
How to Be Sure a Faulty System Does
Not Always Appear Healthy?

Lina Ye1(B), Philippe Dague2, Delphine Longuet2, Laura Brandán Briones3,
and Agnes Madalinski4

1 LRI, Univ. Paris-Sud, CentraleSupélec, Univ. Paris-Saclay, Orsay, France
lina.ye@lri.fr

2 LRI, Univ. Paris-Sud, CNRS, Univ. Paris-Saclay, Orsay, France
{philippe.dague,delphine.longuet}@lri.fr

3 Universidad Nacional de Córdoba, Córdoba, Argentina
4 Otto-von-Guericke-University Magdeburg, Magdeburg, Germany

Abstract. Fault diagnosis is a crucial and challenging task in the auto-
matic control of complex systems, whose efficiency depends on the diag-
nosability property of a system. Diagnosability describes the system
property allowing one to determine with certainty whether a given fault
has effectively occurred based on the available observations. However,
this is a quite strong property that generally requires a high number of
sensors. Consequently, it is not rare that developing a diagnosable system
is too expensive. In this paper, we analyze a new discrete event system
property called manifestability, that represents the weakest requirement
on observations for having a chance to identify on line fault occurrences
and can be verified at design stage. Intuitively, this property makes sure
that a faulty system cannot always appear healthy, i.e., has at least one
future behavior after fault occurrence observably distinguishable from all
normal behaviors. Then, we prove that manifestability is a weaker prop-
erty than diagnosability before proposing an algorithm with PSPACE
complexity to automatically verify both properties. Furthermore, we
prove that the problem of manifestability verification itself is PSPACE-
complete. The experimental results show the feasibility of our algorithm
from a practical point of view. Finally, we compare our approach with
related work.

1 Introduction

Fault diagnosis is a crucial and challenging task in the automatic control of com-
plex systems, whose efficiency depends on a system property called diagnosabil-
ity. Diagnosability is a system property describing whether one can distinguish
with certainty fault behaviors from normal ones based on sequences of observ-
able events emitted from the system. In a given system, the existence of two
infinite behaviors with the same observations, where exactly one contains the
considered fault, violates diagnosability. The existing work concerning discrete
event systems (DESs) searches for such ambiguous behaviors, both in centralized
c© Springer Nature Switzerland AG 2018
M. F. Atig et al. (Eds.): VECoS 2018, LNCS 11181, pp. 114–129, 2018.
https://doi.org/10.1007/978-3-030-00359-3_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-00359-3_8&domain=pdf

How to Be Sure a Faulty System Does Not Always Appear Healthy? 115

and distributed ways [10,12–14,20]. However, in reality, diagnosability turns out
to be a quite strong property that generally requires a high number of sensors.
Consequently, it is often too expensive to develop a diagnosable system.

To achieve a trade-off between the cost, i.e., a reasonable number of sen-
sors, and the possibility to observe a fault manifestation, we recently introduced
a new property called manifestability [21], which is borrowed from philosophy
“...which I shall call the “manifestability of the mental”, that if two systems are
mentally different, then there must be some physical contexts in which this differ-
ence will display itself in differential physical consequences” [11]. In the domain
of diagnosis, similarly, the manifestability property describes the capability of
a system to manifest a fault occurrence in at least one future behavior. This
should be analyzed at design stage on the system model. Under the assumption
that no behavior described in the model has zero probability, the fault will then
necessarily show itself with nonzero probability after enough runs of the sys-
tem. In other words, given a system, if this property holds, this system cannot
always appear healthy when a fault occurs in it, i.e., at least one future behavior
observably distinguishes from normal behaviors. In all cases, manifestability is
the weakest property to require from the system to have a chance to identify
the fault occurrence. Differently, for diagnosability, all future behaviors of all
fault occurrences should be distinguishable from all normal behaviors, which is
a strong property and sensor demanding. Obviously one has to continue to rely
on diagnosability for online safety requirements, i.e., for those faults which may
have dramatic consequences if they are not surely detected when they occur,
in order to trigger corrective actions. But for all other faults that do not need
to be detected at their first occurrence (e.g., whose consequence is a degraded
but acceptable functioning that will require maintenance actions in some near
future), manifestability checking, which is cheaper in terms of sensors needed, is
enough under the probabilistic assumption above.

We have several contributions in this paper. First, we define (strong) mani-
festability before proving that it is weaker than diagnosability. Second, we pro-
vide a sufficient and necessary condition for manifestability with a formal algo-
rithm based on equivalence checking and prove that the manifestability problem
itself is a PSPACE-complete problem. Third, the algorithm’s efficiency is shown
by our experimental results before comparing our approach with related work.

2 Motivating Example

In this section, we explain why it is worth analyzing the manifestability property
with a motivating example.

