
Performance Characterization of State-Of-The-Art
Deep Learning Workloads on an IBM “Minsky” Platform

Mauricio Guignard
FAMAF, Universidad Nacional de Córdoba

mguignard311@famaf.unc.edu.ar

Marcelo Schild
FAMAF, Universidad Nacional de Córdoba

marceloschild90@gmail.com

Carlos S. Bederián
FAMAF, Universidad Nacional de Córdoba

CONICET
bc@famaf.unc.edu.ar

Nicolás Wolovick
FAMAF, Universidad Nacional de Córdoba

nicolasw@famaf.unc.edu.ar

Augusto J. Vega
IBM T. J. Watson Research Center

ajvega@us.ibm.com

Abstract

Deep learning algorithms are known to demand
significant computing horsepower, in particular when
it comes to training these models. The capability of
developing new algorithms and improving the existing
ones is in part determined by the speed at which these
models can be trained and tested. One alternative
to attain significant performance gains is through
hardware acceleration. However, deep learning has
evolved into a large variety of models, including but not
limited to fully-connected, convolutional, recurrent and
memory networks. Therefore, it appears difficult that a
single solution can provide effective acceleration for this
entire deep learning ecosystem.

This work presents detailed characterization
results of a set of archetypal state-of-the-art deep
learning workloads on a last-generation IBM POWER8
system with NVIDIA Tesla P100 GPUs and NVLink
interconnects. The goal is to identify the performance
bottlenecks (i.e. the accelerable portions) to provide a
thorough study that can guide the design of prospective
acceleration platforms in a more effective manner.
In addition, we analyze the role of the GPU (as
one particular type of acceleration engine) and its
effectiveness as a function of the size of the problem.

This research was developed, in part, with funding from the
Defense Advanced Research Projects Agency (DARPA). The views,
opinions and/or findings expressed are those of the authors and should
not be interpreted as representing the official views or policies of the
Department of Defense or the U.S. Government.

1. Introduction
The current success of deep learning techniques

for machine learning is directly related to three
complementary trends: the progress in new algorithms,
the availability of big amounts of labeled data and the
increasing computational power. Improving one of these
areas usually demands improvements in the others. In
particular, it has been noticed that research productivity
is inversely proportional to the turnaround time of a deep
learning experiment. While a few days is considered
as tolerable, weeks are considered as “progress stalls”
and experiments that take about a month are simply not
worth running [1].

The huge computational demand from existing deep
learning methods is driving a variety of new hardware
solutions that emerge as deep learning application
platforms. In recent months, platforms like Google’s
tensor processing unit (TPU) [2], NVIDIA’s DGX-1
[3] and IBM’s “Minsky” [4] have been announced
or released, to mention just a few relevant examples.
Hardware design has started to be shaped according to
the needs of deep learning models with performance
improvements that range from 10 to 100 times over
conventional computing systems. As a result, previously
intractable research problems turned into overnight
jobs, opening up new types of learning algorithms and
research opportunities.

However, significantly higher levels of performance
and power efficiency are necessary in computationally
constrained environments, like mobile applications and
the Internet of Things (IoT) — unmanned aerial vehicles
(drones), driverless cars, and “wearable” devices,

Proceedings of the 51st Hawaii International Conference on System Sciences | 2018

URI: http://hdl.handle.net/10125/50591
ISBN: 978-0-9981331-1-9
(CC BY-NC-ND 4.0)

Page 5619



among others. These aggressive performance and
efficiency targets can be provided through hardware
acceleration and low-voltage operation. Authors of this
paper are pursuing related efforts as part of DARPA’s
Power Efficiency Revolution For Embedded Computing
Technologies (PERFECT) program [5], where one of
the goals is to develop ultra-efficient (low-voltage)
hardware accelerators for deep neural networks. With
the objective of choosing the most representative deep
learning models to guide the design decisions in
PERFECT, we conducted a search to find a set of
workloads which had a significant impact in deep
learning research and that properly reflects the current
state-of-the-art in deep learning algorithms, while still
keeping the size of the set within a manageable number.
This led our attention to Fathom [6], a set of workloads
put together by a PERFECT-player group at Harvard
University.

