
16

Doping Tests for Cyber-physical Systems

SEBASTIAN BIEWER, Saarland University, Saarland Informatics Campus, Germany

PEDRO R. D’ARGENIO, Universidad Nacional de Córdoba, FAMAF, Argentina, CONICET, Argentina,

and Saarland University, Saarland Informatics Campus, Germany

HOLGER HERMANNS, Saarland University, Saarland Informatics Campus, Germany and Institute of

Intelligent Software, China

The software running in embedded or cyber-physical systems is typically of proprietary nature, so users

do not know precisely what the systems they own are (in)capable of doing. Most malfunctionings of such

systems are not intended by the manufacturer, but some are, which means these cannot be classified as bugs

or security loopholes. The most prominent examples have become public in the diesel emissions scandal,

where millions of cars were found to be equipped with software violating the law, altogether polluting the

environment and putting human health at risk. The behaviour of the software embedded in these cars was

intended by the manufacturer, but it was not in the interest of society, a phenomenon that has been called

software doping. Due to the unavailability of a specification, the analysis of doped software is significantly

different from that for buggy or insecure software and hence classical verification and testing techniques

have to be adapted.

The work presented in this article builds on existing definitions of software doping and lays the theoretical

foundations for conducting software doping tests, so as to enable uncovering unethical manufacturers. The

complex nature of software doping makes it very hard to effectuate doping tests in practice. We explain the

main challenges and provide efficient solutions to realise doping tests despite this complexity.

CCS Concepts: • General and reference→ Empirical studies; Measurement; Validation; • Software and its

engineering→ Embedded software; Functionality; Software reliability; Software testing and debug-

ging; • Applied computing→ Investigation techniques; • Social and professional topics→ Govern-

mental regulations; Malware / spyware crime;

Additional Key Words and Phrases: Cyber-physical systems, model-based testing, software doping, automo-

tive exhaust emissions

This work is partly supported by the ERC Grant 695614 (POWVER); by the Deutsche Forschungsgemeinschaft (DFG, Ger-

man Research Foundation) Grant No. 389792660 as part of TRR 248, see https://perspicuous-computing.science; by the Saar-

brücken Graduate School of Computer Science; by the Sino-German CDZ project 1023 (CAP); by the Key-Area Research

and Development Program Grant 2018B010107004 of Guangdong Province; by ANPCyT PICT-2017-3894 (RAFTSys); and

by SeCyT-UNC 33620180100354CB (ARES)..

Authors’ addresses: S. Biewer, Saarland University, Saarland Informatics Campus E1 3, 66123 Saarbrücken, Germany; email:

biewer@depend.uni-saarland.de; P. R. D’Argenio, Universidad Nacional de Córdoba, FaMAF, Medina Allende s/n, Ciudad

Universitaria, X5000HUA Córdoba, Argentina and Saarland University, Saarland Informatics Campus E1 3, 66123 Saar-

brücken, Germany; email: pedro.dargenio@unc.edu.ar; H. Hermanns, Saarland University, Saarland Informatics Campus

E1 3, 66123 Saarbrücken, Germany and Institute of Intelligent Software, Huan Shi Da Dao Xi, Nansha, 511400 Guangzhou,

China; email: hermanns@cs.uni-saarland.de.
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be

honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists,

requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2021 Copyright held by the owner/author(s). Publication rights licensed to ACM.

1049-3301/2021/08-ART16 $15.00

https://doi.org/10.1145/3449354

ACM Transactions on Modeling and Computer Simulation, Vol. 31, No. 3, Article 16. Publication date: August 2021.

https://www.acm.org/publications/policies/artifact-review-and-badging-current#reusable
https://powver.org
https://perspicuous-computing.science
mailto:permissions@acm.org
https://doi.org/10.1145/3449354

16:2 S. Biewer et al.

ACM Reference format:

Sebastian Biewer, Pedro R. D’Argenio, and Holger Hermanns. 2021. Doping Tests for Cyber-physical Systems.

ACM Trans. Model. Comput. Simul. 31, 3, Article 16 (August 2021), 27 pages.

https://doi.org/10.1145/3449354

1 INTRODUCTION

Embedded and cyber-physical systems are becoming more widespread as part of our daily life.
Printers, mobile phones, smart watches, smart home equipment, virtual assistants, drones, and
battery-equipped gadgets are just a few examples. Modern cars are composed of a multitude of such
systems. These systems can have a significant impact on our lives, especially if they do not work
as expected. As a result, numerous approaches exist to assure quality of a system. The classical
and most common type of malfunctioning is what is widely called “bug.” Usually, a bug is a small
mistake in the software or hardware that causes a behaviour that is not intended or expected.
Other types of malfunctioning are caused by incorrect or wrongly interpreted sensor data, physical
deficiencies of a component, or might for instance be radiation induced.

Another interesting kind of malfunction (also from an ethical perspective [4]) arises if the expec-
tation of how the system should behave is different for two (or more) parties. Examples for such
scenarios are widespread in the context of personal data privacy, where product manufacturers and
data protection agencies have notoriously different opinions about how a software is supposed to
handle personal data. Another example with a considerable history is related to the usage of third-
party cartridges in printers. Manufacturers and users do not agree on whether their printer should
work with third-party cartridges (the user’s opinion) or only with those sold by the manufacturer
(the manufacturer’s opinion). Last, an example context that received very high media attention is
that of emission cleaning systems in diesel cars. These systems are meant to reduce the amount of
dangerous particles and gases like CO2 and NO2 released through the exhaust pipe, and there are
regulations in place defining how much of these substances are allowed to be emitted during car
operation. Part of these regulations are emissions tests, precisely defined test cycles that a car has
to undergo on a chassis dynamometer [34]. For every car model the manufacturers need to obey
to these regulations to get admission to the market. The central weakness of these regulations is
that the relevant behaviour of the car is only a very small fraction of the possible behaviour on the
road. Indeed, several manufacturers equip their cars with defeat devices that recognise if the car is
undergoing an official emissions test. During the test, the car obeys the regulation, but outside test
conditions, the emissions emitted are often significantly higher than allowed. Generally speaking,
the phenomena described above are considered as incorrect software behaviour by one party, but
as intended software behaviour by the other party (usually the manufacturer). In the literature,
such phenomena are called software doping [3, 12].

The difference between software doping and ordinary bugs is threefold: (1) Only for the former
there is a basic mismatch in intentions about what the software should do. (2) While a bug is
most often rooted in a small coding error, software doping can occupy a considerable portion of
the implementation. (3) Bugs can potentially be detected during production by the manufacturer,
whereas software doping by its nature can only be discovered after production, by the other party
facing the final product.

This problem is worsened by the fact that embedded software is typically proprietary, so (unless
one finds a way to breach the intellectual property [11]) it is only possible to detect software doping
by observation of the behaviour of the product, i.e., by black-box testing.

ACM Transactions on Modeling and Computer Simulation, Vol. 31, No. 3, Article 16. Publication date: August 2021.

https://doi.org/10.1145/3449354

Doping Tests for Cyber-physical Systems 16:3

This article develops the foundations for black-box testing approaches geared toward discover-
ing doped software in concrete cases. We will start off from an established formal notion of robust
cleanness (which is the negation of software doping) [12]. Essentially, the idea of robust cleanness
is based on a succinct specification (called a “contract”) that all involved parties are assumed to
have agreed on upfront and that captures the intended behaviour of a system with respect to all
inputs to the system. Inputs are considered to be user inputs or environmental inputs given by
sensors. The contract is defined by input and output distances on standard system trajectories
supplemented by input and output thresholds. Intuitively, the input distance and threshold induce
a tube around the standard inputs, and similar for outputs. For any input in the tube around some
standard input the system must be able to react with an output that is in the tube around the
output possible according to the standard. In many cases, the radii of the tubes are identical to the
respective thresholds. This is similar to the tube illustration for the robustness degree of temporal
logics formulas [18].

Example 1.1. For a diesel car the standard trajectory is the behaviour exhibited during the official
emissions test cycle. The input distance measures the deviation in car speed from the standard. The
input threshold is a small number, larger than the acceptable error tolerance of the cycle, limiting
the inputs considered of interest. The output distance then is the difference between (the total
amount of) NO2 released by the car facing inputs of interest and the NO2 emitted if on the standard
test cycle. For cars with an active defeat device, we expect to see a violation of the contract even
for relatively large output thresholds.

A cyber-physical system (CPS) is influenced by physical or chemical dynamics. Some of
these influences can be observed by the sensors the CPS is equipped with, but some portion
might remain unknown, making proper analysis difficult. Nondeterminsm is a powerful way
of representing such uncertainty faithfully, and indeed the notion of robust cleanness supports
nondeterministic reactive systems [12]. Furthermore, the analysis needs to consider (at least)
two trajectories simultaneously, namely the standard trajectory and another that stays within
the input tube. In the presence of nondeterminism it might even become necessary to consider
infinitely many trajectories at the same time. Properties over multiple traces are called hyperprop-
erties [10]. In this respect, expressing robust cleanness as a hyperproperty needs both ∀ and ∃
trajectory quantifiers. Formulas containing only one type of quantifier can be analysed efficiently,
e.g., using model-checking techniques, but checking properties with alternating quantifiers is
known to be computationally hard [9, 20]. Moreover, testing of such problems is in general not
possible. Assume, for example, a property requiring for a (nondeterministic) system that for every
input i , there exists the output o = i , i.e., one of the system’s possible behaviours computes the
identity function. For black-box systems with infinite input and output domains the property can
neither be verified nor falsified through testing. To verify the property, it is necessary to iterate
over the infinite input set. For falsification one must show that for some i the system cannot
produce i as output. However, not observing an output in finitely many trials does not rule out
that this output can be generated. As a result, there is no prior work (we are aware of) that targets
the automatic generation of test cases for hyperproperties, let alone robust cleanness.

This work is an extension of a recent paper [6]. These extensions shed light on the complete
process from developing the theory, several transformations of a state-of-the-art testing algorithm
toward an implementation of a testing framework, which we used to do doping tests in practice.
The contribution of this article is threefold. (1) We observe that standard behaviour, in particular
when derived by common standardisation procedures, can be represented by finite models, and we

ACM Transactions on Modeling and Computer Simulation, Vol. 31, No. 3, Article 16. Publication date: August 2021.

16:4 S. Biewer et al.

identify under which conditions the resulting contracts are (un)satisfiable. (2) For a given satisfiable
contract, we construct the largest nondeterministic model that is robustly clean w.r.t. this contract.
We integrate this model into a model-based testing theory, which can provide a nondeterministic
algorithm to derive sound test suites. (3) We develop a testing algorithm for bounded-length tests
and discretised input/output values. We present a concrete implementation of this algorithm and
demonstrate its effectiveness using examples for the diesel emissions scandal. Two of these test
cases were executed with a real car on a chassis dynamometer.

2 SOFTWARE DOPING ON REACTIVE PROGRAMS

Embedded software is reactive, it reacts to inputs received from sensors by producing outputs
that are meant to control the device functionality. We consider a reactive program as a function
P : Inω → 2(Outω) on infinite sequences of inputs so that the program reacts to the kth input in
the input sequence by producing nondeterministically the kth output in each respective output
sequence. Thus, the program can be seen, for instance, as a (nondeterministic) Mealy or Moore
machine. Moreover, we consider an equivalence relation ≈ ⊆ Inω × Inω that equates sequences of
inputs. To illustrate this, think of the program embedded in a printer. Here ≈ would for instance
equate input sequences that agree with respect to submitting the same documents regardless of
the cartridge brand, the level of the toner (as long as there is sufficient), and so on. We furthermore
consider the set StdIn ⊆ Inω of inputs of interest or standard inputs. In the previous example, StdIn

contains all the input sequences with compatible cartridges and printable documents. The defini-
tions given below are simple adaptations of those given in Reference [12] (but where parameters
are instead treated as parts of the inputs).

Definition 2.1. A reactive program P is clean if for all inputs i, i′ ∈ StdIn such that i ≈ i′, P(i) =
P(i′). Otherwise it is doped.

This definition states that a program is clean if its execution exhibits the same visible sequence
of output when supplied with two equivalent inputs, provided such inputs comply with the given
standard StdIn. Notice that the behaviour outside StdIn is deemed immediately clean, since it is of
no interest.

In the context of the printer example, a program that would fail to print a document when
provided with an ink cartridge from a third-party manufacturer but would otherwise succeed to
print would be considered doped, since this difference in output behaviour is captured by the above
definition. For this, the inputs (being pairs of document and printer cartridge) must be considered
equivalent (not identical), which comes down to ink cartridges being compatible.

However, the above definition is not very helpful for cases that need to preserve certain intended
behaviour outside of the standard inputs StdIn. This is clearly the case in the diesel emissions
scandal where the standard inputs are given precisely by the emissions test, but the behaviour
observed there is assumed to generalise beyond the singularity of this test setup. It is meant to
ensure that the amount of NO2 and NO (abbreviated as NOx) in the car exhaust gas does not
deviate considerably in general, and comes with a legal prohibition of defeat mechanisms that
simply turn off the cleaning mechanism. This legal framework is obviously a bit short sighted,
since it can be circumvented by mechanisms that alter the behaviour gradually in a continuous
manner, but in effect drastically. In a nutshell, one expects that if the input values observed by
the electronic control unit (ECU) of a diesel vehicle deviate within “reasonable distance” from
the standard input values provided during the lab emission test, the amount of NOx found in the
exhaust gas is still within the regulated threshold, or at least it does not exceed it more than a
“reasonable amount.”

ACM Transactions on Modeling and Computer Simulation, Vol. 31, No. 3, Article 16. Publication date: August 2021.