Example 1. Figure 1 shows a modified version of a HVAC system from [13], which
is a composite model that captures the interactions between the component
models, i.e., a pump, a valve, and a controller. In this system, the initial state is
q0, the events V alve open, Pump start, Pump stop, V alve close are observable
and the fault event Pump failed is not observable. Once fault event occurs, the
system enters and always stays in an abnormal state.

116 L. Ye et al.

q0

q1

q2

q3

q4

q5

q6

q7

q8q9

V alve open Pump start

Pump stopV alve close

Pump failed

Pump stop V alve close

V alve open

Pump start

V alve close

V alve open

V alve close

Fig. 1. A simplified HVAC system.

The correct behavior of this system is (V alve open Pump start Pump stop
V alve close)ω, where ω denotes the infinite concatenation. After the unobserv-
able faulty event Pump failed, the system has two possibilities: either con-
tinue the execution with the same observations as the correct behavior or go
to the states q8 and q9. Thus, this system is not diagnosable since at least one
infinite future behavior of the fault occurrence is indistinguishable from the
correct behavior, which is V alve open Pump start Pump failed (Pump stop
V alve close V alve open Pump start)ω. Considering real faulty scenarios, with
an assumption of nonzero probability, at one moment in the future the system
will go to q8, in which case the fault manifests itself and thus can be diagnosed.
The original diagnosability property is not suitable to handle such situations. If
we consider manifestability, this fault is effectively manifestable since its occur-
rence has at least one future that is distinguishable from the correct behavior.
The manifestability property is the minimal requirement for the system to allow
one to establish a diagnostic mechanism. If a fault is not manifestable, then it
is totally useless to try to design a diagnoser for the system.

3 Manifestability for DESs

We now present our system model, recall diagnosability, and introduce (strong)
manifestability, before giving a formal sufficient and necessary condition for this
property to hold. We demonstrate that (strong) manifestability is a weaker prop-
erty than diagnosability.

3.1 Models of DESs

We model a DES as a Finite State Machine (FSM), i.e., an automaton, denoted
by G = (Q,Σ, δ, q0), where Q is the finite set of states, Σ is the finite set of
events, δ ⊆ Q × Σ × Q is the set of transitions (the same notation will be kept
for its natural extension to words of Σ∗), and q0 is the initial state. The set of
events Σ is divided into three disjoint parts: Σ = Σo �Σu �Σf , where Σo is the
set of observable events, Σu the set of unobservable normal events and Σf the
set of unobservable fault events.

How to Be Sure a Faulty System Does Not Always Appear Healthy? 117

Example 2. The left part of Fig. 2 shows an example of a system model G, where
Σo = {o1, o2, o3}, Σu = {u1, u2}, and Σf = {F}. Notice that for diagnosis prob-
lem, fault is predefined as an unobservable event in the model. This is different
from testing, where faulty behaviors are judged against a specification.

q0

q1 q2 q4 q5

q3

q6 q7 q0 N

q1 N q2 F q4 F q5 F

q3 F

q6 N q7 N q5 N

o1

F

u1 o2

o3 o1

u2 o1 o2

o3
o1

F

u1 o2

o3 o1

u2 o1 o2

o3

o3

Fig. 2. A system example (left) and its diagnoser (right).

Similar to diagnosability, the manifestability algorithm that we will propose
has exponential complexity in the number of fault types. To reduce it to linear
complexity, as in [12,14], we consider only one fault type at a time. However,
multiple occurrences of faults are allowed. The other types of faults are processed
as unobservable normal events. This is justified as the system is manifestable
if and only if (iff) it is manifestable for each fault type. Thus, to check the
manifestability of a system with several faults, one can check its manifestability
with respect to each fault type in turn. In the following, Σf = {F}, where F is
the currently considered fault.

Given a system model G, its prefix-closed language L(G), which describes
both normal and faulty behaviors of the system, is the set of words produced by
G: L(G) = {s ∈ Σ∗|∃q ∈ Q, (q0, s, q) ∈ δ}. Those words containing (resp. not
containing) F will be denoted by LF (G) (resp. LN (G)). In the following, we call
a word from L(G) a trajectory in the system G and a sequence q0σ0q1σ1 . . . a
path in G, where q0 = q0 and, for all i, (qi, σi, qi+1) ∈ δ, whose label σ0σ1 . . . is
a trajectory in G. Given s ∈ L(G), we denote the post-language of L(G) after s
by L(G)/s, formally defined as: L(G)/s = {t ∈ Σ∗|s.t ∈ L(G)}. The projection
of the trajectory s to observable events of G is denoted by P (s), the observation
of s. This projection can be extended to L(G), i.e., P (L(G)) = {P (s)|s ∈ L(G)},
whose elements are called observed trajectories. Traditionally, we assume that
each state of Q has a successor, so that L(G) is live (any trajectory has a continu-
ation, i.e., is a strict prefix of another trajectory) and that G has no unobservable
cycle, i.e., each cycle contains at least one observable event. This makes it feasi-
ble to check the infiniteness of a trajectory. We will need some infinite objects.
We denote by Σω the set of infinite words on Σ and by Σ∞ = Σ∗ ∪ Σω the set
of words on Σ, finite or infinite. We define in an obvious way infinite paths in
G and thus Lω(G) the language of infinite words recognized by G in the sense
of Büchi automata [6]. As all states of G are considered as final states, those
infinite trajectories are just the labels of infinite paths, and the concept of Büchi
automaton coincides with that of Muller automaton, which can be determinized,
according to the McNaughton theorem. We can conclude from this that Lω(G)