In order to contribute to the current state-of-the-art
in hardware platforms for deep learning methods,
we execute Fathom on an IBM “Minsky” platform
to characterize its performance and identify potential
bottlenecks. The Minsky platform used in this work
consists of two POWER8 CPUs with ten cores each,
and four NVIDIA Tesla P100 GPUs, interconnected
via NVIDIA NVLink [7]. We conduct a high-level
analysis to highlight execution characteristics in the
context of the Fathom benchmark suite. We identify
the types of operations that represent a significant
amount of the total execution time (most of them
related to GPU kernels), measure similarity between
deep learning models, compare performance differences
between training and inference, and understand the
effects of parallel scalability. Specifically, this paper
makes the following contributions:

• We provide a quantitative analysis of the
computational behavior of the Fathom workloads
when they are executed in CPU-only and
CPU+GPU modes. This study can provide
insightful guidelines for the design of
effective deep learning accelerators within the
DARPA-sponsored PERFECT project.

• We confirm the performance advantage exhibited
by an IBM “Minsky” system when executing deep
learning networks.

The remainder of the paper is organized as follows.
Section 2 presents the Fathom benchmark suite and
describes its eight constituent applications. Section
3 presents the POWER8 “Minsky” system used in
this work. Section 4 describes the characterization
methodology and the porting of the Fathom benchmark
suite, and presents the performance characterization
results. Finally, Section 5 presents our conclusions.

2. Fathom
Fathom is a set of eight reference implementations

of state-of-the-art deep learning models. It is
implemented using TensorFlow [8], an open source
software library for numerical computation using data
flow graphs. It allows computation deployment to one
or more CPUs or GPUs. Each of the Fathom workloads
are described below.

2.1. AlexNet
AlexNet is a deep neural network (DNN) used for

image classification. It consists of 5 convolutional
layers, some of which are followed by max-pooling
layers, and three fully-connected layers with a 1000-way
SoftMax function at the end. Its main contribution
was showing the computational power of GPUs when
training neural networks with non-saturating neurons,
as well as the introduction of a “dropout” regulation
mechanism. This mechanism consists of setting the
output of hidden neurons to zero with a probability of
0.5. Those neurons do not contribute to forwarding and
neither participate in back-propagation, which was an
effective way of reducing over fitting [9].

2.2. Variational Autoencoder
Autoenc is a stochastic variational inference and

learning algorithm that scales to large datasets. It
is a flexible unsupervised model that makes statistical
assumptions about compact representations of realistic
inputs, in order to reconstruct such inputs, providing
a way to both analyze and synthesize data. These
models require training and stochastic sampling for
proper inference operation [10], and are often used
for dimensionality reduction, feature extraction, or
generating data [11].

2.3. Deep Reinforcement Learning
DeepQ [13] is a deep reinforcement learning system

that learns playing Atari games just by “looking”
at pixels and scores. Its actions improve as it
receives in-game feedback, which distinguishes it
from regular supervised algorithms that just try to
reproduce the perfect play. The model consists of a
convolutional neural network that selects actions using
2-3 convolutional layers and 2-3 dense layers. It
is trained with a variant of Q-learning, whose input
consists of raw pixels and that delivers a value that
estimates future rewards.

2.4. End-to-End Memory Networks
Memnet is a neural network with a recurrent

attention model over an indirectly addressed external
memory. The idea is to decouple the net’s state from its
structure. It behaves similarly to any memory network
[14], but unlike these, Memnet is trained end-to-end,
which drastically reduces the required supervision
during training, making it available for more general

Page 5620



80 GB/s
NVLink

80
 G

B
/s

N
VL
in
k

TESLA
P100 GPU

38.4 GB/s 115 GB/s115 GB/s

80 G
B

/s

N
VLink

POWER8
CPU

System
Memory

80
 G

B
/s

N
VL
in
k

80 G
B

/s

N
VLink

POWER8
CPU

System
Memory

TESLA
P100 GPU

80 GB/s
NVLink

TESLA
P100 GPU

TESLA
P100 GPU

Figure 1: Minsky data flow diagram [4][12].

applications. It can also be seen as a recurrent neural
network (RNN), since multiple computational steps are
performed for each output symbol. The flexibility of
this model allows its application to diverse tasks such as
question answering and language modeling. It presents
good performance in both cases, showing that the key
concept of multiple computational hops produces better
results [15].