Doping Tests for Cyber-physical Systems 16:5

This motivates the need to introduce the notion of distances on inputs and outputs. More pre-
cisely, we consider distances on finite traces:dIn : (In∗×In∗) → R≥0 anddOut : (Out∗×Out∗) → R≥0.
Such distances are required to be pseudometrics. (d is a pseudometric ifd(x ,x) = 0,d(x ,y) = d(y,x)
and d(x ,y) ≤ d(x , z)+d(z,y) for all x ,y, and z.) With this, D’Argenio et al. [12] provide a definition
of robust cleanness that considers two parameters: parameter κi refers to the acceptable distance
an input may deviate from the norm to be still considered, and parameterκo that tells how far apart
outputs are allowed to be in case their respective inputs are within κi distance (Definition 2.2 spells
out the Hausdorff distance used in Reference [12]).

Definition 2.2. Letσ [..k] denote thekth prefix of the sequenceσ . A reactive program P is robustly

clean if for all input sequences i, i′ ∈ Inω with i ∈ StdIn, it holds for arbitrary k ≥ 0 that whenever
dIn(i[..j], i

′[..j]) ≤ κi for all j ≤ k , then

(1) for all o ∈ P(i) there exists o′ ∈ P(i′) such that dOut(o[..k], o
′[..k]) ≤ κo, and

(2) for all o′ ∈ P(i′) there exists o ∈ P(i) such that dOut(o[..k], o
′[..k]) ≤ κo.

Notice that this is what we actually need for the nondeterministic case: each possible output gen-
erated along one of the executions of the program should be matched within “reasonable distance”
by some output generated by the other execution of the program. Also notice that i′ does not need
to satisfy StdIn, but it will be considered as long as it is within κi distance of any input satisfying
StdIn. In such a case, outputs generated by P(i′)will be requested to be within κo distance of some
output generated by the respective execution induced by a standard input.

We remark that Definition 2.2 entails the existence of a contract that defines the set of standard
inputs StdIn, the tolerance parameters κi and κo as well as the distances dIn and dOut. In the context
of diesel engines, one might imagine that the values to be considered, especially the tolerance
parameters κi and κo for a particular car model are made publicly available (or are even advertised
by the car manufacturer), so as to enable potential customers to discriminate between different
car models according to the robustness they reach in being clean. It is also imaginable that the
tolerances and distances are fixed by the legal authorities as part of environmental regulations.

3 ROBUSTLY CLEAN LABELLED TRANSITION SYSTEMS

This section develops the framework needed for an effective theory of black-box doping tests based
on the above concepts. In this, the standard behaviour (e.g., as defined by the emission tests) and
the robust cleanness definitions together will induce a set of reference behaviours that then serve
as a model in a model-based conformance testing approach. To set the stage for this, we recall
the definitions of labelled transition systems (LTS) and input-output transitions systems

(IOTS) together with Tretmans’ notion on model-based conformance testing [31]. We then recast
the characterisation of robust cleanness (Definition 2.2) in terms of LTS.

Definition 3.1. An LTS with inputs and outputsL = 〈Q, In,Out,→,q0〉 is a five-tuple where (i)Q
is a (possibly uncountable) non-empty set of states, (ii) L = In � Out is a (possibly uncountable)
set of labels, (iii)→ ⊆ Q × L ×Q is the transition relation, and (iv) q0 ∈ Q is the initial state. An
LTS is an IOTS if it is input enabled in any state, i.e., for all q ∈ Q and a ∈ In there is some q′ ∈ Q

such that q
a
−→ q′.

For ease of presentation, we do not consider internal transitions. The following definitions will
be used throughout the article. A finite path p in an LTS L = 〈Q, In,Out,→,q0〉 is a sequence

q1a1q2a2 · · ·an−1qn withqi
ai
−→ qi+1 for all 1 ≤ i < n. We denote last(p) as the last state occurring in

p, i.e., last(p) = qn . An infinite path p inL is a sequence q1a1q2a2 . . .with qi
ai
−→ qi+1 for all i ∈ N>0.

ACM Transactions on Modeling and Computer Simulation, Vol. 31, No. 3, Article 16. Publication date: August 2021.

16:6 S. Biewer et al.

Let paths∗(q) and pathsω (q) be the sets of all finite and infinite paths of L beginning in state q,
respectively. Ifq = q0, then we also write paths∗(L) (pathsω (L)) instead of paths∗(q0) (pathsω (q0)).
The sequence a1a2 · · ·an is a finite trace σ of L if there is a finite path q1a1q2a2 . . . anqn+1 ∈

paths∗(q1). We denote last(σ) as the last action label occurring in σ , i.e., last(σ) = an . a1a2 · · ·

is an infinite trace if there is an infinite path q1a1q2a2 . . . ∈ pathsω (q1). If p is a path, then we let
trace(p) denote the trace defined by p. For states q ∈ Q , let traces∗(q) and tracesω (q) be the set
of all finite and infinite traces beginning in q, respectively, and let traces∗(L) = traces∗(q0) and
tracesω (L) = tracesω (q0). We will use L1 ⊆ L2 to denote that tracesω (L1) ⊆ tracesω (L2).

Model-Based Conformance Tests. In the following, we recall the basic notions of input-output

conformance (ioco) testing [31–33], and refer to the mentioned literature for more details. In
this setting, it is assumed that the implemented system under test (IUT) I can be modelled as
an IOTS while the specification of the required behaviour is given in terms of an LTS Spec. The
idea of whether the IUT I conforms to the specification Spec is formalized by means of the ioco

relation.
In the remainder of this article it is necessary to identify quiescent (or suspended) states. A state

is quiescent whenever it cannot proceed autonomously, i.e., it cannot produce an output. A qui-
escent state may be explicitly highlighted as such by having an outgoing quiescence transition
with the distinct label δ . An implementation can observe quiescence with a timeout mechanism.
In specifications, δ -transitions are often modelled as self-loops back to the quiescent state. These
self-loops are added to all quiescent states of an LTS when applying the quiescence closure to it.

Definition 3.2. LetL = 〈Q, In,Out,→,q0〉 be an LTS. The quiescence closure (or δ -closure) ofL is

defined as the LTSLδ � 〈Q, In,Outδ ,→δ ,q0〉 with Outδ � Out∪{δ } and→δ � →∪{s
δ
−−→δ s |

∀o ∈ Out, t ∈ Q : s �
o
−−→ t}. Using this the suspension traces of L are defined by traces∗(Lδ).

Let L = 〈Q, In,Out,→,q0〉 be an LTS with σ = a1 a2 . . . an ∈ traces∗(L) and let Q ′ ⊆ Q . The
set L after σ is defined as {qn | q0a1q1a2 . . . anqn ∈ paths∗(L)} and Q ′ after a as {q′ | ∃q ∈
Q ′ : q

a
−→ q′}. For a state q, let out(q) = {o ∈ Out∪ {δ } | ∃q′ : q o

−→ q′} and for a set of states Q ′, let
out(Q ′) =

⋃
q∈Q ′ out(q).

The idea behind the ioco relation is that any output produced by the IUT must have been
foreseen by its specification, and moreover, any input in the IUT not foreseen in the specifi-
cation may introduce new functionality. As a result, I ioco Spec is defined to hold whenever
out(Iδ after σ) ⊆ out(Specδ after σ) for all σ ∈ traces∗(Specδ).

The base principle of conformance testing now is to assess by means of testing whether the
IUT conforms to its specification w.r.t. ioco. Tretmans defines test cases as LTS. These LTS are
described by means of a basic process algebra [33]. A process is a term defined in the language P
given by

p �
∑

z∈Z az ;pz | A,

where Z is an index set, each az is a label, and each pz is a process, and A belongs to a set of con-
stants called process names that in turn can be defined by equations of the form A � p. Following
Reference [33], we use the semicolon as action prefix operator. We write

∑
z∈Z1

az ;pz+
∑

z∈Z2
az ;pz

for
∑

z∈Z1∪Z2
az ;pz . A process has semantics in terms of LTS in the usual way: The set of states is

the set of all possible processes and the transitions are defined according to the following rules:

∑
z∈Z az ;pz

az
−−→ pz

p
a
−→ p ′

A
a
−→ p ′

A � p.

ACM Transactions on Modeling and Computer Simulation, Vol. 31, No. 3, Article 16. Publication date: August 2021.

Doping Tests for Cyber-physical Systems 16:7

A test case t for an implementation with inputs in In and outputs in Out is defined as a de-
terministic LTS. Let t0 be the initial state of t . t has the following restrictions: (i) from t0, any of
the special processes pass and fail can be reached, where pass � fail, and they are defined by
pass �

∑
{a; pass | a ∈ Outδ } and fail �

∑
{a; fail | a ∈ Outδ }, (ii) t has no reachable cycles

except those of pass and fail, and (iii) for any state q reachable from t0, the set {a | q
a
−→ q′} con-

tains the whole set Out of outputs, and also contains either exactly one input or δ (but not both).
A test suite is a set of test cases, a test run of a test case t with an IUT I is an experiment where
the test case supplies inputs to the IUT while observing the outputs of the IUT or the absence of
them [33]. This can be captured by parallel composition according to the following transition rule:

q
a
−→ q′ p

a
−→ p ′ a ∈ In ∪Outδ

q ‖ p
a
−→ q′ ‖ p ′ .

Let p0 be the initial state of I. The IUT I passes the test case t , notation I passes t , if and only if
there is no state p such that a state fail ‖ p is reachable from t0 ‖ p0. Given a test suiteT , we write
I passes T whenever I passes t for all t ∈ T .

A test case can be generated by the algorithm TG shown below. Argument S is a subset of the
state space of the specification LTS Spec. The algorithm nondeterministically returns a process,
which induces a deterministic LTS. We write t ∈ TG(S) to denote that t is one of the processes that
can be generated by an execution of TG(S).
TG(S) � choose nondeterministically one of the following processes:

(1) pass

(2) i; ti where i ∈ In, S after i � � and ti ∈ TG(S after i)
+

∑
{o; fail | o ∈ Out ∧ o � out(S)}

+
∑
{oj ; toj

| oj ∈ Out ∧ oj ∈ out(S)}, where for each oj , toj
∈ TG(S after oj)

(3)
∑
{o; fail | o ∈ Out ∪ {δ } ∧ o � out(S)}

+
∑
{oj ; toj

| oj ∈ Out ∪ {δ } ∧ oj ∈ out(S)}, where for each oj , toj
∈ TG(S after oj)

Given a specification Spec with initial state s0, TG({s0}) generates a test suite for Spec. The first
possible option in the algorithm states that at any moment the test process can stop indicating that
the execution up to this point has been satisfactory. The second option may exercise input i and
continue with test ti . Alternatively it can accept any possible output. If the output is not included
in the specification, then the test fails. If instead the output is considered, then it is accepted and
it continues with the testing process. The third option is similar to the previous one only that it
considers the possibility of quiescence instead of inputs. When the absence of an output (label δ)
is observed, the test fails if quiescence is not accepted and otherwise continues with the selected
execution. TG can produce a (possibly infinitely large) test suiteT , for which a system I passes T
if I ioco Spec and, conversely, I ioco Spec if I passes T . The former property is called soundness

and the latter is called exhaustiveness. A test suite is complete, if and only if it is both sound and
exhaustive. We refer to the original work by Tretmans [32, 33] for more details and intuitions about
ioco, P and TG.

It is important to note that in the setting of robust cleanness the specification Spec is missing. In-
stead, we need to construct the specification from the standard inputs and the respective observed
outputs, together with the distance functions and the thresholds given by the contract. Further-
more, this needs to respect the ∀−∃ interaction required by the cleanness property (Definition 2.2).

Software Doping on LTS. To capture the notion of software doping in the context of LTS, we
provide two projections of a trace, projecting to a sequence of the appearing inputs, respectively

ACM Transactions on Modeling and Computer Simulation, Vol. 31, No. 3, Article 16. Publication date: August 2021.

16:8 S. Biewer et al.

outputs. To do this, we extend the set of labels by adding the input –i , that indicates that in the re-
spective step some output (or quiescence) was produced (but masking the precise output), and the
output –o that indicates that in this step some (masked) input was given. Projection on inputs ↓i :
(In ∪Outδ)

ω → (In ∪ {–i })
ω and projection on outputs ↓o : (In∪Outδ)

ω → (Outδ ∪{–o})
ω are de-

fined for all traces σ ∈ (In∪Outδ)
ω and k ∈ N as follows: σ↓i [k] � if σ [k] ∈ In then σ [k] else –i

and similarly σ↓o[k] � if σ [k] ∈ Outδ then σ [k] else –o . They are lifted to sets of traces in the
usual elementwise way.

Definition 3.3. An LTS S is a standard for an LTS L, if tracesω (Sδ) ⊆ tracesω (Lδ).

The above definition provides an interpretation of the notion of StdIn for a given program P
modelled in terms of LTS L. This interpretation relaxes the original definition of StdIn, because it
requires to fix only a subset of the behaviour that L exhibits when executed with standard inputs.
This corresponds to a testing context, in which recordings of the system executing standard inputs
are the baseline for testing. StdIn can then be considered as implicitly determined as the input
sequences tracesω (S)↓i occurring in S. If instead L and StdIn ⊆ (In ∪ –i)

ω are given, then we
denote by S(L,StdIn) a standard LTS that is maximal w.r.t. StdIn and L, i.e., for all σ ∈ (In∪Outδ)

ω ,

σ ∈ tracesω (Sδ
(L,StdIn)) if and only if σ↓i ∈ StdIn and σ ∈ tracesω (Lδ).