118 L. Ye et al.

is the set of infinite words whose prefixes belong to L(G) and that two equivalent
system models, i.e., such that L(G1) = L(G2), define the same infinite trajecto-
ries, i.e., Lω(G1) = Lω(G2). Particularly, we use Lω

F (G) = Lω(G) ∩ Σ∗FΣω for
the set of infinite faulty trajectories, and Lω

N (G) = Lω(G) ∩ (Σ \ {F})ω for the
set of infinite normal trajectories, where \ denotes set subtraction. We denote
L∞(G) = L(G) ∪ Lω(G). In the following, we use the classical synchronization
operation between two FSMs G1 and G2, denoted by G1 ‖Σs

G2, i.e. any event
in Σs should be synchronized while others can occur whenever possible. It is
easy to generalize the synchronization to a set of FSMs using its associativity
property [7]. To verify manifestability, we define the following basic operation,
which is to keep only information about a given set of events, while keeping the
same structure. It will be used to simplify some intermediate structures when
checking manifestability without affecting the validity of the result obtained.

Definition 1 (Delay Closure). Given a FSM G = (Q,Σ, δ, q0), its delay closure
with respect to Σd, with Σd ⊆ Σ, is �Σd

(G) = (Qd, Σd, δd, q
0), where: (1) Qd =

{q0} ∪ {q ∈ Q | ∃s ∈ Σ∗,∃σ ∈ Σd, (q0, sσ, q) ∈ δ}; (2) (q, σ, q′) ∈ δd if σ ∈ Σd

and ∃s ∈ (Σ\Σd)∗, (q, sσ, q′) ∈ δ.

3.2 Diagnosability and Manifestability

A fault F is diagnosable in a system model G if it can be detected with certainty
when enough events are observed from G after its occurrence. This property is
formally defined as follows [13], where sF denotes a trajectory ending with F
and F ∈ p, for p a trajectory, means that F appears as a letter of p.

Definition 2 (Diagnosability). F is diagnosable in a system model G iff

∃k ∈ N,∀sF ∈ L(G),∀t ∈ L(G)/sF , |t| ≥ k ⇒
(∀p ∈ L(G), P (p) = P (sF t) ⇒ F ∈ p).

The above definition states that F is diagnosable iff, for each trajectory sF

in G, for each of its extensions t with enough events, then every trajectory p in
G that has the same observations as sF t should contain F . It has been proved
that the existence of two indistinguishable infinite trajectories, i.e., holding the
same sequence of observable events, with exactly one of them containing the
given fault F , is equivalent to the violation of the diagnosability property [10].

Definition 3 (Critical Pair). A pair of trajectories s, s′ is called a critical
pair with respect to F , denoted by s � s′, iff s ∈ Lω

F (G), s′ ∈ Lω
N (G) and

P (s) = P (s′).

Theorem 1. A fault F is diagnosable in G iff �s, s′ ∈ Lω(G), such that s � s′.

The nonexistence of a critical pair w.r.t. F witnesses diagnosability of F . To
design a diagnosable system, each faulty trajectory should be distinguished from
normal trajectories, which is often very expensive in terms of number of sensors

How to Be Sure a Faulty System Does Not Always Appear Healthy? 119

required. To reduce such a cost and still make it possible to show the fault after
enough runs of the system, another property called manifestability has been
recently introduced [21], which is much weaker than diagnosability. Intuitively,
manifestability describes whether or not a fault occurrence has the possibility
to manifest itself through observations. Precisely, if a fault is not manifestable,
then we can never be sure about its occurrence no matter which trajectory is
executed after it. Thus, the system model should be necessarily revised.

Definition 4 (Manifestability). F is manifestable in a system model G iff

∃sF ∈ L(G),∃t ∈ L(G)/sF ,

∀p ∈ L(G), P (p) = P (sF t) ⇒ F ∈ p.

F is manifestable iff there exists at least one trajectory sF in G, and there
exists at least one extension t of sF , such that every trajectory p that is observ-
able equivalent to sF t should contain F . In other words, manifestability is vio-
lated iff each occurrence of the fault can never manifest itself in any future.