2.5. Sequence-to-Sequence Translation
Seq2seq is an RNN used to perform translations. It

uses a multi-layered long short-term memory (LSTM)
pipeline to map an input sequence to a vector of a fixed
dimensionality, and then another deep LSTM to decode
the target sequence from the vector. It basically extracts
the meaning out of the sentence and then builds the
idea in another language. The core neural network is
comprised of three 7-neuron layers through which word
tokens flow unidirectionally. Sequence-to-sequence
translation achieved the best-of-breed accuracy. The key
feature that made it outperform other RNNs consisted of
reversing the words in the source sentences [16].

2.6. Residual Networks
Residual networks are used for visual recognition

tasks. They play a key role to enable deeper neural
networks by directly attacking the problem where
increasing the depth of the network degrades both
training and validation errors. This is done by
adding additional identity connections on each pair of
convolutional layers, training them on the difference
between their input and output [17].

2.7. VGG-19
VGG is a 19-layer convolutional neural network

used for large-scale image recognition. Inspired by
AlexNet, its main contribution is a thorough evaluation
of convolutional networks of increasing depth but with
very small convolutional filters. This has shown a
significant improvement related to older techniques
when increasing the depth to 16-19 layers [18], meaning

that smaller convolutional filters are easier to train.

2.8. Deep Speech
Deep Speech [19] is a scalable speech recognition

model. It consists in a RNN that uses spectrograms
as inputs and learns to convert them into phonemes,
which are distinct units of sound in a specified language
that distinguish one word from another. This model
implementation is very efficient and it was designed to
run on GPU platforms.

3. IBM “Minsky” Platform
The Minsky platform is the result of a

co-development effort between IBM and NVIDIA
that pairs the strengths of the POWER8 CPU with four
NVIDIA Tesla P100 GPUs [4]. These best-in-class
processors are tightly bound with NVIDIA NVLink
interconnects, which provide high bandwidth and low
latency connections between CPUs and GPUs. NVLink
delivers more than 2.5 times greater bandwidth than
PCIe 3.0 16x and also allows the NVIDIA Tesla P100
GPUs to access the dual POWER8 CPUs massive
memory bandwidth [7]. This combination makes
Minsky capable of delivering extreme performance
on traditional high-performance computing (HPC)
applications as well as on high-performance data
analytics applications. Figure 1 presents a diagram
that shows how Minsky provides uncompromised data
movement between GPUs and from GPUs to the main
system memory without a bottleneck [7].

IBM’s POWER8 processor is a reduced instruction
set computer (RISC) microprocessor with 10 cores with
a maximum of eight threads each, fabricated using the
22-nm silicon-on-insulator (SOI) technology with 15
layers of metal. It has been designed to provide high
single-thread performance and single-core throughput,
achieving 1.5 times the single-thread performance of its
predecessor (IBM POWER7) and twice its single-core
throughput in many commercial applications [20]. In
order to satisfy the high bandwidth requirement of

Page 5621



nowadays HPC workloads, each processor has four
memory channels running at 9.6 GB/s, capable of
containing two load byte operations and one store byte
operation in the load/store pipeline at a given cycle. This
results in a 115.2GB/s memory bandwidth (4 channels
x 9.6GB/s x 3 bytes = 115.2GB/s) between each CPU
and its corresponding RAM memory. Each processor is
connected to 256 GBs of RAM memory, making a total
of 512 GB of RAM. However, the available bandwidth
in the CPU-CPU communication is just 38.4GB/s, since
it is implemented with an SMP X-bus (1 X-bus x 8 bytes
x 4.8GHz = 38.4GB/s) [12], which makes it a possible
bottleneck when trying to access memory from another
processor.

As for the NVIDIA Tesla P100 GPU, it has
been designed for challenging HPC and deep learning
applications. Built with NVIDIA’s Pascal architecture
and with 3584 CUDA cores, it provides high floating
point performance, delivering 21 teraflops (TFLOPs) of
half-precision, 10.6 TFLOPs of single-precision and 5.3
TFLOPs of double-precision performance. This GPU
has 16 GB of HBM2 stacked memory with an on-GPU
memory bandwidth of 720 GiB/s [21]. Through the
use of NVLink, this technology substantially accelerates
time-to-solution for strong-scale applications.