In this new setting, we assume that the distance functionsdIn anddOut apply on traces containing
labels –i and –o , i.e., they are pseudometrics in (In∪ {–i })

∗ × (In∪ {–i })
∗ → R≥0 and, respectively,

(Out ∪ {–o})
∗ × (Out ∪ {–o})

∗ → R≥0. In the context of this article, we maintain the notion of
a contract for robust cleanness and denote it explicitly by a 5-tuple C = 〈S,dIn,dOut,κi,κo〉. It
contains an LTS S representing some standard behaviour, the distance functions and thresholds
(the domains In and Out are captured implicitly as the domains of dIn, respectively dOut). With this,
we state robust cleanness for LTS as follows.

Definition 3.4. An IOTS L is robustly clean w.r.t. some contract C = 〈S,dIn,dOut,κi,κo〉 if and
only if S is a standard for L and for all σ ∈ tracesω (Sδ), σ

′ ∈ tracesω (Lδ) and k ≥ 0 it holds that
whenever dIn(σ [..j]↓i ,σ

′[..j]↓i) ≤ κi for all j ≤ k then

(1) there exists σ ′′ ∈ tracesω (Lδ) such that σ ′↓i = σ ′′↓i and dOutδ
(σ [..k]↓o ,σ

′′[..k]↓o) ≤ κo,
(2) there exists σ ′′ ∈ tracesω (Sδ) such that σ↓i = σ ′′↓i and dOutδ

(σ ′[..k]↓o ,σ
′′[..k]↓o) ≤ κo.

The definition is in the fashion of the HyperLTL interpretation of Proposition 19 of Refer-
ence [12] (restricted to programs with no parameters). There, contracts define the set StdIn instead
of the LTS S and hence the standard behaviour is fully defined. The relaxed interpretation of stan-
dard behaviour S is reflected in the last line of Definition 3.4, which requires σ ′′ to be a trace of
Sδ instead of Lδ . For the maximal standard LTS S(L,StdIn), Definition 3.4 echoes the HyperLTL se-
mantics. Thus, the proof showing that Definition 3.4 is the correct interpretation of Definition 2.2
in terms of LTS, can be obtained in a way similar to that of Proposition 19 in Reference [12]. In the
spirit of model-based testing with ioco, Definition 3.4 takes specific care of quiescence in a system.
To properly integrate quiescence into the context of robust cleanness it must be considered as a
unique output. As a consequence, in the presence of a contract C = 〈S,dIn,dOut,κi,κo〉, we use—
instead of S, Out and dOut—the quiescence closure Sδ of S, Outδ = Out ∪ {δ } and an extended
output distance defined as dOutδ

(σ1,σ2) � dOut(σ1\δ ,σ2\δ) if σ1[i] = δ ⇔ σ2[i] = δ for all i , and
dOutδ

(σ1,σ2) � ∞ otherwise, where σ\δ is the same as σ with all δ removed.
In the sequel, we will at some places need to refer to Definition 3.4 only considering the second

condition (but not the first one). We denote this as Definition 3.4.2. We will also use the predicate
∀j ≤ k : dIn(σ [..j]↓i ,σ

′[..j]↓i) ≤ κi, which we abbreviate by a predicateV(dIn,κi)(k,σ ,σ
′). If dIn and

κi are known from the context, then we omit the index.

ACM Transactions on Modeling and Computer Simulation, Vol. 31, No. 3, Article 16. Publication date: August 2021.

Doping Tests for Cyber-physical Systems 16:9

4 REFERENCE IMPLEMENTATION FOR CONTRACTS

As mentioned before, doping tests need to be based on a contract C, which we assume given. C
specifies the domains In, Out, a standard LTSS, the distance functionsdIn anddOut and the bounds
κi and κo. We intuitively expect the contract to be satisfiable in the sense that it never enforces a
single input sequence of the implementation to keep outputs close enough to two different exe-
cutions of the specification while their outputs stretch too far apart. We show such a problematic
case in the following example.

Example 2. On the right a quiescence-closed standard LTS Sδ for an imple-
mentation L (shown below) is depicted. For simplicity some input transitions
are omitted. Assume Out = {o} and In = {i, i −κi, i +κi}. Consider the transition
labelled x ofL. This must be one of eithero or δ , but we will see that either choice
leads to a contradiction w.r.t. the output distances induced. The input projection
of the middle path in L is i –i and the input distance to (i −κi) –i and (i +κi) –i

is exactly κi, so both branches (i + κi) o and (i − κi) δ of Sδ must be considered
to determine x . For x = o, the output distance of –o x to –o o in the right branch
of Sδ is 0, i.e., less than κo. However, dOutδ

(–o δ , –o o) = ∞ > κo. Thus the
output distance to the left branch of Sδ is too high if picking o. Instead picking
x = δ does not work either, for the symmetric reasons, the problem switches
sides. Thus, neither picking o nor δ for x satisfies robust cleanness here. Indeed,
no implementation satisfying robust cleanness exists for the given contract.

We would expect that a correct implementation fully entails the standard behaviour. So, to sat-
isfy a contract, the standard behaviour itself must be robustly clean. This and the need for satisfi-
ability of particular inputs lead to Definition 4.1.

Definition 4.1 (Satisfiable Contract). Let C = 〈S,dIn,dOut,κi,κo〉 be a contract and let σi ∈ (In ∪

{–i })
ω be the input projection of some trace. σi is satisfiable for C if and only if for every standard

trace σS ∈ tracesω (Sδ) and k > 0 such that for all j ≤ k dIn(σi [..j],σS [..j]↓i) ≤ κi there is some
implementation L that satisfies Definition 3.4.2 w.r.t. C and has some trace σ ∈ tracesω (Lδ) with
σ↓i = σi and dOutδ

(σ [..k]↓o ,σS [..k]↓o) ≤ κo.
C is satisfiable if and only if all inputs σi ∈ (In∪{–i })

ω are satisfiable for C and S is robustly clean
w.r.t. C. A contract that is not satisfiable is called unsatisfiable.

Given a satisfiable contract it is always possible to construct an implementation that is robustly
clean w.r.t. to this contract. Furthermore, for every contract there is exactly one implementation
(modulo trace equivalence) that contains all possible outputs that satisfy robust cleanness. Such
an implementation is called the largest implementation.

Definition 4.2 (Largest Implementation). Let C be a contract and L an implementation that is
robustly clean w.r.t. C. L is the largest implementation within C if and only if for every L′ that is
robustly clean w.r.t. C it holds that tracesω (L

′
δ
) ⊆ tracesω (Lδ).

In the following, we will focus on the fragment of satisfiable contracts with standard behaviour
defined by finite LTS. For unsatisfiable contracts, testing is not necessary, because every implemen-
tation is not robustly clean w.r.t. to C. Finiteness of S will be necessary to make testing feasible
in practice. For simplicity, we will further assume past-forgetful output distance functions. That is,
dOut(σ1,σ2) = dOut(σ

′
1,σ
′
2) whenever last(σ1) = last(σ ′1) and last(σ2) = last(σ ′2). Thus, we simply

assume that dOut : (Out∪{–o} × Out∪{–o}) → R≥0, i.e., the output distances are determined by
the last output only. We remark that dOutδ

(δ ,o) = ∞ for all o � δ .

ACM Transactions on Modeling and Computer Simulation, Vol. 31, No. 3, Article 16. Publication date: August 2021.

16:10 S. Biewer et al.

Fig. 1. The reference implementation R of S in Example 3.

Reference implementation. We will now show how to construct the largest implementation for
any contract (of the fragment we consider), which we name reference implementation R. It is de-
rived from Sδ by adding inputs and outputs in such a way that whenever the input sequence
leading to a particular state is within κi distance of an input sequence σi of Sδ , then the outputs
possible in such a state should be at most κo distant from those outputs possible in the unique state
onSδ reached through σi . This ensures that R will satisfy condition 2) in Definition 3.4. For inputs
beyond the κi radius of all standard inputs, all outputs in Outδ are possible in the respective state
in R.

To construct the reference implementation R, we decide to model the quiescence transitions
explicitly instead of using the quiescence closure. We preserve the property, that in each state of
the LTS it is possible to do an output or a quiescence transition. The construction of R proceeds
by adding all transitions that satisfy Definition 3.4.2.

Definition 4.3. Let C = 〈S,dIn,dOut,κi,κo〉 be a contract. The reference implementation R for
contract C is the LTS 〈(In ∪ Outδ)

∗, In,Outδ ,→R , ϵ〉 where→R is defined by

∀σi ∈ tracesω (Sδ)↓i :
(∀j ≤ |σ | + 1 : dIn((σ · a)↓i [..j],σi [..j]) ≤ κi)

⇒ ∃σS ∈ tracesω (Sδ) : σS↓i = σi ∧ dOutδ
(a↓o ,σS [|σ | + 1]↓o) ≤ κo

σ
a
−→R σ · a .

Notably,R is deterministic, since only transitions of the form σ
a
−→R σ ·a are added. Even further,

the construction of R is such that we are always able to identify for each trace the (unique) state
that can be reached by that trace. This is also expressed formally in Lemma 4.4 and Corollary 4.5.

Example 3. Figure 1 gives a schematic representation of the reference im-
plementation R for the LTS S on the right. Input (output) actions are de-
noted with letter i (o, respectively), quiescence transitions are omitted. We
use the absolute difference of the values, so that dIn(i, i

′) � |i − i ′ | and
dOut(o,o

′) � |o − o′ |. For this example, the quiescence closure Sδ looks
like S but with δ -loops in states s0, s4, s5, and s6. Label r+[a,b] should be
interpreted as any value r ′ ∈ [a+r ,b+r] and similarly r+[a,b) and r+(a,b],
appropriately considering closed and open boundaries; “other_i” represents any other input not
explicitly considered leaving the same state; and “any_i” and “any_o” represent any possible input
and output (including δ), respectively. In any case –i and –o are not considered, since they are
not part of the alphabet of the LTS. Also, we note that any possible sequence of inputs becomes
enabled in the bottom states in R in Figure 1 (omitted in the picture).

The reference implementation R is obtained according to Definition 4.3. To give an idea of its
construction, we focus on the states σ such that |σ | = 1 (i.e., σ ∈ In∪{δ })—other cases are simpler.
First, notice that

tracesω (Sδ) = δω + δ ∗ i o δω + δ ∗ i (o+κo)δ
ω + δ ∗ (i+κi) (o+κo)δ

ω .

ACM Transactions on Modeling and Computer Simulation, Vol. 31, No. 3, Article 16. Publication date: August 2021.

Doping Tests for Cyber-physical Systems 16:11

Here, we useω-regular notation to describe the set of traces. This means that tracesω (Sδ) contains
the trace that remains quiet indefininitely (namely δω), all traces that may stay quiet for a while,
receive an input i , produce and output o, and remain quiet indefininitely (i.e., any trace in δ ∗ i o δω),
and so on. Hence, the set tracesω (Sδ)↓i is then

tracesω (Sδ)↓i = –ω
i + –∗i i –ω

i + –∗i (i+κi) –
ω
i .

Suppose σ ∈ i+[−κi, 0) and a ∈ o + [−κo, 2κo]. In this case, σi = i –ω
i ∈ tracesω (Sδ)↓i is the

only standard trace satisfying ∀j ≤ 2 : dIn((σ · a)↓i [..j],σi [..j]) ≤ κi. If a ∈ o + [−κo,κo], then
take σS = i o δ

ω and then σS↓i = σi ∧ dOutδ
(a↓o ,σS [|σ | + 1]↓o) ≤ κo holds. If a ∈ o + [0, 2κo], then

σS = i (o+κo)δ
ω is the one that does the job. Therefore σ

a
−→R σ ·a. This case defines the schematic

transition i+[−κi, 0)
o+[−κo,2κo]
−−−−−−−−−→R i+[−κi, 0)o+[−κo, 2κo].

If instead a ∈ Out but a � o + [−κo, 2κo], then no a-outgoing transition from σ ∈ i+[−κi, 0) is
possible, since no matching σS can be found. However, if a ∈ In, no σi ∈ tracesω (Sδ)↓i satisfies
∀j ≤ 2 : dIn((σ · a)↓i [..j],σi [..j]) ≤ κi. As the antecedent of the implication is false, any input
defines a valid outgoing transition from a state σ ∈ i+[−κi, 0). This yields the schematic transition

i+[−κi, 0)
any_i
−−−−→R i+[−κi, 0) any_i .

Suppose now σ ∈ i+[0, 2κi] and a ∈ o + [0, 2κo]. We consider the two subcases σ ∈ i+[0,κi] and
σ ∈ i+(κi, 2κi]. If σ ∈ i+(κi, 2κi], then σi = (i+κi) –

ω
i ∈ tracesω (Sδ)↓i is the only one satisfying

∀j ≤ 2 : dIn((σ · a)↓i [..j],σi [..j]) ≤ κi and the construction follows similarly as above. If instead
σ ∈ i+[0,κi], then every σi ∈ {i –ω

i , (i+κi) –
ω
i } satisfies ∀j ≤ 2 : dIn((σ · a)↓i [..j],σi [..j]) ≤ κi. If

σi = i –ω
i , choose σS = i (o+κo)δ

ω , and if σi = (i+κi) –
ω
i , then choose σS = (i+κi) (o+κo)δ

ω . In

both of these cases, σS↓i = σi∧dOutδ
(a↓o ,σS [|σ |+1]↓o) ≤ κo is satisfied. Hence σ

a
−→R σ ·a. Putting

both subcases together yields the schematic transition i+[0, 2κi]
o+[0,2κo]
−−−−−−−→R i+[0, 2κi]o + [0, 2κo].

The case in which σ ∈ i+[0, 2κi] but a � o + [0, 2κo] follows as before.
If σ � i+[−κi, 2κi] (in other words, “σ ∈ other_i”), then there is no σi ∈ tracesω (Sδ)↓i such that

∀j ≤ 2 : dIn((σ · a)↓i [..j],σi [..j]) ≤ κi, so any transition is possible.
Finally, if σ = δ (omitted in Figure 1), then the construction would follow just like for the initial

state ϵ .