Theorem 2. A fault F is manifestable in a system model G iff the following
condition, denoted by �, is satisfied:

∃s ∈ Lω
F (G), �s′ ∈ Lω

N (G), such that s � s′.

Proof. ⇒ Suppose that F is manifestable in G. Thus from Definition 4, ∃s ∈
LF (G) such that �s′ ∈ LN (G) with P (s) = P (s′). By extending s with enough
events, which is possible since the language is live, we obtain then ∃s ∈ Lω

F (G),
�s′ ∈ Lω

N (G), such that s � s′.
⇐ Suppose now that F is not manifestable in G and show that the condition
� is consequently not true. From non-manifestability of F and Definition 4, we
have ∀sF ∈ L(G),∀t ∈ L(G)/sF , ∃p ∈ L(G), P (p) = P (sF t), p ∈ LN (G). Thus,
∀sF t ∈ LF (G), ∃p ∈ LN (G), P (p) = P (sF t). This can be formulated as equality
of the languages of two automata, as it will be seen in Sect. 4. It results that
this equality of the languages still holds for infinite words, i.e., ∀sF t ∈ Lω

F (G),
∃p ∈ Lω

N (G) such that sF t � p, which is ¬�, i.e., the condition � is not true. �

Manifestability concerns the possibility for the system to manifest at least
one occurrence of the fault, i.e., there exists such an occurrence that shows itself
in at least one of its futures. Now we propose a strong version of manifestability,
which requires that all occurrences of the fault should show themselves in at
least one of their futures.

Definition 5 (Strong Manifestability). A fault F is strongly manifestable
in a system model G iff

∀sF ∈ L(G),∃t ∈ L(G)/sF ,

∀p ∈ L(G), P (p) = P (sF t) ⇒ F ∈ p.

120 L. Ye et al.

F is strongly manifestable iff, for each sF in G (and not just for only one
as in Definition 4) there exists at least one extension t of sF in G, such that
every trajectory p in G that is observable equivalent to sF t should contain F .
Precisely, each occurrence of F should show itself in at least one of its futures.
So, in a similar way as Theorem2, we can prove the following theorem, which
provides a sufficient and necessary condition for strong manifestability.

Theorem 3. A fault F is strongly manifestable in a system model G iff the
following condition, denoted by �s, is satisfied:

∀sF ∈ L(G),∃t ∈ Lω(G)/sF , �s′ ∈ Lω
N (G), such that sF t � s′.

Theorem 4. Given a system model G and a fault F , we have:

1. F is diagnosable in G implies that F is strongly manifestable in G.
2. F is strongly manifestable in G implies that F is manifestable in G.

Proof. 1. Suppose that F is not strongly manifestable, then from Theorem 3, we
have ¬�s, i.e., ∃sF ∈ L(G),∀t ∈ Lω(G)/sF , ∃s′ ∈ Lω

N (G) such that sF t � s′.
This implies that there does exist at least one critical pair in the system.
From Theorem 1, F is not diagnosable.

2. Suppose that F is not manifestable. From Theorem 2, we have ∀s ∈ Lω
F (G),

∃s′ ∈ Lω
N (G), such that s � s′. By choosing arbitrarily one sF ∈ L(G) and

taking all s of prefix sF , we obtain ∃sF ∈ L(G),∀t ∈ Lω(G)/sF , ∃s′ ∈ Lω
N (G)

such that sF t � s′, i.e., ¬�s. Hence F is not strongly manifestable. �

4 Manifestability Verification

Manifestability verification consists in checking whether the condition � in The-
orem 2 is satisfied for a given system model. In this section, we show how to
construct different structures based on a system model to obtain Lω

F (G), Lω
N (G)

as well as the set of critical pairs. The condition � can then be checked by using
equivalence techniques with these intermediate structures. Precisely, if for each
infinite faulty trajectory s ∈ Lω

F (G), there exists a corresponding critical pair,
then the considered fault is not manifestable. Otherwise, it is manifestable. For
the sake of simplicity, we concentrate on how to check manifestability, which
can be extended in a straightforward way to handle strong manifestability. This
extension will be explained explicitly in Sect. 4.3.

4.1 System Diagnosers

Given a system model, the first step is to construct a structure showing fault
information for each state, i.e., whether the fault has effectively occurred up to
this state from the initial state.

How to Be Sure a Faulty System Does Not Always Appear Healthy? 121

Definition 6 (Diagnoser). Given a system model G, its diagnoser with respect
to a considered fault F is the FSM DG = (QD, ΣD, δD, q0D), where: (1) QD ⊆
Q × {N,F} is the set of states; (2) ΣD = Σ is the set of events; (3) δD ⊆
QD × ΣD × QD is the set of transitions; (4) q0D = (q0, N) is the initial state.
The transitions of δD are those ((q, �), e, (q′, �′)), with (q, �) reachable from q0D,
such that there is a transition (q, e, q′) ∈ δ, and �′ = F if � = F ∨ e = F ,
otherwise �′ = N .