4. Performance Characterization of Deep
Learning Workloads on Minsky
As part of the characterization conducted in this

work, we consider imperative to identify and understand
the potential performance bottlenecks when Fathom is
run on Minsky. However, the complexity, as well as the
dynamically-compiled and the dataflow-oriented nature
of the TensorFlow runtime system, limit the capabilities
of most performance analysis tools. Consequently, we
perform a high-level analysis of the different sections of
the models defined as the distinctive functions in charge
of the setup, training (policy gradient optimizer creation
and application) and inference (operation execution and
evaluation). In order to understand the total execution as
a whole we also inspect the output of the NVIDIA nvprof
profiling tool in the interest of describing the GPU usage
characteristics of the various workloads by looking at
the executed kernels, their wall times and the application
programming interface (API) calls.

4.1. Porting Fathom to Minsky
The Fathom benchmark suite was originally

published and released in September 2016 [6] and the
TensorFlow API has rapidly changed since then. In
order to take advantage of the available IBM PowerAI
suite and its TensorFlow v1.0.1 framework optimized
for the Minsky platform, we first upgraded Fathom to
make use of TensorFlow’s 1.0 API, considering that
it was changed in ways that were not fully backward

compatible with the deprecated TensorFlow 0.8.0rc0
API required by Fathom. For this reason, we refactored
some package imports, function names and parameters
while trying to stay true to the officially published
release: Fathom 0.9-soft. As result of this work, we
submitted a pull request to the Fathom’s official GitHub
repository, commits that were accepted by merging
them to the upstream master branch on May 15 2017
[22] These changes allow Fathom to operate using the
TensorFlow 1.0.x framework.

It is also important to mention that the version of
Fathom used at the time of this work does not support
multi-GPU execution. In order to keep our experiments
consistent with the single-GPU results presented in
Fathom’s original paper [6], we disabled three out of
four NVIDIA Tesla P100 GPUs in our Minsky system.
This eliminated the overhead caused by TensorFlow
while initializing all four GPUs, which despite being
very small, represented about 14% of the total execution
time of the smallest workload.

4.2. Defining the measurement procedure
This section describes the procedure followed to

conduct the measurements presented in this paper. In
order to understand the execution time breakdown, we
partition each Fathom workload in different sections
taking into account the standard model interface
exposed by the Fathom applications. Although we
identify several sections throughout our measurements,
we focus just on those defined by the init, setup and
run methods of the exposed interface since we are
particularly interested in the behavior of the workloads
when running in CPU-only versus CPU+GPU modes.

We use Python’s time.time() function to measure the
execution time of the different sections. In the context of
the Linux operating system, time.time() provides enough
resolution for the sake of our analysis, given that it
has a much more precise granularity than 1/100th of a
second [23]. Similarly, we build a simple C program
that runs all the workloads and measures the elapsed
time of each execution using the omp get wtime()
function provided by the OpenMP library, confirming
first that it has an 1e-9 second granularity using the
omp get wtick() function of the same library [24]. This
allows us to remove the one-time overhead related to the
initialization of Python, TensorFlow and the GPUs.

As mentioned in the previous subsection,
since none of the workloads use more than one
GPU, we disable the other three GPUs in all
the CPU+GPU measurements by setting the
CUDA VISIBLE DEVICES environment variable
to “0”. In this way, we ensure that the measurements
do not include avoidable GPU overhead that could
otherwise compromise the results.

Finally, since we perform our experiments in a

Page 5622



0

10

20

30

40

50

60

70

80

90

100

2 4 6 8 10 12 14 16 18 20

P
ar

a
lle

l e
ffi

ci
en

cy
 (

%
)

CPU cores

AlexNet
Autoenc
DeepQ

Memnet
Residual
Seq2seq

VGG

Figure 2: Parallel efficiency of the Fathom models.

cluster that uses the IBM Spectrum LSF workload
manager, we execute 10 warm-up runs and 200
measurement runs for each workload with the goal of
keeping system noise to a minimum.

4.3. Parallelism of the workloads
Since many of the leading operations in deep

learning workloads are susceptible to parallelization,
and nearly all of the existing work on architectural
support for these models involves parallel hardware to
some extent, we measure the CPU parallel scalability
of the models to understand more deeply the benefits of
using multi-core systems.