Properties of the Reference Implementation R. To show that R is defined in a reasonable way,
we will establish some important properties of R. We start with a fundamental property, which
exploits the way R is constructed to serve as a basis for many of the following proofs. Essentially,
every state in R is “labelled” with the unique trace by which the state is reachable, if it is reachable
at all.

Lemma 4.4. Let C be a contract and R the reference implementation for C. Then, for all finite paths

p ∈ paths∗(R) it holds that last(p) = trace(p).

Proof. We proceed by induction on the number of states in p. If p has only one state, then
p = ϵ = last(p) = trace(p), since ϵ is the initial state in R.
Suppose now, that p = (p ′ a s) ∈ paths∗(R). By induction, last(p ′) = trace(p ′). By Definition 4.3,

last(p ′)
a
−−→R s only if s = last(p ′) · a. But last(p) = s = last(p ′) · a = trace(p ′) · a = trace(p), which

proves the lemma. �

As a consequence, for every trace of R we can reconstruct the unique path with this trace.

Corollary 4.5. Let C be a contract, R the reference implementation for C, p ∈

paths∗(R) a finite path of R and σ = trace(p) its trace. Then p is exactly the path

ϵ σ [1] (σ [..1])σ [2] (σ [..2]) · · · (σ [..|σ | − 1])σ [|σ |] (σ [..|σ |]).

ACM Transactions on Modeling and Computer Simulation, Vol. 31, No. 3, Article 16. Publication date: August 2021.

16:12 S. Biewer et al.

One of the most desired properties of R that we will show is that it is the largest implementation
within the contract it is constructed from. The following lemma shows a similar property. It is
stronger in not assuming implementations to be IOTS (thus LTS are sufficient) and it considers
only the second condition of robust cleanness. It is also weaker in not concluding R to be robustly
clean. However, this Lemma will be central to many of the following proofs.

Lemma 4.6. Let C be a contract and R the reference implementation for C. Then, for every LTS L

satisfying Definition 3.4.2, it holds that tracesω (Lδ) ⊆ tracesω (R).

Proof. For a proof by contradiction, suppose that there is some L satisfying Definition 3.4.2,
but which has some trace σ ∈ tracesω (Lδ) that is not a trace of R, i.e., σ � tracesω (R). Since
σ � tracesω (R), there must be somek > 0 for whichσ [..k−1] ∈ traces∗(R), butσ [..k] � traces∗(R).

Hence, there is no transition σ [..k − 1]
σ [k]
−−−→R σ [..k] in R. This can only be because the premise of

Definition 4.3 is not satisfied, i.e., there is some σi ∈ tracesω (Sδ)↓i , such that (1) V(k,σ ,σi) and
(2) for all standard traces σS ∈ tracesω (Sδ)with σs↓i = σi it holds thatdOutδ

(σ [k]↓o ,σS [k]↓o) > κo.
Let σio ∈ tracesω (Sδ) such that σio↓i = σi . From Definition 3.4.2, we get for L,σio ,σ and k with
(1) a trace σ ′′ ∈ tracesω (Sδ) with σ ′′↓i = σio↓i = σi and dOutδ

(σ [..k]↓o ,σ
′′[..k]↓o) ≤ κo. From

the assumption that dOutδ
is past-forgetful, we get that dOutδ

(σ [k]↓o ,σ
′′[k]↓o) ≤ κo, which is a

contradiction to (2). �

Definition 4.3 models an LTS that is deterministic and quiescence is added explicitly instead
of relying on the quiescence closure. As a consequence, outputs and quiescence may coexist as
options in a state, i.e., they are not mutually exclusive. Lemma 4.7 shows that this is done in the
spirit of model-based testing theory and ioco, that is, Rδ is identical to R.

Lemma 4.7. Let C be a satisfiable contract and R the reference implementation for C. Then, the

quiescence closure Rδ of R is exactly R.

Proof. We have to show that for every state σ ∈ (In ∪ Outδ)
∗, there is a transition σ

o
−→R σ · o

in R with o ∈ Outδ . Let σi = σ↓i · (–i)
ω an infinite input trace. We proceed by case-distinction

on whether there is a trace σS ∈ tracesω (Sδ) such that V(|σ | + 1,σi ,σS) holds. If this is not the
case, then the premise of Definition 4.3 does not hold, and hence we get that for all o ∈ Outδ a

transition σ
o
−→R σ · o in R.

In the case that the assumption does hold, we get from satisfiability of C and Definition 4.1 an
implementation L and a trace σ ′′ ∈ tracesω (Lδ) with σ ′′↓i = σi and dOutδ

(σ ′′[|σ | + 1]↓o ,σS [|σ | +
1]↓o) ≤ κo. From Lemma 4.6, we get that σ ′′ ∈ tracesω (R). For this trace to exist it is necessary that

there is the transition σ ′′[..|σ |]
σ ′′[|σ |+1]
−−−−−−−→R σ ′′[..|σ |+1] inR. Hence, we know (from Definition 4.3)

that for every trace σS ∈ tracesω (Sδ)↓i for which V(|σ | + 1,σ ′′,σS) holds, there is some σ̂ ∈
tracesω (Sδ) with σ̂↓i = σS↓i and dOutδ

(σ ′′[|σ | + 1], σ̂ [|σ | + 1]↓o) ≤ κo. Since σ ′′↓i = σi and in
particular σ↓i · –i = σ ′′[..|σ | + 1]↓i , we have that for every σS and j ≤ |σ | + 1, the equivalence
dIn(σ

′′[..j]↓i ,σS [..j]↓i) ≤ κi ⇐⇒ dIn((σ · σ
′′[|σ | + 1])[..j]↓i ,σS [..j]↓i) ≤ κi holds. Hence, for

every σS ∈ tracesω (Sδ)↓i withV(|σ | + 1, (σ · σ ′′[|σ | + 1]),σS), we can provide a σ̂ ∈ tracesω (Sδ)

with σ̂↓i = σS↓i and dOutδ
(σ ′′[|σ | + 1], σ̂ [|σ | + 1]↓o) ≤ κo. By Definition 4.3, we know that the

transition σ [..|σ |]
σ ′′[|σ |+1]
−−−−−−−→R σ [..|σ |] · σ ′′[|σ | + 1] exists in R. Since σ ′′↓i = σi , we know that

σ ′′↓i [|σ | + 1] = –i and hence σ ′′[|σ | + 1] ∈ Outδ . �

The LTS R is supposed to serve as an implementation. To this end, Lemma 4.8 shows that R is
input enabled and hence is an IOTS.

ACM Transactions on Modeling and Computer Simulation, Vol. 31, No. 3, Article 16. Publication date: August 2021.

Doping Tests for Cyber-physical Systems 16:13

Lemma 4.8. Let C be a satisfiable contract with standard S and let R be constructed from C. Then

R is an input-output transition system.

Proof. By construction, R is a labelled transition system. By Definition 3.1 an LTS is an IOTS,
if it is input enabled. Hence, we have to show that for every state σ ∈ (In∪Out)∗ it holds for every

i ∈ In that there is a transition σ
i
−→R σ ·i in R. To have this transition, the premise of Definition 4.3

must be satisfied. Let σi ∈ traces∗(Sδ)↓i and accordingly σS ∈ traces∗(Sδ) a trace with σS↓i = σi .
Assume thatV(|σ | + 1, (σ · i),σi) holds (otherwise the lemma holds trivially). We pick σS for the
existential quantifier. By definition σS↓i = σi , so it suffices to show that dOutδ

(i↓o ,σS [|σ | + 1]↓o)

= dOutδ
(–o ,σS [|σ |+ 1]↓o) ≤ κo. We continue by case distinction of whether σS [|σ |+ 1] ∈ In. If this

is the case, then we are immediately done, because dOutδ
(–o , –o) = 0 ≤ κo.

If instead σS [|σ | + 1] ∈ Outδ , then satisfiability of C with (σ · i)↓i for σi , σS for σS and k =
|σ | + 1 provides some implementation L satisfying Definition 3.4.2 and a trace σ̂ ∈ tracesω (Lδ)

with σ̂↓i = (σ · i)↓i and dOutδ
(σ̂ [|σ | + 1]↓o ,σS [|σ | + 1]↓o) ≤ κo. From Lemma 4.6, we get that

σ̂ ∈ tracesω (R). We get from dOutδ
(σ̂ [|σ | + 1]↓o ,σS [|σ | + 1]↓o) ≤ κo and σ̂↓i = (σ · i)↓i that

dOutδ
(–o ,σS [|σ | + 1]↓o) ≤ κo, which concludes the proof. �

R is modelled by adding all transitions satisfying Definition 3.4.2. Lemma 4.9 confirms that,
conversely, R satisfies Definition 3.4.2. Then, Lemma 4.10 shows that R satisfies also the first
condition of Definition 3.4.

Lemma 4.9. Let C be a contract and R the reference implementation for C. Then, for all σ ∈
tracesω (Sδ) and σ ′ ∈ tracesω (R), it holds that for all k ≥ 0 such that dIn(σ [..j]↓i ,σ

′[..j]↓i) ≤ κi for

all j ≤ k , there exists σ ′′ ∈ tracesω (Sδ) such that σ↓i = σ ′′↓i and dOutδ
(σ ′[k]↓o ,σ

′′[k]↓o) ≤ κo.

Proof. Let σ ∈ tracesω (Sδ) and let σ ′ ∈ tracesω (R). By Corollary 4.5, we get that there must
be some path p = ϵ σ ′[1](σ ′[..1]) . . . (σ ′[..k−1])σ ′[k](σ ′[..k]) ∈ paths∗(R). In particular σ ′[..k−1]
σ ′[k]
−−−−→ σ ′[..k] is a transition in R. By Definition 4.3, we know that for all σi ∈ traces(Sδ)↓i with
V(k,σ ′[..k],σi) (which is equivalent toV(k,σ ′,σi)), there is some σS ∈ tracesω (Sδ) with σS↓i =

σi and dOutδ
(σ [k]↓o ,σS [k]↓o) ≤ κo (*).

Since σ ∈ tracesω (Sδ) then σ↓i ∈ tracesω (Sδ)↓i . Suppose V(k,σ ′,σ) holds (otherwise the
lemma holds trivially). Then, by (*), there exists σS ∈ tracesω (Sδ) with σS↓i = σ↓i such that
dOutδ

(σ [k]↓o ,σS [k]↓o) ≤ κo. �

Lemma 4.10. Let C be a satisfiable contract and R the reference implementation for C. Then, for all

σ ,σ ′ ∈ tracesω (R), ifσ ∈ tracesω (Sδ), it holds that for allk ≥ 0 such thatdIn(σ [..j]↓i ,σ
′[..j]↓i) ≤ κi

for all j ≤ k , there exists σ ′′ ∈ tracesω (R) such that σ ′↓i = σ ′′↓i and dOutδ
(σ [k]↓o ,σ

′′[k]↓o) ≤ κo.

Proof. Let σ ∈ tracesω (Sδ), σ
′ ∈ tracesω (R) and k ≥ 0. SupposeV(k,σ ,σ ′) holds (otherwise,

the lemma holds trivially). From satisfiability of C we know that inputσ ′↓i is satisfiable and, hence,
we get from Definition 4.1 for σ and k an implementation L satisfying Definition 3.4.2 for which
there is σ ′′ ∈ tracesω (Lδ) with σ ′′↓i = σ ′↓i and dOutδ

(σ ′′[k]↓o ,σ [k]↓o) ≤ κo. From Lemma 4.6,
we get that tracesω (Lδ) ⊆ tracesω (R), so we can conclude that σ ′′ ∈ tracesω (R). Hence, σ ′′ is the
desired trace to conclude the proof. �

Each contract contains some standard behaviour as an LTS S. The reference implementation
for a contract should be constructed in a way such that S is a standard for the implementation
(according to Definition 3.3). Lemma 4.11 shows that this is the case for R. In this work, we have a
particular interest into practical applicability. Hence, we assume for the proof of this Lemma, that
S is finite. This enables us to make the proof by arguing about finite traces.

ACM Transactions on Modeling and Computer Simulation, Vol. 31, No. 3, Article 16. Publication date: August 2021.

16:14 S. Biewer et al.

Lemma 4.11. Let S be a finite LTS, C = 〈S,dIn,dOut,κi,κo〉 a satisfiable contract and R the refer-

ence implementation for C. Then S is a standard for R.

Proof. We have to show that tracesω (Sδ) ⊆ tracesω (Rδ). Since tracesω (R) = tracesω (Rδ)

according to Lemma 4.7, it suffices to show that tracesω (Sδ) ⊆ tracesω (R). Also, since S is finite
also Sδ is finite, so we can construct a deterministic (image-finite) LTS Sδ

′ (where states are finite
traces of the original) with tracesω (Sδ) = tracesω (Sδ

′). With R being deterministic, too, we only
need to prove traces∗(Sδ) ⊆ traces∗(R) (see Reference [35] for a proof).
Let σ ∈ traces∗(Sδ). We proceed by induction on k = |σ |. If k = 0, then σ = ϵ and hence
σ ∈ traces∗(R). If k > 0, then we know that σ [..k − 1] ∈ traces∗(Sδ) and from the inductive
hypothesis that σ [..k − 1] ∈ traces∗(R). There is a path p ∈ paths∗(R) with trace(p) = σ [..k − 1]
and it follows from Lemma 4.4, that last(p) = σ [..k − 1]. To show that σ ∈ traces∗(R), we need to

show that there is a transition σ [..k − 1]
σ [k]
−−−→R σ in R. By Definition 4.3, this holds if for any σi ∈

tracesω (Sδ)↓i with ∀j ≤ k : dIn(σ [..j]↓i ,σi [..j]) ≤ κi, V(k,σ ,σi), there is some σS ∈ tracesω (Sδ)

with σS↓i = σi for which dOutδ
(σ [k]↓o ,σS [k]↓o) ≤ κo. The existence of σi implies the existence of

some σio ∈ tracesω (Sδ) with σio↓i = σi . Also, notice that σ can be extended to an infinite trace
σ ′ ∈ tracesω (Sδ) such that σ ′[..k] = σ . From satisfiability of C we know that S is robustly clean
w.r.t. C. Then, by Definition 3.4.2, there is some σ ′′ ∈ tracesω (Sδ) with σ ′′↓i = σio↓i (= σi) and
dOut(σ

′[k]↓o ,σ
′′[k]↓o) ≤ κo. Taking σS = σ ′′ concludes the proof. �

With the properties of R established in this section it is easy to show that R is robustly clean
w.r.t. the contract it is constructed from.

