as the piloting functions on certain waypoints
(called checkpoints). Note that an operator can
continuously try to get a better image by mak-
ing the UAV loiter around a certain waypoint,
this may lead to an unfair behavior. Each
successful capture from an unvisited waypoint
grants a reward. Figure 6 shows an example of
road network consisting of six surveillance way-
points labeled w0, w2, ..., w5, the edges repre-
sent connecting paths, a red-dashed line means
that the path is dangerous enough to make the
UAV stop working with probability 1, while on any other path, this probability is
S. Checkpoints are depicted as pink nodes, therein the operator can still delegate
the piloting task to the UAV with probability D. Each node is annotated with
three possible rewards. For instance, for S = 0.3 and D = 0.5 and the leftmost
reward values in each triple, the synthesized strategy for the UAV tries to follow
the optimal circuit w0, w1, w2, w3, w4, w5. While for the middle and rightmost
reward values, the optimal circuits to follow are w0, w5, w0, w1, w2, w3, w4 and
w0, w5, w4, w1, w2, w3, respectively. Table 2 shows the results obtained for this
game for several randomly generated road networks.

Tables 1 and 2 do not report the time taken to compute the results, but in
all cases the output was computed in less than 400 s.All the experiments were
run on a MacBook Air with Intel Core i5 at 1.3 GHz and 4 Gb of RAM.

6 Related Work

Stochastic games with payoff functions have been extensively investigated in
the literature. In [18], several results are presented about transient games, a
generalized version of stopping stochastic games with total reward payoff. In
transient games, both players possess optimal (memoryless and deterministic)
strategies. Most importantly, the games are determined and their value can be
computed as the least fixed point of a set of equations. Most of these results are
based on the fact that the Γ functional (see Sect. 4) for transient games has a
unique fixed point. Notice that in this paper we have dealt with games that are
stopping only under fairness assumptions. Thus, the corresponding functional
may have several fixed points. Hence, the main results presented in [18] do not
apply to our setting.

[12] and [28] present logical frameworks for the verification and synthesis of
systems. While [12] provides a solution for a probabilistic branching temporal
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Table 1. Results for Roborta vs. Light Game. First column describes the grid size.
Second column indicates the fault probability for the robot (P ) and light (Q). The
other columns describe the size of the model, the expected total reward for the opti-
mal strategy, and the number of iterations performed, respectively, for three different
randomly generated grid configurations.

Version
Fault prob. Size (States/Transitions) Opt. Expect. Total Rew. Iterations

P Q s. 1 s. 2 s. 3 s. 1 s. 2 s. 3 s. 1 s. 2 s. 3

A

60×8

0.1 − st. 1448

tr. 3220

st. 1418

tr. 3112

st. 1421

tr. 3132

26.66 31.11 27.77 711 681 252

0.5 − 48 56 50 2253 2225 475

A
120×16

0.1 − st. 5686

tr. 12586

st. 5716

tr. 12658

st. 5716

tr. 12722

62.22 55.55 48.88 687 700 685

0.5 − 112 100 88 2231 2265 2229

B

60×8

0.1
0.1

st. 1928

tr. 5952

st. 1888

tr. 5746

st. 1892

tr. 5785

42.6 44.59 42.23 479 335 388

0.5 130.14 127.7 136.22 772 689 824

0.5
0.1 76.68 80.26 76.02 873 764 909

0.5 234.26 229.87 245.21 1263 1139 1341

B

120×16

0.1
0.1

st. 7576

tr. 23266

st. 7616

tr. 23400

st. 7616

tr. 23528

91.19 87.27 80.07 538 544 616

0.5 281.83 281.48 265.33 1076 1118 1252

0.5
0.1 164.15 157.1 144.13 1147 1223 1373

0.5 507.30 506.67 477.6 1850 1865 2088

C

60×8

0.1
0.1

st. 1928

tr. 6432

st. 1888

tr. 6216

st. 1892

tr. 6256

46.32 47.07 44.87 379 336 390

0.5 143.35 146.41 153.98 742 658 774

0.5
0.1 83.37 84.73 80.77 879 769 914

0.5 258.04 263.53 277.17 1202 1076 1246

C

120×16

0.1
0.1

st. 7576

tr. 25156

st. 7616

tr. 25300

st. 7616

tr. 25428

98.25 93.74 88.33 533 544 606

0.5 321.18 317.61 311.62 1002 1068 1188

0.5
0.1 176.85 168.73 158.99 1147 1227 1365

0.5 578.13 571.71 560.92 1700 1760 1956

Table 2. Results for the UAV vs. Operator Game. First column describes the number of
waypoints used. Second column indicates probability of delegation (D), and the proba-
bility that the UAV stops working (S). The other columns show the size of the model, the
expected total reward for the optimal strategy, and the number of iterations performed,
respectively, for three different randomly generated roadmap configurations.

Version
Prob. Size(States/Transitions) Opt. Expect. Total Rew. Iterations

D S s. 1 s. 2 s. 3 s. 1 s. 2 s. 3 s. 1 s. 2 s. 3

UAV

6w.

0.1
0.05

st. 213

tr. 504

st. 508

tr. 1368

st. 136

tr. 312

16.72 12.47 13.14 142 248 22

0.1 15.73 11.15 12.63 73 188 22

0.5
0.05 20.49 12.77 17.05 103 133 22

0.1 18.87 11.67 15.95 55 70 22

UAV

8w.