The right part of Fig. 2 shows the diagnoser for the system depicted in the left
part, where each state has its own fault information. Precisely, given a system
state q, if the fault has occurred on the path from q0 to q, then the fault label for
q is F . Such a state is called fault (diagnoser) state. Otherwise, the fault label is
N and the state is called normal (diagnoser) state. Diagnoser construction keeps
the same set of trajectories and splits into two those states reachable by both a
faulty and a normal path (q5 in the example).

Lemma 1. Given a system model G and its corresponding diagnoser DG, then
we have L(G) = L(DG) and Lω(G) = Lω(DG).

In order to simplify the automata handled, the idea is to keep only the
minimal subparts of DG containing all faulty (resp., normal) trajectories.

Definition 7 (Fault (Refined) Diagnoser). Given a diagnoser DG, its fault diag-
noser is the FSM DF

G = (QDF , ΣDF , δDF , q0DF), where: (1) q0DF = q0D; (2)
QDF = {qD ∈ QD | ∃q′

D = (q, F) ∈ QD,∃s′ ∈ Σ∗
D, (qD, s′, q′

D) ∈ δ∗
D}; (3) δDF =

{(q1D, σ, q2D) ∈ δD | q2D ∈ QDF }; (4) ΣDF = {σ ∈ ΣD | ∃(q1D, σ, q2D) ∈ δDF }. The
fault refined diagnoser is obtained by performing the delay closure with respect
to the set of observable events Σo on the fault diagnoser: DFR

G = �Σo
(DF

G).

The fault diagnoser keeps all fault states as well as all transitions and inter-
mediate normal states on paths from q0D to any fault state. Then we refine this
fault diagnoser by only keeping the observable information, which is sufficient
to obtain the set of critical pairs. The left (resp. right) part of Fig. 3 shows the
fault diagnoser (resp. fault refined diagnoser) for Example 2.

q0 N q1 N q2 F

q4 F

q5 F

q3 F

q0 N q1 N

q4 F

q5 F
o1 F

u1 o2

o3 o1

o3
o1

o3 o1

o2
o3

Fig. 3. Fault diagnoser (left) and its refined version (right) for Example 2.

By construction, the sets of faulty trajectories in DF
G and in G are equal and

this is still true for infinite faulty trajectories. This is also the case for infinite
faulty trajectories in DFR

G and infinite observed faulty trajectories in G. But

122 L. Ye et al.

take care that it may exist infinite normal trajectories in DF
G (resp., DFR

G) if it
exists in G a normal cycle in a path to a fault state (e.g., adding a loop in state
q1 of the system model of Example 2).

Lemma 2. Given a system model G and its corresponding fault diagnoser DF
G

and fault refined diagnoser DFR
G , we have Lω

F (G) = Lω
F (DF

G) and P (Lω
F (G)) =

Lω
F (DFR

G).

Similarly, we obtain the subpart of DG containing only normal trajectories.

Definition 8 (Normal (Refined) Diagnoser). Given a diagnoser DG, its normal
diagnoser is the FSM DN

G = (QDN , ΣDN , δDN , q0DN), where: (1) q0DN = q0D; (2)
QDN = {(q,N) ∈ QD}; (3) δDN = {(q1D, σ, q2D) ∈ δD | q2D ∈ QDN }; (4) ΣDN =
{σ ∈ ΣD | ∃(q1D, σ, q2D) ∈ δDN }. The normal refined diagnoser is obtained by
performing the delay closure with respect to Σo on the normal diagnoser: DNR

G =
�Σo

(DN
G).

Lemma 3. Given a system model G and its corresponding normal diagnoser
DN

G and normal refined diagnoser DNR
G , we have Lω

N (G) = Lω(DN
G) and

P (Lω
N (G)) = Lω(DNR

G).

q0 N

q1 N

q6 N q7 N q5 N q0 N

q1 N

q7 N q5 N

o1

u2 o1 o2
o3

o1

o1 o2
o3

Fig. 4. Normal diagnoser (left) and its refined version (right) for Example 2.

The left (resp. right) part of Fig. 4 shows the normal diagnoser (resp. normal
refined diagnoser) for Example 2.

4.2 Manifestability Checking

In this section, we show how to obtain the set of critical pairs based on the diag-
nosers described in the precedent section. Based on this, equivalence checking
will be used to examine the manifestability condition � in Theorem 2.

Definition 9 (Pair Verifier). Given a system model G, its pair verifier VG is
obtained by synchronizing the corresponding fault and normal refined diagnosers
DFR

G and DNR
G based on the set of observable events, i.e., VG = DFR

G ‖Σo
DNR

G .