Theorem 4.12. Let S be a finite LTS, C = 〈S,dIn,dOut,κi,κo〉 a satisfiable contract and R the

reference implementation for C. Then R is robustly clean w.r.t. C.

Proof. Definition 3.4 requires that R is an IOTS, which is shown in Lemma 4.8. Furthermore,
from Lemma 4.11 we get that S is a standard for R. With Lemmas 4.10, 4.9 and 4.7, we get that R
satisfies both conditions of Definition 3.4. �

Furthermore, it is not difficult to show thatR is indeed the largest implementation that is allowed
by the contract it was constructed from.

Theorem 4.13. Let S be a finite LTS, C = 〈S,dIn,dOut,κi,κo〉 a satisfiable contract and R the

reference implementation for C. Then R is the largest implementation within C.

Proof. We know from Theorem 4.12 that R is an IOTS, which is robustly clean w.r.t. C. It
remains to show that for every LTS L′ that is robustly clean w.r.t. C, tracesω (Lδ) ⊆ tracesω (R).
Any such L′ satisfies in particular Definition 3.4.2, so it follows directly from Lemma 4.6 that R is
the largest implementation within C. �

5 MODEL-BASED DOPING TESTS

Following the conceptual ideas behind ioco, we need to construct a specification that is compatible
with our notion of robust cleanness in such a way that a test suite can be derived. Intuitively,
such a specification must be able to foresee every behaviour of the system that is allowed by the
contract. It turns out that we can take up the model-based testing theory right away with R as the
specification Spec. We get an algorithm that can generate doping test suites provided we are able
to prove that R is constructed in such a way that whenever an IUT I is robustly clean I ioco R

holds, i.e.,

∀σ ∈ traces∗(Rδ) : out(Iδ after σ) ⊆ out(Rδ after σ). (1)

ACM Transactions on Modeling and Computer Simulation, Vol. 31, No. 3, Article 16. Publication date: August 2021.

Doping Tests for Cyber-physical Systems 16:15

To work out this proof requires frequent reasoning about the functions out and after. However,
there is a strong connection between these functions and reasoning about traces, which is estab-
lished in Lemma 5.1. This enables us to use all the properties considering traces ofR from Section 4.

Lemma 5.1. Let L be an LTS, σ ∈ traces∗(Lδ) a suspension trace of L and o an output. Then,

o ∈ out(Lδ after σ) if and only if σ · o ∈ traces∗(Lδ).

Proof. By definition, o ∈ out(Lδ after σ) if and only if there is someq ∈ (Lδ after σ) for which

there is some q′ and a transition q
o
−→ q′. This holds if and only if there is a path p ∈ paths∗(Lδ)

with trace(p) = σ , last(p) = q and q
o
−→ q′. Equivalently, there can be a path p ′ ∈ paths∗(Lδ) with

trace(p ′) = σ · o, which is the case if and only if σ · o ∈ traces∗(Lδ). �

The following theorem shows that R, indeed, satisfies the conditions to serve as a specification
for model-based testing. Its proof translates the requirements enforced by ioco into trace proper-
ties and exploits the properties of R established in Section 4.

Theorem 5.2. Let S be a finite LTS, C = 〈S,dIn,dOut,κi,κo〉 a satisfiable contract, R the reference

implementation for C and let I be an IOTS, which is robustly clean w.r.t. C. Then, it holds that

I ioco R.

Proof. We have to show that for allσ ∈ traces∗(Rδ) it holds that out(Iδ after σ) ⊆ out(Rδ after

σ). From Lemma 4.7, we know that σ ∈ traces∗(R). If out(Iδ after σ) = �, the theorem trivially
holds. Otherwise, there is some o ∈ out(Iδ after σ) ⊆ Outδ and σ · o ∈ traces∗(Iδ) follows with
Lemma 5.1. By Definition 3.2, every state in Iδ has an outgoing output or quiescence transition
and hence there is an infinite trace σ ′ ∈ tracesω (Iδ) with σ ′[..|σ | + 1] = σ · o. By Definition 4.2,
Theorem 4.12, Theorem 4.13 and robust cleanness of I, we can conclude that σ ′ ∈ tracesω (Rδ).
Since σ · o is a finite prefix of σ ′, we get that σ · o ∈ traces∗(Rδ). Finally, Lemma 5.1 gives us that
o ∈ out(Rδ after σ). �

Theorem 5.2 establishes that we can use Algorithm TG to generate doping tests (in the form
of LTS) by using R as the specification model. From a theoretical point of view, the problem of
finding doping tests is solved with Corollary 5.3, which follows directly from the completeness of
TG [32, 33].

Corollary 5.3. Let S be a finite LTS, C = 〈S,dIn,dOut,κi,κo〉 a satisfiable contract and R the

reference implementation for C. Then I ioco R if and only if I passes TG({ϵ}).

However, there are several issues regarding the practicality of TG. Among them, to perform a
doping test for a given contract C, we first have to construct R. R is the largest implementation
within C and as such is infinite in size. Constructing R is necessary, because R serves as the
specification for model-based testing. In general, a specification LTS may not be computable on-
the-fly and hence TG assumes the availability of the full specification upon test case generation.
The following test generation algorithm DTG echoes Algorithm TG; however, it does not need R
as input but constructs on-the-fly only what is needed.
DTG(h) � choose nondeterministically one of the following processes:

(1) pass

(2) i; ti where i ∈ In and ti ∈ DTG(h · i)
+

∑
{o; fail | o ∈ Out ∧ o � acc(h)}

+
∑
{oj ; toj

| oj ∈ Out ∧ oj ∈ acc(h)}, where for each oj , toj
∈ DTG(h · oj)

(3)
∑
{o; fail | o ∈ Out ∪ {δ } ∧ o � acc(h)}

+
∑
{oj ; toj

| oj ∈ Out ∪ {δ } ∧ oj ∈ acc(h)}, where for each oj , toj
∈ DTG(h · oj).

ACM Transactions on Modeling and Computer Simulation, Vol. 31, No. 3, Article 16. Publication date: August 2021.

16:16 S. Biewer et al.

There are two main differences between DTG and TG. First, the input h to DTG is a single trace
instead of a set of states. That is because the construction of DTG follows the same ideas as the
construction of R, where a trace represents a state of the LTS. Moreover, R is deterministic, so
when using TG with R, the set S always contains exactly one state of R, which is a trace. The
second difference is that DTG uses a function acc instead of out. Essentially, acc(h) captures all
output transitions leaving state h in R (i.e., out({h})) without knowing (or constructing) R. Thus,
acc(h) is precisely the set of outputs that satisfies the premise in the definition of R after the trace
h, as stipulated in Definition 4.3. The definition of acc is shown in Equation (2) as follows:

acc(h) � {o ∈Outδ | (2)

∀σi ∈ tracesω (Sδ)↓i :

(∀j ≤ |h |+1 : dIn(σi [..j]↓i , (h · o)[..j]↓i) ≤ κi)

⇒ ∃σ ∈ tracesω (Sδ) : σ↓i = σi↓i ∧ dOutδ
(o,σ [|h | + 1]↓o) ≤ κo}.

The following lemma confirms that acc can be used to compute out without knowing R. Instead,
the definition of acc is defined directly for a contract C = 〈S,dIn,dOut,κi,κo〉. We emphasize this
difference in Lemma 5.4 by annotating the functions appropriately, i.e., by acc(C) and out(R).

Lemma 5.4. Let C = 〈S,dIn,dOut,κi,κo〉 be a satisfiable contract and R the reference implementa-

tion for C. For all h ∈ (In ∪Outδ)
∗, acc(C)(h) = out(R)({h}).

Proof. Leth ∈ (In∪Outδ)
∗ and o ∈ Outδ . As per Equation (2),o ∈ acc(C)(h) if and only if for any

σi ∈ tracesω (Sδ)↓i withV(|h | + 1,σi ,h · o) there exists σ ∈ tracesω (Sδ) such that σ↓i = σi↓i and
dOut(o,σ [|h |+1]↓o) ≤ κo. However, this is equivalent to the premise of the rule from Definition 4.3,

hence o ∈ acc(C)(h) if and only if there is a transition h
o
−→R h · o in R. In turn, such transition

exists if and only if o ∈ out(R)({h}). �

Although Algorithm DTG does not require R as an input, R still is the specification for which
DTG is supposed to generate test cases. Hence, we have to show that I ioco R if and only if
I passes DTG(ϵ) (as in Corollary 5.3). For this, it is serviceable to realise that for every history
h ∈ (In∪Outδ)

∗, the set of test cases TG and DTG generate are identical (i.e., the processes defining
the LTS are identical). This is expressed by the following Lemma.

Lemma 5.5. Let C be a satisfiable contract and R the reference implementation for C. Then, for

every process p ∈ P and historyh ∈ (In∪Outδ)
∗, it holds that p ∈ TG({h}) if and only if p ∈ DTG(h).

Proof. We prove the claim by structural induction on p. If p is a process name, then p = fail

or p = pass. Neither TG nor DTG produce fail for any input; however, both can always produce
pass.
If p =

∑
z∈Z az ;pz , then both TG and DTG can use choices (2) and (3) to generate p. We first show

p ∈ TG({h}) ⇒ p ∈ DTG(h) and distinguish between whether p is constructed by choice (2) or (3)
of TG.
For case (2), we fix some arbitrary i ∈ In and ti ∈ TG({h} after i). Notice that ({h} after i)
is always non-empty, because R is input enabled (Lemma 4.8). Furthermore, we fix a mapping
from accepted outputs to one of the possible recursively computed subprocess F � {(o, to) | o ∈
Out∩ out({h}) ∧ to ∈ TG({h} after o)}. Then, choice (2) of TG produces exactly one test, which is
p = i; ti +

∑
{o; fail | o ∈ Out∧o � out({h})}+

∑
{o;F (o) | o ∈ Out∧o ∈ out({h})}. We can rewrite

the test case to p ′ = i; ti +
∑
{o; fail | o ∈ Out ∧ o � acc(h)} +

∑
{o;F (o) | o ∈ Out ∧ o ∈ acc(h)}

by using that out({h}) = acc(h) from Lemma 5.4. From Definition 4.3 it follows that for every
o ∈ out({h}), ({h} after o) = {h · o}. Hence, F = {(o, to) | o ∈ Out ∩ acc(h) ∧ to ∈ TG({h · o})} =
{(o, to) | o ∈ Out ∩ acc(h) ∧ to ∈ DTG(h · o)} with the inductive hypothesis. From Lemma 4.8 and

ACM Transactions on Modeling and Computer Simulation, Vol. 31, No. 3, Article 16. Publication date: August 2021.

Doping Tests for Cyber-physical Systems 16:17

Definition 4.3, we know that ti ∈ TG({h · i}) and hence by the inductive hypothesis ti ∈ DTG(h · i).
Now, for the fixed i, ti and F , p ′ is exactly the test that is generated by choice (2) of DTG(h).
For case (3) of TG, we fix a mapping from accepted outputs to one of the possible recursively
computed subprocess F � {(o, to) | o ∈ Outδ ∩ out({h}) ∧ to ∈ TG({h} after o)}. Then, choice
(3) of TG produces exactly one test, which is

∑
{o; fail | o ∈ Outδ ∧ o � out({h})} +

∑
{o;F (o) |

o ∈ Outδ ∧ o ∈ out({h})}. We can rewrite the test case to p ′ = i; ti +
∑
{o; fail | o ∈ Outδ ∧

o � acc(h)} +
∑
{o;F (o) | o ∈ Outδ ∧ o ∈ acc(h)} by using that out({h}) = acc(h) from Lemma 5.4.

From Definition 4.3 it follows that for every o ∈ out({h}), ({h} after o) = {h · o}. From this, we
can conclude F = {(o, to) | o ∈ Outδ ∩ acc(h) ∧ to ∈ TG({h · o})} and then F = {(o, to) | o ∈
Outδ ∩ acc(h) ∧ to ∈ DTG(h · o)} with the inductive hypothesis. Now, for the fixed F , p ′ is exactly
the test that is generated by choice (3) of DTG(h).
The proof for p ∈ DTG(h) ⇒ p ∈ TG({h}) is analogue. �

With Lemma 5.5 and Corollary 5.3, we get soundness and exhaustiveness of DTG. Altogether,
DTG serves as an algorithm that can generate sound doping tests. If a test fails for some imple-
mentation, then we know that it is doped.

Theorem 5.6. Let S be a finite LTS, C = 〈S,dIn,dOut,κi,κo〉 a satisfiable contract and I an

implementation. If I is robustly clean w.r.t. C, then I passes DTG(ϵ).

Proof. Let R be the reference implementation for C. With Lemma 5.5 and Corollary 5.3, we get
that I passes DTG(ϵ) if and only if I ioco R. According to Theorem 5.2 the latter holds if I is
robustly clean w.r.t. C. �

It is worth noting that this theorem does not imply that I is robustly clean if I always passes
DTG. This is due to the intricacies of actual hyperproperties. By testing, we will never be able to
verify the first condition of Definition 3.4 (even if we consider infinitely large test suites), because
this needs a simultaneous view on all possible execution traces of I. During testing, however, we
always can observe only a single trace.