Figure 2 presents the parallel efficiency of the
workloads measured as the speedup divided by the
number of CPU cores used. We use the default
TensorFlow thread pool configuration for the underlying
Eigen library and increase the CPU affinity setting
to restrict the number of available cores from 1 to
20. As GPU-accelerated computing allow us to
offload compute-intensive portions of the applications
to the GPUs, we find indispensable to understand
how the workloads behave as the CPU core count
increases, taking into account that the massively parallel
architecture of the GPUs consists of thousands of small
but more efficient cores designed for handling multiple
tasks simultaneously.

As a result of this analysis, we can see that
AlexNet, Residual and VGG exhibit relatively good
scalability. However, as parallel resources are applied to
the network, the parallel efficiency diminishes in relative
importance in accordance with Amdahl’s law [25]. On
the other hand, Autoenc and Memnet do not parallelize
well since the main operations, albeit frequent, operate
on small, “skinny” tensors which trip-count is not large
enough for thread-level parallelism. Memnet’s behavior,
in particular, is not unexpected since it is somewhat of

an odd network to measure in the first place, considering
that it was conceived with a research objective in
contrast to, let say, VGG which has had much more
effort put into fast execution. This in conjunction with
the fact that the operations that Memnet carries out are
not so much optimized in TensorFlow, since it is more
a mixture of arithmetic, are the reason why we observe
such a shallow parallel efficiency and performance in
our measurements.

4.4. Measurement and analysis
First, it is necessary to mention that since we

are not able to obtain the TIMIT corpus [26] due to
licensing-related restrictions, in order not to detach from
Fathom’s original paper by replacing the dataset used in
its performance breakdown, we exclude Deep Speech
from the measurements and analysis presented below.

Figure 3 shows the execution time of the Fathom
workloads normalized to the CPU-only mode. Figure 4
presents the execution time variance of the workloads
normalized to the average CPU-only execution time
for each of them. At first sight it is visible that all
the Fathom workloads that depend on the ImageNet
dataset [27], that is to say AlexNet, VGG and Residual,
have extensive performance benefits when running on
GPU. This behavior is in line with the total time spent
by each workload, being the performance speedups
more meaningful in those models where computational
demand is higher.

This partially explains the deep learning community
tendency of using GPUs to improve the object

0

0.2

0.4

0.6

0.8

1

1.2

Al
ex

N
et

Au
to

en
c

D
ee

pQ

M
em

ne
t

R
es

id
ua

l

Se
q2

se
q

VG
G

N
or

m
al

iz
ed

 e
xe

cu
tio

n 
tim

e CPU-only
CPU+GPU

Figure 3: Performance of the Fathom workloads
relative to the CPU-only total execution time.

CPU+GPU executions use only one GPU. Relative
performance differences indicate the benefits and
disadvantages exhibited by each workload when

running in CPU-only or CPU+GPU modes, using the
default Fathom settings.

Page 5623



a) AlexNet b) Autoenc c) DeepQ d) Memnet

0
10
20
30
40
50

0 0.2 0.4 0.6 0.8 1

S
am

pl
e 

co
un

t

Normalized execution time

0
10
20
30
40
50

0 0.2 0.4 0.6 0.8 1

S
am

pl
e 

co
un

t

Normalized execution time

0
20
40
60
80

100
120

0 0.2 0.4 0.6 0.8 1

S
am

pl
e 

co
un

t

Normalized execution time

0
10
20
30
40
50
60
70

0 0.2 0.4 0.6 0.8 1 1.2

S
am

pl
e 

co
un

t

Normalized execution time

e) Residual f) Seq2seq g) VGG

0
10
20
30
40
50
60
70
80

0 0.2 0.4 0.6 0.8 1

S
am

pl
e 

co
un

t

Normalized execution time

0
10
20
30
40
50
60

0 0.2 0.4 0.6 0.8 1

S
am

pl
e 

co
un

t

Normalized execution time

0
10
20
30
40
50
60
70

0 0.2 0.4 0.6 0.8 1

S
am

pl
e 

co
un

t

Normalized execution time

CPU-only

CPU+GPU

Figure 4: Execution time variance of the different samples of the various workloads.

recognition accuracy of their deep learning algorithms,
considering that already in 2014 90% of the ImageNet
teams used GPUs [28]. At the same time, we
perceive that even though the GPU measurements
also experience variability, they are consistently lower
than their CPU-only counterparts across the various
workloads, given that the code executed in the GPU is
not affected by the operative system noise to the same
extent as the CPU [29].