To construct a pair verifier, we impose that the synchronized events are the
whole set of observable events. Then VG is actually the product of DFR

G and DNR
G

and the language of the pair verifier is thus the intersection of the language of
the fault refined diagnoser and that of the normal refined diagnoser. In the pair
verifier, each state is composed of two diagnoser states, whose label (F or N) of

How to Be Sure a Faulty System Does Not Always Appear Healthy? 123

the first one indicates whether the fault has effectively occurred in the first of
the two corresponding trajectories. If the first of these two states is a fault state,
then this verifier state is called ambiguous state since, reaching this state, the
first trajectory contains the fault and the second not, while both have the same
observations. Infinite trajectories of VG are thus either normal (all states labels
are (N ,N)) or ambiguous (all states labels from a certain state are (F ,N)), the
latter ones being denoted by Lω

a (VG).

Lemma 4. Given a system model G with its VG, DFR
G and DNR

G , we have
Lω

a (VG) = Lω
F (DFR

G) ∩ Lω(DNR
G).

In the pair verifier depicted in Fig. 5, the gray node represents an ambiguous
state.

q0 N

q0 N

q1 N

q1 N

q1 N

q7 N

q5 F

q5 N

o1

o1
o2

o3

Fig. 5. The pair verifier for the system in Example 2.

Lemma 5. Given a system model G, a fault F is diagnosable iff Lω
a (VG) = ∅.

Proof. Lω
a (VG) �= ∅ ⇔ Lω

F (DFR
G)∩Lω(DNR

G) �= ∅ (from Lemma 4) ⇔ P (Lω
F (G))∩

P (Lω
N (G)) �= ∅ (from Lemmas 2 and 3) ⇔ ∃s ∈ Lω

F (G),∃s′ ∈ Lω
N (G)P (s) =

P (s′) ⇔ ∃s, s′ ∈ Lω(G) s � s′ (from Definition 3) ⇔ F is not diagnosable (from
Theorem 1). �

Theorem 5. Given a system model G, a fault F is manifestable iff Lω
a (VG) ⊂

Lω
F (DFR

G).

Proof. Lω
a (VG) �⊂ Lω

F (DFR
G) ⇔ Lω

F (DFR
G) ⊆ Lω(DNR

G) (from Lemma 4) ⇔
P (Lω

F (G)) ⊆ P (Lω
N (G)) (from Lemmas 2 and 3) ⇔ ∀s ∈ Lω

F (G),∃s′ ∈ Lω
N (G)

P (s) = P (s′) ⇔ ∀s ∈ Lω
F (G),∃s′ ∈ Lω

N (G) s � s′ (from Definition 3) ⇔ ¬� ⇔ F
is not manifestable (from Theorem 2). �

4.3 Algorithm

Algorithm 1 is the pseudo-code to verify manifestability, which can simultane-
ously verify diagnosability. Given the input (line 1) as the system model G and
the fault F , we first construct the diagnoser (line 2) as described by Definition 6.
We then construct fault and normal refined diagnosers (lines 3–4) as defined by
Definitions 7 and 8. The next step is to synchronize DFR

G and DNR
G to obtain

the pair verifier VG (line 5). With DFR
G and VG, we have the following verdicts:

124 L. Ye et al.

– if Lω
a (VG) = ∅ (line 6), from Lemma 5, F is diagnosable and thus manifestable

from Theorems 1 and 4 (line 7).
– if Lω

a (VG) = Lω
F (DFR

G) �= ∅ (line 8), we can deduce from Theorem 5 that F is
not manifestable. Thus, by Theorem4 (or directly from Lemma 5), F is not
diagnosable (line 9).

– if Lω
a (VG) �= ∅ and Lω

a (VG) ⊂ Lω
F (DFR

G) (line 10), which can be deduced
because of Lemma 4, the former condition means that F is not diagnosable
and, by Theorem 5, the latter means that F is manifestable (line 11).

Algorithm 1. Manifestability and Diagnosability Algorithm for DESs
1: INPUT: System model G; the considered fault F
2: DG ← ConstructDiagnoser(G)
3: DFR

G ← ConstructFRDiagnoser(DG)
4: DNR

G ← ConstructNRDiagnoser(DG)
5: VG ← DFR

G ‖Σo DNR
G

6: if Lω
a (VG) = ∅ then

7: return “F is diagnosable and manifestable in G”
8: else if Lω

a (VG) = Lω
F (DFR

G) then
9: return “F is neither diagnosable nor manifestable in G”

10: else
11: return “F is not diagnosable but manifestable in G”
12: end if

Note that Lω
F (DFR

G) = Lω(D′FR
G) (resp., Lω

a (VG) = Lω(V ′
G)) where D′FR

G is
identical to DFR

G (resp., V ′
G identical to VG), except that the final states, for

Büchi acceptance conditions, are limited to fault (resp., ambiguous) states. Note
also that the condition Lω

a (VG) = Lω
F (DFR

G) is equivalent to Lω(VG) = Lω(DFR
G)

as the infinite normal trajectories are identical in VG and in DFR
G .