Bounded-Depth Doping Tests. We developed and proved correct Algorithm DTG, which enables
model-based testing for some contract C w.r.t. ioco without the need to explicitly construct R,
which is infinite in size. Nevertheless, practical problems remain. First, it might still be the case
that a generated test case is an LTS of infinite size. Second, even for finite test cases a practitioner
might consider it a waste of computing resources if needing to construct a test covering all pos-
sible answers of the implementation under test. Third, function acc, although independent of the
availability of R, can be hard to compute (in terms of finding an algorithm), as it involves infinite
traces. So, in light of the nature of testing, namely that every test eventually has to end, it seems
reasonable to modify the acceptance predicate acc so that it considers finite traces for its decision.
Such a bounded-depth construction is provided as Equation (3),

accb (h) � {o ∈Outδ | (3)

∀σi ∈ tracesb (Sδ)↓i :

(∀j ≤ |h |+1 : dIn(σi [..j]↓i , (h · o)[..j]↓i) ≤ κi)

⇒ ∃σ ∈ tracesb (Sδ) : σ↓i = σi↓i ∧ dOutδ
(o,σ [|h |+1]↓o) ≤ κo}.

For test history of length at most b, accb delivers all outputs that are accepted by some contract.
It is computable provided that In and Out are bounded and discretised. The only variation w.r.t.
acc in Equation (2) lies in the use of the set tracesb (Sδ), instead of tracesω (Sδ), so as to return all
traces of Sδ whose length is exactly b. Since Sδ is finite, accb can indeed be implemented.

ACM Transactions on Modeling and Computer Simulation, Vol. 31, No. 3, Article 16. Publication date: August 2021.

16:18 S. Biewer et al.

We get a bounded-depth test generation algorithm DTGb by replacing every occurrence of acc

in DTG by accb and by forcing case 1 when and only when |h | = b. Since accb only considers
finite traces, it conservatively includes extra outputs thus making tests more permissive. This is
due to the existential quantifier in the last line of Equation (3): It may be the case that the b-prefix
of some infinite trace satisfies this expression, but no infinite extension of such prefix in Sδ does.
Therefore, we have the following variation of Lemma 5.4.

Lemma 5.7. Let C = 〈S,dIn,dOut,κi,κo〉 be a contract and R the reference implementation for C.

For all b > 0 and h ∈ (In ∪Outδ)
∗ with |h | < b, acc

(C)

b
(h) ⊇ out(R)({h}).

Proof. From Lemma 5.4, we get that acc(C)(h) = out(R)({h}), hence it suffices to show that

acc(C)(h) ⊆ acc
(C)

b
(h). Let o ∈ acc(C)(h). To show that o ∈ accb (h), we may assume an arbitrary

σi ∈ tracesb (Sδ)↓i with V(|h + 1|,σi ,h · o) (notice that |h | + 1 ≤ b). σi ∈ tracesb (Sδ)↓i implies
that there is some σio ∈ tracesb (Sδ) with σio↓i = σi . By Definition 3.2, there is an infinite trace
σ̂io ∈ tracesω (Sδ) with σ̂io[..b] = σio . V(|h | + 1, σ̂io ,h · o) still holds, as |h | + 1 ≤ b = |σio | and
σ̂io[..|h | + 1]↓i = σi . From o ∈ acc(C)(h) and Equation (2), we get for σ̂io andV(|h + 1|, σ̂io ,h · o) a
trace σ̂ ∈ tracesω (Sδ) with σ̂↓i = σ̂io↓i and dOutδ

(o, σ̂ [|h | + 1]↓o) ≤ κo. Let σ = σ̂ [..|h | + 1], then
σ↓i = σi and dOutδ

(o,σ [|h | + 1]↓o) ≤ κo. This proves o ∈ accb (h). �

As a consequence of Lemma 5.7, we have that any robustly clean implementation passes the
test suite generated by DTGb , or, expressed inversely, if an implementation fails a test generated
by DTGb , then it is doped. This is stated in the following lemma.

Lemma 5.8. Let S be a finite LTS, C = 〈S,dIn,dOut,κi,κo〉 a satisfiable contract and I an imple-

mentation. Then, if I is robustly clean w.r.t. C, I passes DTGb (ϵ) for every positive integer b.

Proof. Let b ∈ N+. We prove the claim by contraposition, i.e., we show that I is not robustly
clean w.r.t. C, if ¬(I passes DTGb (ϵ)). Let I = 〈Q, In,Out,→,q0〉. Assume, there is some t ∈
DTGb (ϵ) and q′ ∈ Q , such that fail ‖ q′ is reachable from t ‖ q0. Let P = {p ∈ paths∗(t ‖
q0) | there is some q′ ∈ Q, such that last(p) = fail ‖ q′} the set of paths by which such a state
can be reached. Let (t ‖ q0) a0 · · · an−1 (tn ‖ qn) an (fail ‖ q′) = p ∈ P be the shortest of
these paths, σ = trace(p) be its trace and let h = σ [..|σ | − 1]. Since p is the shortest path in P ,
evidently tn � fail and hence tn ∈ DTGb (h). By definition of DTGb , a transition from tn to fail is
only possible in cases (2) and (3) if an ∈ Outδ (notice that Out ⊂ Outδ) and an � accb (an). With
Lemma 5.7, we get that an � acc(an). Moreover, it is easy to see from the definition of P , that if
σ ∈ traces∗(t ‖ q0), then also σ ∈ traces∗(q0) and hence σ ∈ traces∗(Iδ). As an � acc(an) (although
an ∈ Outδ), according to Equation (2), there is some σi ∈ tracesω (Sδ)↓i withV(n + 1,σi ,σ), such
that for all σ ′′ ∈ tracesω (Sδ) with σ ′′↓i = σi , it is the case that dOutδ

(an ,σ
′′[n + 1]↓o) > κo (*).

Let σio ∈ tracesω (Sδ) be such that σio↓i = σi . By Definition 3.2, each state in Iδ can proceed
by some output or quiescence. Hence, there is some infinite suffix σ+ ∈ Outδ

ω to σ , such that
(σ · σ+) ∈ tracesω (Iδ).
Now, assume that I is robustly clean w.r.t. contract C. Then, we get from Definition 3.4.2 for
σio , (σ · σ+), (n + 1) and with V(n + 1,σi ,σ) ⇐⇒ V(n + 1,σio ,σ · σ+), that there is some
trace σ ′′ ∈ tracesω (Sδ) with σ ′′↓i = σio↓i = σi and dOutδ

((σ · σ+)[n + 1]↓o ,σ
′′[n + 1]↓o) =

dOutδ
(an ,σ

′′[n+ 1]↓o) ≤ κo. However, this is a contradiction to (*), which concludes the proof. �

Since I passes DTGb (ϵ) implies I passes DTGa(ϵ) for any a ≤ b, we have in summary arrived
at a computable algorithm DTGb that for sufficiently large b (corresponding to the length of the
test) will be able to generate a doping test that will be a convicting witness for any IUTI that is not
robustly clean w.r.t. a given contract C. The transformation of the model-based testing algorithm

ACM Transactions on Modeling and Computer Simulation, Vol. 31, No. 3, Article 16. Publication date: August 2021.

Doping Tests for Cyber-physical Systems 16:19

ALGORITHM 1: Bounded-Length Doping Test (DTb)

Input: history h ∈ (In ∪Out ∪ {δ })∗

Output: pass or fail

1 c← Ωcase(h) /* Pick from one of three cases */
2 if c = 1 or |h | = b then

3 return pass /* Finish test generation */
4 else if c = 2 and no output from I is available then

5 i ← ΩIn(h) /* Pick next input */
6 i � I /* Forward input to IUT */
7 return DTb (h · i) /* Continue with next step */
8 else if c = 3 or output from I is available then

9 o � I /* Receive output from IUT */
10 if o ∈ accb (h) then

11 return DTb (h · o) /* If o is foreseen by oracle continue with next step */
12 else

13 return fail /* Otherwise, report test failure */
14 end if

15 end if

gets its finishing touch with Algorithm 1 presented below, which similar to the transformation
from TG to DTG, circumvents the need to construct the entire test LTS upfront by instead actively
reacting to the implementation under test. In this, DTb constructs on-the-fly only those parts of
the test LTS that are necessary at the given point of execution.

The algorithm shares several characteristics with DTGb . Each call receives the current history
of the test as a finite trace of inputs and outputs. DTGb eventually reaches the fail or pass state,
whereas DTb explicitly returns either of two values fail or pass. It chooses one of three cases,
where the first case exactly imitates the first case of DTGb —the test terminates by indicating suc-
cess. Cases 2 and 3 are similar, however, not identical, since DTb explicitly resolves nondeterminism
when the IUT offers some output. Case 2 of DTGb allows to decide nondeterministically to either
process this output or to pass some input to the IUT. DTb instead gives priority to processing the
output. Hence, in this case DTb enforces to use the third case of the algorithm. Notice that we con-
sider DTb as an on-the-fly algorithm simulating the parallel composition of a test case LTS with
I. Consequently, we assume that one call of the algorithm executes atomically, i.e., if I does not
offer an output in line 4, it also does not offer outputs in line 5. Case 3 handles reception of outputs
or detects quiescence. Quiescence can be recognized by using a timeout mechanism that returns
δ if no output has been received in a given amount of time, and DTb verifies whether the output
(or its absence) is valid by consulting accb . In case the output is among those foreseen by accb ,
the test continues recursively. Otherwise, the algorithm terminates with a fail verdict. If instead
the IUT is not offering an output, then it is legitimate (but not necessary) to choose Case 2 so
as to pick some input, pass it to the IUT and continue recursively to simulate a transition in the
test LTS. DTGb chooses the case to apply and the input to provide next nondeterministically. DTb

is parameterized by Ωcase and ΩIn, which can be instantiated by either nondeterminism or some
optimized test-case selection.

With Algorithm DTb , we complete a journey of transformations. The bounded-depth algorithm
effectively circumvents the fact that, except forS andSδ , all other objects we need to deal with are
countably or uncountably infinite and that the property we need to check is a hyperproperty. By
furthermore relegating the construction of the test LTS and its parallel composition (with the im-

ACM Transactions on Modeling and Computer Simulation, Vol. 31, No. 3, Article 16. Publication date: August 2021.

16:20 S. Biewer et al.

Fig. 2. NEDC speed profile.

plementation under test) into an on-the-fly-algorithm, akin to Reference [14], a practically usable
and elegant algorithm for real-world doping tests results.

6 DIESEL DOPING TESTS

The typical problems concerning the Diesel Emissions Scandal involve legally binding frameworks
for the admission of passenger cars. For Europe, this framework includes the normed emission test
New European Driving Cycle (NEDC) (see Figure 2) [34]—at the time the scandal surfaced. It
is to be carried out on a chassis dynamometer and all relevant parameters are fixed by the norm,
including for instance the outside temperature at which it is run. We will explain in this section how
our theory and algorithm can be used in practice to detect tampered emission cleaning systems.

Inputs, Outputs, and Standard LTS. The input dimension In is spanned by (a subset of) the sen-
sors the car model is equipped with (among them, e.g., temperature of the exhaust, outside tem-
perature, vertical and lateral acceleration, throttle position, time after engine start, engine rpm,
possibly height above ground level, etc.). Most substances leaving the exhaust pipe are gases or
small particles that are a result of the chemical reactions in the engine. The processes inside the
engine depends to a very large extend on the amount of injected fuel, which is controlled by the
position of the throttle. The typical way of defining how the throttle is supposed to be used is
by means of a speed trajectory. The vehicle speed is the decisive quantity specified to vary along
the NEDC (cf. Figure 2), hence, we take In = R. Nevertheless, it is possible to add further dimen-
sions of inputs; ambient air, for example, is also part of the reactions in the engine, but has much
less influence on the results than the amount of fuel. Gear changes, however, naturally produce
extreme variations on the output. Therefore, following a pattern of gear changes different from
that prescribed by the NEDC should be considered as an extreme variation of the input value (i.e.,
causing exceedance of κi). Thus, in our experiments, we carefully follow the gear change instruc-
tions of the NEDC. Gear information is omitted from our input domain. There are similar practical
reasons why other physical characteristics are neglected, but which our theory can handle easily.
For every input dimension added, there needs to be a technical counterpart that is able to measure
the appropriate values and that is synchronised with the speed and emissions sensors. To avoid
this technical overhead and for ease of presentation, we do not consider additional input dimen-
sions. The outputs Out depend on the actual objective of the test. Most tests related to the scandal
involve the measurement of the amount of NOx per kilometre that has been emitted since engine
start, but it could also be the amount of CO2, any other gases or fuel consumption. Sometimes, the
outputs of interest are not accessible directly. For example, when using only the on-board diagnos-
tics interface of the car (which is standardised as OBD-II [30]) the values reported by the on-board
NOx sensors are expressed in parts-per-million. In this case, other sensor values (e.g., mass air flow,
fuel rate and others) [24] can be used to compute the amount of NOx emitted in mg/km. All sensor
values necessary for this computation are considered being part of Out, and dOut is assumed to

ACM Transactions on Modeling and Computer Simulation, Vol. 31, No. 3, Article 16. Publication date: August 2021.

Doping Tests for Cyber-physical Systems 16:21

perform the needed conversions as part of the distance computation. In the following examples,
we use an external emissions measurement system, that internally performs the computation of
the amount of NOx in mg/km. Hence, this is the decisive output quantity and thus Out = R.