0.1
0.05

st. 2177

tr. 5959

st. 3591

tr. 9991

st. 1426

tr. 3604

17.88 40.59 24.6 407 332 779

0.1 17.11 34.3 21.48 280 233 437

0.5
0.05 26 42.21 30.87 128 214 257

0.1 23.44 36.08 24.72 116 113 194

UAV

10w.

0.1
0.05

st. 6631

tr. 17306

st. 5072

tr. 13052

st. 8272

tr. 24376

39.76 28.7 19.76 256 377 356

0.1 35.43 23.36 16.2 136 260 154

0.5
0.05 42.13 30.77 24.56 250 247 292

0.1 37.11 26.08 19.27 130 134 151
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logic extended with expected total, discounted, and average reward objective
functions, [28] does the same in a similar extension of a probabilistic linear
temporal logic. Both frameworks were implemented in the tool PRISM [22,23].
Although a vast class of properties can be expressed in these frameworks, none of
them are presented under fair environments. In fact, these works are on stochastic
multiplayer games in which each player is treated equally.

However, of all the operators in [12,22,28], 〈〈p1〉〉 Rmax=?[F∞T ] is the closest
to our proposal and it deserves a deeper comparison. 〈〈p1〉〉 Rmax=?[F∞T ] returns
the expected accumulated reward until reaching T in which infinite plays receive
an infinite value [12,22]. PRISM approximates this value by computing a great-
est fixpoint. It uses a two-phase algorithm to do so: (i) it first replaces zero
rewards with a small positive value and applies value iteration on this modifi-
cation to get an estimated upper bound, and (ii) this upper bound is used to
start another value iteration process aimed to compute the greatest fixpoint.

Fig. 7. A simple two-player game: only
probability less than 1 are shown

This heuristic could return erroneous
approximations of the greatest fixpoint.
We illustrate this with a simple exam-
ple. Consider the game depicted in Fig. 7,
For any p, the value of the greatest fix-
point in vertex v0 is 2. However, by tak-
ing p = 0.99 and tolerance ε = 10−6,
PRISM returns a value close to 39608.
This occurs because PRISM changes 0 to
the value 0.02, which results in an extremely large upper bound. Obviously, it
also returns an incorrect strategy for vertex v0. We have checked this example
with our tool, and it returned the correct value for vertex v0 in 2 iterations,
regardless of the value of p. We have chosen a large value for p to make the
difference noticeable. Small values also may produce different values in, e.g., v1
only that it could be blamed on approximation errors. We have also run this
operator on our case studies and observed small differences in many of them
(particularly on Roborta) that get larger when the fault probabilities get larger
as well.

Stochastic shortest path games [26] are two-player stochastic games with (neg-
ative or positive) rewards in which the minimizer’s strategies are classified into
proper and improper, proper strategies are those ensuring termination. As proven
in [26], these games are determined, and both players posses memoryless opti-
mal strategies. To prove these results, the authors assume that the expected
game value for improper strategies is ∞, this ensures that the corresponding
functional is a contraction and thus it has a unique fixpoint. In contrast, we
restrict ourselves to non-negative rewards but we do not make any assumptions
over unfair strategies, as mentioned above the corresponding functional for our
games may have several fixpoints. Furthermore, we proved that the value of the
game is given by the greatest fixpoint of Γ . In recent years, several authors have
investigated stochastic shortest path problems for MDPs (i.e., one-player games),
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where the assumption over improper strategies is relaxed (e.g., [3]); to the best
of our knowledge, these results have not be extended to two-player games.

In [4] the authors tackle the problem of synthesizing a controller that maxi-
mizes the probability of satisfying an LTL property. Fairness strategies are used to
reduce this problem to the synthesis of a controller maximizing a PCTL property
over a product game. However, this article does not address expected rewards
and game determinacy under fairness assumptions.

Interestingly, in [2] the authors consider the problem of winning a (non-
stochastic) two-player games with fairness assumptions over the environment.
The objective of the system is to guarantee an ω-regular property. The authors
show that winning in these games is equivalent to almost-sure winning in a
Markov decision process. It must be noted that this work only considers non-
stochastic games. Furthermore, payoff functions are not considered therein.

Finally, we remark that in qualitative ω-regular stochastic games [1] strong
fairness can easily be consider by properly transforming the original ω-regular
objective. Notably, in this setting, [8] shows that qualitative Rabin conditions
on stochastic games can be solved by translating this problem into a two-player
(non-stochastic) game with the same Rabin condition under extreme fairness
following a somewhat inverse direction to that we used to prove Theorem 2.

7 Concluding Remarks

In this paper, we have investigated the properties of stochastic games with total
reward payoff under the assumption that the minimizer (i.e., the environment)
plays only with fair strategies. We have shown that, in this scenario, determinacy
is preserved and both players have optimal memoryless and deterministic strate-
gies; furthermore, the value of the game can be calculated by approximating a
greatest fixed point of a Bellman operator. We have only considered non-negative
rewards in this paper. A possible way of extending the results presented here
to games with negative rewards is to adapt the techniques presented in [3] for
MDPs with negative costs, we leave this as a further work.

In order to show the applicability of our technique, we have presented two
examples of applications and an experimental validation over diverse instances of
these case studies using our prototype tool. We believe that fairness assumptions
allow one to consider more realistic behavior of the environment.

We have not investigated other common payoff functions such as discounted
payoff or limiting-average payoff. A benefit of these classes of functions is that
the value of games are well-defined even when the games are not stopping. At
first sight, the notion of fairness is little relevant for games with discounted
payoff, since these kinds of payoff functions take most of their value from the
initial parts of runs. For limiting-average the situation is different, and fairness
assumptions may be relevant as they could change the value of games, we leave
this as further work.
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