In Algorithm 1, the complexity of the different diagnosers constructions is lin-
ear. Building the pair verifier by synchronizing the fault and the normal refined
diagnosers is polynomial with the number of system states. To finally check
the manifestability, the equivalence checking (line 8) cannot be avoided, which
is already demonstrated to be PSPACE, even for infinite words, in the litera-
ture [18]. Thus, the total complexity of this algorithm is PSPACE. Algorithm1
suggests that the manifestability problem is more complex than diagnosabil-
ity (for which a test of language emptiness is sufficient, which implies a total
NLOGSPACE complexity, a result already known), which we will formally prove
later.

To verify the strong manifestability, one has to check the condition �s in
Theorem 3. Algorithm 1 can be adapted for this with the following modifications:

– For each occurrence of the fault, we construct one fault refined diagnoser. To
do this, we assume that the system has a finite number of fault occurrences
(excluding thus cycles before a fault occurrence or containing a fault occur-
rence). To simplify, it is then enough to consider those latest occurrences of

How to Be Sure a Faulty System Does Not Always Appear Healthy? 125

the fault (for which no future contains another occurrence of the fault) since
if such occurrence can show itself in one future, then this is the case for all
earlier occurrences of the fault in the same trajectory.

– For each fault refined diagnoser, one constructs a pair verifier as described
by Definition 9. Then, one has to compare the language defined by each fault
refined diagnoser with the language defined by its corresponding verifier. The
fault is not strongly manifestable iff there exists at least one such pair verifier
and fault refined diagnoser defining the same languages for infinite words, as
this violates the condition �s in Theorem 3.

Now we show that the problem of manifestability verification itself is a
PSPACE-complete problem by the reduction to it of rational languages equiva-
lence checking. The problem of checking non-deterministic FSM equivalence on
infinite words is already proved to be PSPACE-complete [18].

Theorem 6. Given a system model G and a fault F , the problem of checking
whether F is manifestable in G is PSPACE-complete.

Proof. The complexity of Algorithm 1 is PSPACE. Now we demonstrate that the
problem of checking manifestability is PSPACE-hard. Let G1 = (Q1, Σ, δ1, q

0
1)

and G2 = (Q2, Σ, δ2, q
0
2) be two arbitrary (non-deterministic) automata on

the same vocabulary defining live languages. One can always assume that
Q1 ∩ Q2 = ∅. Based on G1 and G2, one can construct a new FSM, repre-
senting a system model, G = (Q,Σ ∪ {F}, δ, q02), where Q = Q1 ∪ Q2 and
δ = δ1 ∪ δ2 ∪ {(q02 , F, q01)}, with Σo = Σ, Σu = ∅ and Σf = {F}. From the con-
struction of G, one has Lω(G1) = P (Lω

F (G)) and Lω(G2) = P (Lω
N (G)). From

Lemmas 2, 3 and 4, one obtains Lω(VG) = P (Lω
F (G)) ∩ P (Lω

N (G)). This implies
Lω(G1) ∩ Lω(G2) = Lω(VG). From Theorem 5, one has Lω(G1) ∩ Lω(G2) ⊂
Lω(G1) ⇐⇒ F is manifestable in G, i.e., Lω(G1) ⊆ Lω(G2) ⇐⇒ F is not man-
ifestable in G. So, rational languages inclusion testing on infinite words boils
down to manifestability checking, which gives the result. �

5 Experimental Results

We have applied our algorithm on more than one hundred examples taken from
literature and hand-crafted ones. The latter ones are constructed to show the
scalability since the sizes of the former ones are very small. Our experimental
results are obtained by running our program on a Mac OS laptop with a 1.7
GHz Intel Core i7 processor and 8 Go 1600 MHz DDR3 of memory.

Table 1 shows part of our experimental results, where verdicts (i.e.,
Manifes(tability), S(trong)Manifes(tability), Diagno(sability), N(on)Manifes
(tability)) show the strongest property satisfied by the system. For example,
if it is Manifes, then it is not SManifes nor Diagno. Diagno implies both SMan-
ifes and Manifes. We give the number of states and transitions of the system
(|S|/|T|), of the pair verifier (|S|/|T|(PV)), as well as the execution time (mil-
lisecond is used as time unit). The size of the pair verifier includes all transitions

126 L. Ye et al.

Table 1. Experimental Results

LitSys |S|/|T| |S|/|T|(PV) Time Verdict HCSys |S|/|T| |S|/|T|(PV) Time Verdict

Ex. 2 8/10 4/4 15 SManifes h-c1 22/24 18/18 32 SManifes

[14] 16/23 21/23 51 Manifes h-c2 36/39 74/77 90 Manifes

[12] 16/20 7/9 25 Manifes h-c3 46/50 105/110 120 Manifes

[9] 3/6 4/6 12 SManifes h-c4 52/57 160/183 151 SManifes

[20] 18/21 53/57 69 SManifes h-c5 57/69 32/37 78 SManifes

[15] 9/11 2/1 16 Diagno h-c6 509/570 79/81 132 Manifes

[13] 12/28 45/51 68 NManifes h-c7 320/390 1752/1791 323 NManifes

generated from the synchronization of the fault refined diagnoser and the nor-
mal refined diagnoser. The examples shown here include Example 2 in this paper
with the illustrative examples of other papers that handle similar problems.