Table 1: GPU computation and memory usage
efficiency.

Workload Kernels execu�on �me 
API call �me 

Memcpy 
kernels 

time (%) 
AlexNet 0.4298 3.2684 
Autoenc 0.0010 15.9910 
DeepQ 0.2585 11.1250 

Memnet 0.0804 2.0889 
Residual 0.8783 0.4036 
Seq2seq 0.1911 0.9066 

VGG 0.6278 1.4992 

Observing Table 1, we can further analyze this
behavior. When running on GPU and inspecting the
nvprof reports, we find out that both Residual and VGG
have 87.8% and 62.8% kernel efficiencies relative to
the total CPU time used by the API calls, respectively,
with data transfers between CPU and GPU taking less
than 1.5% of the total kernel execution time in both
cases. AlexNet, meanwhile, has almost 43% kernel
usage efficiency increasing the data transfer overhead
to about 3.25%, whereas Autoenc and Memnet do

not benefit from using the GPU, consistent with the
lack of parallel efficiency discussed in Section 4.3.
Indeed, the performance of Autoenc and Memnet is
compromised as a result of the GPU initialization,
the data transfer and memory release overheads that
represents more than 50% of the CPU time used by the
GPU API calls. Autoenc, in particular, given its very
low GPU usage measured in just microseconds obtains
the lowest relative performance as a consequence of the
high overhead produced by cudaFree, cudaLaunch and
cuDevicePrimaryCtxRetain that represents almost the
100% of the API overhead.

4.5. Workloads breakdown
Table 2 presents the execution time breakdown of

the different sections identified in the Fathom workloads
normalized to the average total execution time (wall
time) of each of them in CPU-only mode when running
with the default Fathom settings.

This information supports the observations
discussed in Section 4.4: workloads have to be
sufficiently computational demanding to fully exploit
the benefits of the Minsky platform so that performance
is not significantly affected by the Python, TensorFlow
and GPUs initialization overheads which, albeit small,
represents almost 61% of the run time of the smallest
Fathom models. This overhead, however, is inherent
of the TensorFlow framework, despite the fact of being
relatively insignificant when compared with the wall
time of the higher computational demanding workloads
as Residual and VGG.

We can observe that the time used by the init
defined section remains stable and it is not benefited or
harmed by the GPU utilization. The run time, on the
other hand, as expected, is where we can recognize how
the GPU-accelerated computing allow us to decrease
the time spent by offloading the most compute-intensive

Page 5624



Table 2: Normalized execution time for the sections identified in the Fathom workloads.

Workload 
Sec�on 

AlexNet Autoenc DeepQ Memnet 

CPU 
Only 

CPU + 
GPU 

CPU 
Only 

CPU + 
GPU 

CPU 
Only 

CPU + 
GPU 

CPU 
Only 

CPU + 
GPU 

INIT 0.0392 0.0392 0.0583 0.0584 0.1629 0.1629 0.2583 0.2582 
SETUP 0.0335 0.0305 0.0416 0.1312 0.0574 0.0762 0.0884 0.1699 
RUN 0.8651 0.2880 0.2961 0.3414 0.5859 0.2890 0.1252 0.1758 

MAIN 0.9391 0.3596 0.3965 0.5318 0.8068 0.5288 0.4733 0.6055 
WALL TIME 1.000 0.4224 1.0000 1.1558 1.0000 0.7287 1.0000 1.1505 

Workload 
Sec�on 

Residual Seq2seq VGG 

CPU 
Only 

CPU + 
GPU 

CPU 
Only 

CPU + 
GPU 

CPU 
Only 

CPU + 
GPU 

INIT 0.0179 0.0179 0.6159 0.6164 0.0226 0.0226 
SETUP 0.0088 0.0102 0.1848 0.1939 0.0222 0.0181 
RUN 0.9635 0.0428 0.1742 0.0863 0.9288 0.0976 

MAIN 0.9906 0.0713 0.9789 0.9008 0.9743 0.1389 
WALL TIME 1.0000 0.0809 1.0000 0.9237 1.0000 0.1658 

portions in those workloads that, as discussed above,
have a sufficient kernel usage efficiency as a result of
their internal structure.