A standard LTSS can be constructed from the results of driving the NEDC cycle several times on
a chassis dynamometer, and logging both input and output values. The specific setting we consider
is that of a trace σS recorded with an emissions measurement system that is attached to the exhaust
pipe and reports the accumulated amount of NOx gases during the entire test procedure upon its
termination. Each such experiment constitutes a trace with an infinite suffix of δs (because the
experiment is finite), say σS � i1 · · · i1180 oS δ δ δ · · · . The inputs i1, · · · i1180 are given by the
NEDC over its 20 minutes (1,180 s), possibly deviating by up to 2 km/h due to human driving
imprecision (as per the official NEDC regulations), and are followed by a single output oS reporting
the NOx amount. Thus, natural distance functions are past-forgetful and compute the absolute
difference of the speed of the car for dIn and the discrepancy of the amount of gases (in mg/km) for
dOut. Formally, we define dIn(a,b) = |a − b | if a,b ∈ In, dIn(–i , –i) = 0 and dIn(a,b) = ∞ otherwise.
Similarly, dOut(a,b) = |a − b | if a,b ∈ Out, dOut(–o , –o) = dOut(δ ,δ) = 0, and dOut(a,b) = ∞
otherwise.

Contract. As discussed, absence or presence of software doping is understood relative to a con-
tract that is assumed to exist between all involved parties. From the above considerations regarding
input/output dimensions and distances, we can piece up the blueprint of a contract, except that
one needs to fix the input and output distance thresholds. In our experimental evaluation, we in-
stantiate these with κi = 15 km/h, respectively κo = 180 mg/km. The input bound allows more
variation than foreseen within the NEDC itself (2 km/h). Notably, the output bound is very gener-
ous. It is more than the double of the currently allowed legal limit (80 mg/km) of how much NOx

a car is allowed to emit at all. Ultimately, this induces a concrete contract C = 〈S,dIn,dOut,κi,κo〉

that we are going to use in the sequel. The contract is strictly speaking hypothetical (since no car
manufacturer agreed on it), but from a common-sense perspective it appears generous enough to
serve as a valid discriminator to accuse any party violating it of software doping.

Testing and Monitoring Framework. Algorithm 1 serves as a basis for real-world doping tests. It
is the core of a testing framework we have implemented in Python. This implementation, the use
case decribed here, and further accompanying documentation is archived and publicly available
at DOI 10.5281/zenodo.4709389 [7]. The framework defines the minimal requirements for imple-
mentations of distance functions, value domains and the communication interface to the imple-
mentation under test as abstract classes. We call the instantiation of the pair (Ωcase,ΩIn) test case

selection, which can also be implemented as desired, as long as it complies to the interface defined
by the framework. We want to remark that our framework implements Case 2 of DTb differently
than explained in Section 5. In practice, we cannot assume atomicity of one iteration of the test
execution. This is a well-known practical impediment of model-based testing [21]. The common
approach to circumvent this issue proceeds by delegating the decision of Algorithm 1 which case
to pick to the driver component [14] (connecting to the IUT), which is configured to be able to
look one output (or quiescence) ahead. We have adapted this approach, giving preference to Case
3 if the driver holds some output. Except for the structural constraints explained above, there are
no limitations for the specification of concrete contracts or IUTs.

Software doping tests are typically executed physically rather than in simulation. When testing
passenger cars, the driver component is a human driver. Having a human in the loop has severe
consequences. In many cases, they will fail to pass designated test inputs accurately to the car
under test. To overcome this problem of human imprecisions, we will use a technique related to
testing, which is monitoring. A monitor can read the inputs and outputs of a system to detect in-

ACM Transactions on Modeling and Computer Simulation, Vol. 31, No. 3, Article 16. Publication date: August 2021.

https://doi.org/10.5281/zenodo.4709389

16:22 S. Biewer et al.

Fig. 3. White region is encoded by a pair of piecewise linear functions found in several Volkswagen ECUs.

Black line represents the (imaginary) distance travelled when following the NEDC speed profile on a chassis

dynamometer.

correct behaviour of the system. In contrast to testing, the inputs are not provided by the test, but
instead the system is monitored during normal operation. Monitors can be either online (evalua-
tion is done while inputs are still received) or offline (observed behaviour is evaluated after the
observation). A monitor can easily be extended to a test by controlling the environment providing
the inputs to the system. In contrast to classical testing, however, the monitor has the flexibility to
handle human imprecisions. We made offline monitoring explicitly part of our testing framework.
To this end, we use its flexibility to specify a virtual implementation under test with an associated
test case selection, that can run a recorded trace with the testing algorithm being in the loop. We
present two examples showing two different approaches of how our framework can be used. Both
examples consider the Diesel Emissions Scandal.

Volkswagen Case. The first example is based on a toy implementation of an emission cleaning
system that was found in several Volkswagen diesel cars [11]. To defeat the regulations, these
systems contain (as part of obfuscated code) pairs of piecewise linear functions that delineate
certain regions in the time-distance domain. Figure 3 displays one of these pairs. The region of
interest is the white region enclosed by the grey areas, confined by the function pair. The dark
line inside this region represents the distance over time a car would have travelled according to
the NEDC test cycle. The logic of the emissions cleaning system is set up such that whenever the
distance travelled stays within the white region (as it is the case for the NEDC itself) the emission
cleaning is carried out as efficiently as possible. However, once a grey area is touched or entered,
the effectiveness of the cleaning system is reduced significantly [11] and stays like that until engine
restart. We implemented a toy version of this emission cleaning approach [7], together with an
implementation of the standard NEDC, the contract as described above, and a test case selection
according to

Ωcase(h) =

{
2 if |h | ≤ 1180

3 if |h | = 1181
ΩIn(h) = randunif [max(0, last(h) − κi) , last(h) + κi)],

which basically stops the test after 1,181 steps and otherwise meanders randomly through the
speed variations possible (randunif implements uniform randomness). Running Algorithm DTb

with these parameters is extremely likely to lead to a fail, because the chance of entering a grey

ACM Transactions on Modeling and Computer Simulation, Vol. 31, No. 3, Article 16. Publication date: August 2021.

Doping Tests for Cyber-physical Systems 16:23

area early during these test is very high. In our experiments, we had to take κi ≤ 4 to see tests
passing with some perceivable chance.

Nissan Case. The Volkswagen example above shows how our testing framework works in the-
ory. In practice, if we test cyber-physical systems like cars, it is usually not possible (or at least very
difficult) to realise the interface between DTb and the IUT. Testing a car, for example, requires a hu-
man driver who can drive the car as specified by DTb . However, the driver needs to be made aware
of the upcoming input values a few seconds in advance to be able to prepare for changes. This is
not in the spirit of our algorithm (and neither that of model-based testing), because there is no
support for look-ahead. Furthermore, human imprecisions must be taken into account. Even well
trained drivers will likely not be able to reach the prescribed speed values accurately at precisely
the right time points. Thus, for these kinds of experiments, we propose the following three-step
approach:

(1) Use the test case selection to generate a sequence of inputs that serve as a test case instruction
for a human driver. Considering a tolerance ofη for human imprecisions, the input sequences
should be generated for a contract where the input threshold is κ ′i = κi−η, i.e., assuming the
driver controls the car with an imprecision of at most tolerance η, the actually driven input
sequence will still be considered acceptable as per Definition 3.4.

(2) Utilize that test case to guide a human driver effectuating the test on the chassis dynamome-
ter, record the entire experiment, and store it as a trace.

(3) Use the monitoring capabilities of our framework to simulate the experiment with Algorithm
DTb analysing it. To this end, we provide an implementation to parse traces and to generate
a virtual IUT and a test case selection, which, when used with DTb , simulate the recorded
experiment. Algorithm DTb will return either pass or fail (i.e., there are no inconclusive
tests).

It is worth mentioning that whatever happens during the execution of a test, the observable input
sequence is handled correctly by DTb . In particular, if the input deviates too much from a standard
input, then the test is trivially passed. In this case our framework will additionally flag that the
test is passed due to inputs not covered by robust cleanness. In practice, we try to eliminate such
unproductive experiments by adequately configuring the human imprecision estimate η upfront.

For the purpose of practically demonstrating this three-step approach, we picked a Renault 1.5
dci (110 hp) (Diesel) engine. This engine runs, among others, inside a Nissan NV200 Evalia that is
classified as a Euro 6 car. The test cycle used in the original type approval of the car was NEDC
(which corresponds to Euro 6b). Emissions are cleaned using exhaust gas recirculation (EGR).
The technical core of EGR is a valve between the exhaust and intake pipe, controlled by software.
EGR is known to possibly cause performance losses, especially at higher speed. Car manufacturers
might be tempted to optimize EGR usage for engine performance unless facing a known test cycle
such as the NEDC.

We report here on two of the tests we executed apart from the NEDC reference. PowerNEDC is
a variation of the NEDC, where acceleration is increased from 0.94 m/s2 to 1.5 m/s2 in phase 6 of
the NEDC elementary urban cycle (i.e., after 56 s, 251 s, 446 s, and 641 s). It can be described by the
same Ωcase as for the Volkswagen example. ΩIn is easy to write, but we omit it here as it is rather
space consuming. The second test, called SineNEDC, defines the speed at time t to be the speed of
the NEDC at time t plus 5 · sin(0.5t) (but capped at 0). Again, Ωcase matches the Volkswagen one.
The input selection is given below.

ΩIn(h) = max

{
0,
NEDC(|h |) + 5 · sin(0.5|h |))

}
.

ACM Transactions on Modeling and Computer Simulation, Vol. 31, No. 3, Article 16. Publication date: August 2021.

16:24 S. Biewer et al.

Fig. 4. Initial 200 s of a SineNEDC (red, dotted), its test drive (green), and the NEDC driven (blue, dashed).

Figure 4 shows the initial 200 s of SineNEDC (red, dotted). The car was fixed on a Maha LPS

2000 dynamometer and attached to an AVL M.O.V.E iS portable emissions measurement system
(see Figure 5) with speed data sampling at a rate of 20 Hz, averaged to match the 1 Hz rate
of the NEDC. The human driver effectuated the NEDC with a deviation of at most 9 km/h rel-
ative to the reference (notably, the results obtained for NEDC are not consistent with the car
data sheet, likely caused by lacking calibration and absence of any further manufacturer-side
optimisations).

Fig. 5. Nissan NV200 Evalia on a dynamometer.

Table 1. Dynamometer Measurements

NEDC Power Sine

Distance [m] 11,029 11,081 11,171

Avg. Speed [km/h] 33 29 34

CO2 [g/km] 189 186 182

NOx [mg/km] 180 204 584

The PowerNEDC test drive as well as the SineNEDC test drive both deviated by less than 15 km/h
from the NEDC test drive, and hence less than κi, as per the contract described at the beginning of
this section. The green line in Figure 4 shows SineNEDC driven. The test outcomes are summarised
in Table 1. They show that the amount of CO2 for the two tests is lower than for the NEDC driven.
The NOx emissions of PowerNEDC deviate by around 24 mg/km, which is clearly below κo. But
the SineNEDC produces about 3.24 times the amount of NOx , that is 404 mg/km more than what
we measured for the NEDC, which is a violation of the contract.

7 DISCUSSION

Related Work. The present work complements white-box approaches to software doping, like
model-checking [12] or static code analysis [11] by a black-box testing approach, for which the
specification is given implicitly by a contract, and usable for on-the-fly testing. Existing test frame-
works like TGV [23] or TorX [14] provide support for the last step; however, they fall short on sce-
narios where (i) the specification is not at hand and, among others, (ii) the test input is distorted
in the testing process, e.g., by a human driving a car under test.

Our work is based on the definition of robust cleanness [12], which has conceptual similari-
ties to continuity properties [8, 22] of programs. However, continuity itself does not provide an
adequate guarantee of cleanness. This is because physical outputs (e.g., the amount of NOx gas
in the exhaust) usually do change continuously. For instance, a doped car may alter its emission

ACM Transactions on Modeling and Computer Simulation, Vol. 31, No. 3, Article 16. Publication date: August 2021.

Doping Tests for Cyber-physical Systems 16:25

cleaning in a discrete way but that induces a (rapid but) continuous change of NOx gas concentra-
tions. Established notions of stability and robustness [16, 25, 27, 29] differ from robust cleanness
in that the former assure the outputs (of a white-box system model) to stabilize despite transient
input disturbances. Robust cleanness does not consider perturbations but (intentionally) different
inputs, and needs a hyperproperty formulation.

Concluding Remarks. This work lays the theoretical foundations for black-box testing ap-
proaches geared toward uncovering doped software. As in the diesel emissions scandal—where
manufacturers were forced to pay heavy fines [28] and where executives face lawsuits and possi-
ble prison sentences [5, 17]—doped behaviour is typically related to illegal behaviour.

As we have discussed, software doping analysis comes with several challenges. It can be per-
formed (i) only after production time on the final embedded or cyber-physical product, (ii) no-
toriously without support by the manufacturer, and (iii) the property belongs to the class of
hyperproperties with alternating quantifiers. (iv) Nondeterminism and imprecision caused by a
human in-the-loop complicate doping analysis of CPS even further.

Conceptually central to the approach is a contract that is assumed to be explicitly offered by
the manufacturer. The contract itself is defined by very few parameters making it easy to form
an opinion about a concrete contract. And even if a manufacturer is not willing to provide such
contractual guarantees, instead a contract with very generous parameters can provide convincing
evidence of doping if a test uncovers the contract violation. We showed this in a real automotive
example demonstrating how a legally binding reference behaviour and a contract altogether in-
duce a finite state LTS enabling to harvest input-output conformance testing for doping tests. We
developed an algorithm that can be attached directly to a system under test or in a three-step pro-
cess, first generating a valid test case, which is then used to guide a human interacting with the
system, thereby possibly adding distortions, followed by an a-posteriori validation of the recorded
trajectory. For more effective test case selection [13, 19], we are exploring different guiding tech-
niques [1, 2, 15] for cyber-physical systems.