4.6. Performance similarity
One interesting observation that results from the

study presented in this work is the relationship between
the scalability of the Fathom workloads in CPU-only
mode and the performance benefits that they get when
they run in CPU+GPU mode. Specifically, we observe
that the use of the NVIDIA Tesla P100 GPU provides
relatively larger benefits for workloads with good CPU
scalability (like AlexNet, Residual and VGG). The
rationale behind this observation is that GPU utilization
usually increases with higher throughout of the master
thread(s) running on the CPU side, which occurs when
the internal structure of the workload is amenable
to parallelization. In other words, the performance
exhibited by the studied deep learning models is
intrinsically tied to their application-level structure.

The level of GPU support for the operations that
the framework exposes to the Fathom workloads is also
crucial the fallback behavior is to run unsupported
operations on the CPU consequently affecting the
potential performance benefits. Therefore, the proper
parallelization of deep learning workloads (like the
Fathom applications studied in this paper) is key to
fully exploit the advantages of high-throughput hybrid
CPU-GPU systems like the Minsky platform used in this
work.

5. Conclusions
This paper characterizes the Fathom benchmark

suite running on a last-generation IBM POWER8
system with NVIDIA Tesla P100 GPUs and NVLink
interconnects (“Minsky”). The work provides a
quantitative analysis of the computational behavior
of this platform when it executes on CPU-only and
CPU+GPU modes.

We observe that the performance of deep learning
algorithms is determined by the structure of the model
at an application level. Specifically, an efficient
use of the underlying hardware depends on the
scalability exhibited by the model and the deep learning
framework, as well as their capability to effectively
offload execution to the attached GPU accelerator(s).
Similarly, the models that have an easily parallelizable
structure take great advantage of the Minsky platform.
The performance efficiency of models whose internal
structure is not amenable to parallelization drops quickly
even in CPU-only mode. In addition, this study can
provide insightful guidelines for the design of effective
deep learning accelerators, as the ones being pursued
within the DARPA-sponsored PERFECT project.

6. Acknowledgment
We are grateful to the members of the IBM-led

project titled “Efficient Resilience in Embedded
Computing,” sponsored by DARPA under its PERFECT
program. An special mention to Dr. Pradip Bose and Dr.
Alper Buyuktosunoglu from the ‘Efficient & Resilient
Systems’ group at IBM T. J. Watson Research Center.

Page 5625



7. References
[1] J. Dean, “Large-scale deep learning for intelligent

computer systems,” BayLearn keynote speech, 2015.
[2] N. Jouppi, C. Young, N. Patil, D. Patterson, G. Agrawal,

R. Bajwa, S. Bates, S. Bhatia, N. Boden, A. Borchers,
et al., “In-datacenter performance analysis of a tensor
processing unit,” ArXiv preprint arXiv:1704.04760,
2017.

[3] NVIDIA Corporation, DGX-1 deep learning system
datasheet, Apr. 2016.

[4] IBM Corporation, IBM Power System S822LC for high
performance computing datasheet, Mar. 2017.

[5] Power efficiency revolution for embedded computing
technologies (PERFECT), https : / / www .
darpa.mil/program/power-efficiency-
revolution - for - embedded - computing -
technologies.

[6] R. Adolf, S. Rama, B. Reagen, G. Wei, and D. M.
Brooks, “Fathom: Reference workloads for modern
deep learning methods,” vol. abs/1608.06581, 2016.
[Online]. Available: http://arxiv.org/abs/
1608.06581.

[7] NVIDIA Corporation. (2017). Developing for
OpenPOWER and NVIDIA NVLink, [Online].
Available: https://developer.nvidia.com/
openpower (visited on 05/22/2017).

[8] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen,
C. Citro, G. S. Corrado, A. Davis, J. Dean, M. Devin,
et al., “Tensorflow: Large-scale machine learning on
heterogeneous distributed systems,” ArXiv preprint
arXiv:1603.04467, 2016.

[9] A. Krizhevsky, I. Sutskever, and G. E. Hinton,
“ImageNet classification with deep convolutional
neural networks,” in Proceedings of the 25th
International Conference on Neural Information
Processing Systems, ser. NIPS’12, 2012,
pp. 1097–1105.

[10] D. P. Kingma and M. Welling, “Stochastic gradient
VB and the variational auto-encoder,” in Proceedings
of the 2nd International Conference on Learning
Representations, ser. ICLR’14, 2014.