ACKNOWLEDGMENTS

We gratefully acknowledge Thomas Heinze, Michael Fries, and Peter Birtel (Automotive Power-
train Institute of HTW Saar) for sharing their automotive engineering expertise with us and for
providing the automotive test infrastructure.

REFERENCES

[1] Arvind S. Adimoolam, Thao Dang, Alexandre Donzé, James Kapinski, and Xiaoqing Jin. 2017. Classification and

coverage-based falsification for embedded control systems. In Proceedings of the 29th International Conference on

Computer Aided Verification (CAV’17), Lecture Notes in Computer Science, Vol. 10426. Springer, 483–503. https:

//doi.org/10.1007/978-3-319-63387-9_24

[2] Yashwanth Annpureddy, Che Liu, Georgios E. Fainekos, and Sriram Sankaranarayanan. 2011. S-TaLiRo: A tool for

temporal logic falsification for hybrid systems. In Proceedings of the 17th International Conference on Tools and Al-

gorithms for the Construction and Analysis of Systems (TACAS’11), Held as Part of the Joint European Conferences

on Theory and Practice of Software (ETAPS’11), Lecture Notes in Computer Science, Vol. 6605. Springer, 254–257.

https://doi.org/10.1007/978-3-642-19835-9_21

[3] Gilles Barthe, Pedro R. D’Argenio, Bernd Finkbeiner, and Holger Hermanns. 2016. Facets of software doping. See

Reference [26], 601–608. http://dx.doi.org/10.1007/978-3-319-47169-3_46

[4] Kevin Baum. 2016. What the hack is wrong with software doping? See Reference [26], 633–647. https://doi.org/10.

1007/978-3-319-47169-3_49

[5] BBC. 2018. Audi Chief Rupert Stadler Arrested in Diesel Emissions Probe. Retrieved January 28, 2019 from https:

//www.bbc.com/news/business-44517753.

[6] Sebastian Biewer, Pedro D’Argenio, and Holger Hermanns. 2019. Doping tests for cyber-physical systems. In Pro-

ceedings of the 16th International Conference on Quantitative Evaluation of Systems, (QEST’19), David Parker and

ACM Transactions on Modeling and Computer Simulation, Vol. 31, No. 3, Article 16. Publication date: August 2021.

https://doi.org/10.1007/978-3-319-63387-9_24
https://doi.org/10.1007/978-3-642-19835-9_21
http://dx.doi.org/10.1007/978-3-319-47169-3_46
https://doi.org/10.1007/978-3-319-47169-3_49
https://www.bbc.com/news/business-44517753

16:26 S. Biewer et al.

Verena Wolf (Eds.), Lecture Notes in Computer Science, Vol. 11785. Springer, 313–331. https://doi.org/10.1007/978-

3-030-30281-8_18

[7] Sebastian Biewer, Pedro R. D’Argenio, and Holger Hermanns. 2021. Doping tests for cyber-physical systems—Tool.

https://doi.org/10.5281/zenodo.4709389

[8] Swarat Chaudhuri, Sumit Gulwani, and Roberto Lublinerman. 2010. Continuity analysis of programs. In Proceedings

of the 37th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL’10). ACM, 57–70. http:

//doi.acm.org/10.1145/1706299.1706308

[9] Michael R. Clarkson, Bernd Finkbeiner, Masoud Koleini, Kristopher K. Micinski, Markus N. Rabe, and César Sánchez.

2014. Temporal logics for hyperproperties. In Proceedings of the 3rd International Conference on Principles of Security

and Trust (POST’14), Held as Part of the European Joint Conferences on Theory and Practice of Software (ETAPS’14),

Lecture Notes in Computer Science, Vol. 8414. Springer, 265–284. https://doi.org/10.1007/978-3-642-54792-8_15

[10] Michael R. Clarkson and Fred B. Schneider. 2008. Hyperproperties. In Proceedings of the Computer Security Foundations

Symposium (CSF’08). 51–65. http://dx.doi.org/10.1109/CSF.2008.7

[11] Moritz Contag, Guo Li, Andre Pawlowski, Felix Domke, Kirill Levchenko, Thorsten Holz, and Stefan Savage. 2017.

How they did it: An analysis of emission defeat devices in modern automobiles. In Proceedings of the IEEE Symposium

on Security and Privacy (SP’17). IEEE Computer Society, 231–250. https://doi.org/10.1109/SP.2017.66

[12] Pedro R. D’Argenio, Gilles Barthe, Sebastian Biewer, Bernd Finkbeiner, and Holger Hermanns. 2017. Is your software

on dope? Formal analysis of surreptitiously “enhanced” programs. In Proceedings of the 26th European Symposium on

Programming (ESOP’17), Lecture Notes in Computer Science, Vol. 10201. Springer, 83–110. https://doi.org/10.1007/978-

3-662-54434-1_4

[13] R. G. de Vries. 2001. Towards formal test purposes. In Proceedings of the Formal Approaches to Testing of Software 2001

(FATES’01) BRICS Notes Series. BRICS, University of Aarhus, 61–76.

[14] René G. de Vries and Jan Tretmans. 2000. On-the-fly conformance testing using SPIN. Int. J. Softw. Tools Technol. Transf.

2, 4 (2000), 382–393. https://doi.org/10.1007/s100090050044

[15] Jyotirmoy V. Deshmukh, Xiaoqing Jin, James Kapinski, and Oded Maler. 2015. Stochastic local search for falsification

of hybrid systems. In Proceedings of the 13th International Symposium on Automated Technology for Verification and

Analysis (ATVA’15), Lecture Notes in Computer Science, Vol. 9364. Springer, 500–517. https://doi.org/10.1007/978-3-

319-24953-7_35

[16] Laurent Doyen, Thomas A. Henzinger, Axel Legay, and Dejan Nickovic. 2010. Robustness of sequential circuits. In Pro-

ceedings of the 10th International Conference on Application of Concurrency to System Design (ACSD’10). IEEE Computer

Society, 77–84. https://doi.org/10.1109/ACSD.2010.26

[17] Jack Ewing. 2018. Ex-Volkswagen C.E.O. Charged with Fraud over Diesel Emissions. New York Times. Retrieved Jan-

uary 28, 2019 from https://www.nytimes.com/2018/05/03/business/volkswagen-ceo-diesel-fraud.html. https://www.

nytimes.com/2018/05/03/business/volkswagen-ceo-diesel-fraud.html.

[18] Georgios E. Fainekos and George J. Pappas. 2009. Robustness of temporal logic specifications for continuous-time

signals. Theor. Comput. Sci. 410, 42 (2009), 4262–4291. https://doi.org/10.1016/j.tcs.2009.06.021

[19] Loe M. G. Feijs, Nicolae Goga, Sjouke Mauw, and Jan Tretmans. 2002. Test selection, trace distance and heuristics. In

Proceedings of the IFIP 14th International Conference on Testing Communicating Systems (TestCom’02), Vol. 210. Kluwer,

267–282.

[20] Bernd Finkbeiner, Markus N. Rabe, and César Sánchez. 2015. Algorithms for model checking HyperLTL and

HyperCTL∗. In Proceedings of the International Conference on Computer Aided Verification (CAV’15), Lecture Notes

in Computer Science, Vol. 9206. Springer, 30–48. http://dx.doi.org/10.1007/978-3-319-21690-4_3

[21] Alexander Graf-Brill and Holger Hermanns. 2017. Model-based testing for asynchronous systems. In Proceedings of the

Joint 22nd International Workshop on Formal Methods for Industrial Critical Systems and 17th International Workshop on

Automated Verification of Critical Systems (FMICS-AVoCS’17), Laure Petrucci, Cristina Seceleanu, and Ana Cavalcanti

(Eds.), Lecture Notes in Computer Science, Vol. 10471. Springer, 66–82. https://doi.org/10.1007/978-3-319-67113-0_5

[22] Dick Hamlet. 2002. Continuity in sofware systems. In Proceedings of the International Symposium on Software Testing

and Analysis (ISSTA’02). ACM, 196–200. https://doi.org/10.1145/566172.566203

[23] Claude Jard and Thierry Jéron. 2005. TGV: Theory, principles and algorithms. Int. J. Softw. Tools Technol. Transf. 7, 4

(2005), 297–315. https://doi.org/10.1007/s10009-004-0153-x

[24] Maximilian A. Köhl, Holger Hermanns, and Sebastian Biewer. 2018. Efficient monitoring of real driving emissions.

In Proceedings of the 18th International Conference on Runtime Verification (RV’18), Christian Colombo and Martin

Leucker (Eds.), Lecture Notes in Computer Science, Vol. 11237. Springer, 299–315. https://doi.org/10.1007/978-3-030-

03769-7_17

[25] Rupak Majumdar and Indranil Saha. 2009. Symbolic robustness analysis. In Proceedings of the 30th IEEE Real-Time

Systems Symposium (RTSS’09). IEEE Computer Society, 355–363. https://doi.org/10.1109/RTSS.2009.17

ACM Transactions on Modeling and Computer Simulation, Vol. 31, No. 3, Article 16. Publication date: August 2021.

https://doi.org/10.1007/978-3-030-30281-8_18
https://doi.org/10.5281/zenodo.4709389
http://doi.acm.org/10.1145/1706299.1706308
https://doi.org/10.1007/978-3-642-54792-8_15
http://dx.doi.org/10.1109/CSF.2008.7
https://doi.org/10.1109/SP.2017.66
https://doi.org/10.1007/978-3-662-54434-1_4
https://doi.org/10.1007/s100090050044
https://doi.org/10.1007/978-3-319-24953-7_35
https://doi.org/10.1109/ACSD.2010.26
https://www.nytimes.com/2018/05/03/business/volkswagen-ceo-diesel-fraud.html
https://www.nytimes.com/2018/05/03/business/volkswagen-ceo-diesel-fraud.html
https://doi.org/10.1016/j.tcs.2009.06.021
http://dx.doi.org/10.1007/978-3-319-21690-4_3
https://doi.org/10.1007/978-3-319-67113-0_5
https://doi.org/10.1145/566172.566203
https://doi.org/10.1007/s10009-004-0153-x
https://doi.org/10.1007/978-3-030-03769-7_17
https://doi.org/10.1109/RTSS.2009.17

Doping Tests for Cyber-physical Systems 16:27

[26] Tiziana Margaria and Bernhard Steffen (Eds.). 2016. In Proceedings of the 7th International Symposium on Leveraging

Applications of Formal Methods, Verification and Validation: Discussion, Dissemination, Applications (ISoLA’16), Part II.

Lecture Notes in Computer Science, Vol. 9953. http://dx.doi.org/10.1007/978-3-319-47169-3

[27] S. Pettersson and B. Lennartson. 1996. Stability and robustness for hybrid systems. In Proceedings of 35th IEEE Confer-

ence on Decision and Control, Vol. 2. 1202–1207 vol.2.

[28] Charles Riley. 2018. Volkswagen’s Diesel Scandal Costs Hit $30 Billion. CNN Business. Retrieved January 28, 2019

from https://money.cnn.com/2017/09/29/investing/volkswagen-diesel-cost-30-billion/index.html.

[29] Paulo Tabuada, Ayca Balkan, Sina Y. Caliskan, Yasser Shoukry, and Rupak Majumdar. 2012. Input-output robustness

for discrete systems. In Proceedings of the 12th International Conference on Embedded Software (EMSOFT’12). ACM,

217–226. http://doi.acm.org/10.1145/2380356.2380396

[30] The European Parliament and the Council of the European Union. 1998. Directive 98/69/EC of the European Parlia-

ment and of the Council. Official Journal of the European Communities (1998). Retrieved from http://eur-lex.europa.

eu/LexUriServ/LexUriServ.do?uri=CELEX:31998L0069:EN:HTML.

[31] Jan Tretmans. 1992. A Formal Approach to Conformance Testing. Ph.D. Dissertation. University of Twente, Enschede,

Netherlands.

[32] Jan Tretmans. 1996. Conformance testing with labelled transition systems: Implementation relations and test genera-

tion. Comput. Netw. ISDN Syst. 29, 1 (1996), 49–79. https://doi.org/10.1016/S0169-7552(96)00017-7

[33] Jan Tretmans. 2008. Model based testing with labelled transition systems. In Formal Methods and Testing, An Outcome

of the FORTEST Network, Revised Selected Papers, Lecture Notes in Computer Science, Vol. 4949. Springer, 1–38. https:

//doi.org/10.1007/978-3-540-78917-8_1

[34] United Nations. 2013. UN Vehicle Regulations—1958 Agreement, Revision 2, Addendum 100, Regulation No. 101,

Revision 3—E/ECE/324/Rev.2/Add.100/Rev.3. Retrieved from http://www.unece.org/trans/main/wp29/wp29regs101-

120.html.

[35] Rob van Glabbeek. 2001. The linear time-branching time spectrum I: The semantics of concrete, sequential processes.

In Handbook of Process Algebra. Elsevier, 3–99.

Received March 2020; revised September 2020; accepted January 2021

ACM Transactions on Modeling and Computer Simulation, Vol. 31, No. 3, Article 16. Publication date: August 2021.

http://dx.doi.org/10.1007/978-3-319-47169-3
https://money.cnn.com/2017/09/29/investing/volkswagen-diesel-cost-30-billion/index.html
http://doi.acm.org/10.1145/2380356.2380396
http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=CELEX:31998L0069:EN:HTML
https://doi.org/10.1016/S0169-7552(96)00017-7
https://doi.org/10.1007/978-3-540-78917-8_1
http://www.unece.org/trans/main/wp29/wp29regs101-120.html