[11] G. E. Hinton and R. R. Salakhutdinov, “Reducing the
dimensionality of data with neural networks,” Science,
vol. 313, no. 5786, pp. 504–507, 2006.

[12] A. B. Caldeira, V. Haug, and S. Vetter, IBM POWER
SYSTEM S822LC for High Performance Computing
Introduction and Technical Overview, 1st ed. IBM
Redbooks, Oct. 2016, p. 9. [Online]. Available: http:
/ / www . redbooks . ibm . com / redpapers /
pdfs/redp5405.pdf.

[13] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves,
I. Antonoglou, D. Wierstra, and M. Riedmiller,
“Playing Atari with deep reinforcement learning,”
ArXiv preprint arXiv:1312.5602, 2013.

[14] J. Weston, S. Chopra, and A. Bordes, “Memory
networks,” ArXiv preprint arXiv:1410.3916, 2014.

[15] S. Sukhbaatar, A. Szlam, J. Weston, and R. Fergus,
“End-to-end memory networks,” in Proceedings
of the 28th International Conference on Neural

Information Processing Systems, ser. NIPS’15, 2015,
pp. 2440–2448.

[16] I. Sutskever, O. Vinyals, and Q. V. Le, “Sequence
to sequence learning with neural networks,” in
Proceedings of the 27th International Conference on
Neural Information Processing Systems, ser. NIPS’14,
2014, pp. 3104–3112.

[17] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual
learning for image recognition,” in Proceedings of the
2016 IEEE conference on computer vision and pattern
recognition, ser. CVPR’16, 2016, pp. 770–778.

[18] K. Simonyan and A. Zisserman, “Very deep
convolutional networks for large-scale image
recognition,” ArXiv preprint arXiv:1409.1556,
2014.

[19] A. Hannun, C. Case, J. Casper, B. Catanzaro, G.
Diamos, E. Elsen, R. Prenger, S. Satheesh, S. Sengupta,
A. Coates, et al., “Deep speech: Scaling up end-to-end
speech recognition,” ArXiv preprint arXiv:1412.5567,
2014.

[20] B. Sinharoy, J. Van Norstrand, R. J. Eickemeyer,
H. Q. Le, J. Leenstra, D. Q. Nguyen, B. Konigsburg,
K. Ward, M. Brown, J. E. Moreira, et al., “IBM
POWER8 processor core microarchitecture,” IBM
Journal of Research and Development, vol. 59, no. 1,
2015.

[21] NVIDIA Corporation, Tesla P100 GPU accelerator
datasheet, Oct. 2016.

[22] R. Adolf. (May 2017). Merge pull request #27 from
zzzoom/tf-1.0.x, [Online]. Available: https : / /
github . com / rdadolf / fathom / commit /
9451f3.

[23] Python Software Foundation. (Aug. 2007). Timeit
- measure execution time of small code snippets,
[Online]. Available: https : / / docs . python .
org/2/library/timeit.html.

[24] OpenMP Architecture Review Board, OpenMP
application programming interface, Nov. 2015.
[Online]. Available: http://www.openmp.org/
wp-content/uploads/openmp-4.5.pdf.

[25] J. L. Hennessy and D. A. Patterson, Computer
architecture: A quantitative approach, 4th. Morgan
Kaufmann Publishers, 2011.

[26] J. S. Garofolo, L. F. Lamel, W. M. Fisher, J. G.
Fiscus, D. S. Pallett, N. L. Dahlgren, and V. Zue,
“TIMIT acoustic-phonetic continuous speech corpus,”
Linguistic data consortium, vol. 10, no. 5, 1993.

[27] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and
L. Fei-Fei, “Imagenet: A large-scale hierarchical image
database,” in Proceedings of the 2009 IEEE Conference
on Computer Vision and Pattern Recognition, ser.
CVPR’17, 2009, pp. 248–255.

[28] S. Jones. (Sep. 2014). NVIDIA GPUs power
deep-learning winners in world cup of image
recognition, [Online]. Available: https://blogs.
nvidia.com/blog/2014/09/07/imagenet/.

[29] P. Beckman, K. Iskra, K. Yoshii, S. Coghlan, and A.
Nataraj, “Benchmarking the effects of operating system
interference on extreme-scale parallel machines,”
Cluster Computing, vol. 11, no. 1, pp. 3–16, 2008.

Page 5626