To construct the hand-crafted examples (HCSys) from those selected from
the literature (LitSys), we are not interested in diagnosable examples. First,
diagnosable systems are rare in the literature as well as in the industry. Sec-
ond, diagnosability implies an empty language of ambiguous infinite words for
the pair verifier, which can be verified without equivalence checking. The effi-
ciency cannot be convincing by applying our algorithm on diagnosable examples.
When extending the examples from the literature, we keep the same verdict. For
example, for a manifestable system, an arbitrary FSM without fault is added in
a place such that at least one faulty infinite trajectory can always manifest itself
(and obviously critical pairs are preserved).

From our experimental results, the executed time is also dependent on the
size of the pair verifier besides that of the system. To achieve a worst case, one
way is to employ the example construction in the proof of Theorem 6 by setting
Lω(G1) = Lω(G2). The hand-crafted example h-c7 is constructed in such a way.

We can see that the original HVAC system in [13] is not manifestable, i.e., any
faulty behavior cannot be diagnosed in all its infinite futures. It is thus necessary
to go back to design stage to revise the system model. For other manifestable
but not diagnosable systems, one interesting future work is to study bounded-
manifestability, making sure to detect the fault in bounded time.

6 Related Work

The first approach to verify the diagnosability of DESs is to construct a deter-
ministic FSM to check the existence of critical pairs [13], which has however
exponential complexity in the number of system states. Then the authors of [10]
proposed another method called twin plant with polynomial complexity. Here we
adapted the twin plant plus equivalence checking to verify manifestability. Note
that the existence of critical pairs, that excludes diagnosability, does not exclude
manifestability. Intuitively, manifestability is a more complicated problem than
diagnosability, which was demonstrated by proving that the problem itself is
PSPACE instead of polynomial (actually NLOGSPACE) for diagnosability.

How to Be Sure a Faulty System Does Not Always Appear Healthy? 127

In [16,17], the authors proposed different variants of detectability (e.g.,
(strong) detectability) about state estimation. The system is detectable (resp.
strongly detectable) if, based on a sequence of observations, one can be sure
about the state in which is the system for some given trajectory (resp. all trajec-
tories). They proposed a polynomial algorithm for strong detectability, for which
two different trajectories with the same observations implies the violation. How-
ever, to analyze detectability, they constructed a deterministic observer that has
exponential complexity with the number of system states. Our approach can
be adapted to handle state estimation by considering an ambiguous state as one
that contains different system states. Thus, we can improve their state estimation
by using the improved equivalence checking techniques (e.g., the approach of [5]
normally constructs a small part of the deterministic automaton). Furthermore,
we proved that the problem of manifestability itself is PSPACE-complete.

The authors of [1,8] proposed an approach for weak diagnosability in a con-
current system by using Petri net, i.e., impose a constraint of weak fairness by
disallowing the enabled transition to be perpetually ignored. The idea is to make
impossible some non-diagnosable scenarios in order to upgrade the diagnosabil-
ity level. They focused on how to get the more appropriate model, based on
which the solution can be polynomial such as that for classical diagnosability.

Two definitions for stochastic diagnosability were introduced and analyzed
in [19], which are weaker than diagnosability. A-diagnosability requires that the
ambiguous behaviors have a null probability. AA-diagnosability admits errors in
the provided information which should have an arbitrary small probability. Then
four variants of diagnosability (FA, IA, FF, IF) were introduced and studied
for different probabilistic system models [3,4]. Different ambiguity criteria were
then defined according to different types of runs: for faulty runs only or for all
runs; for infinite runs or for finite sub-runs. Among them IF-diagnosability (for
infinite faulty runs) is the weakest one. Note that IF-diagnosability of a finite
probabilistic system is equivalent to A-diagnosability.

The authors of [2,9] analyzed (safe) active diagnosability by introducing con-
trollable actions for (probabilistic) DESs, where the complexity of these problems
were also studied. The idea is to design controllers (resp. label activation strate-
gies for probabilistic version) to enable a subset of actions in order to make it
diagnosable (resp. stochastically diagnosable).

7 Conclusion and Future Work

In this paper we addressed the formal verification of manifestability for DESs.
To bring an alternative to diagnosability analysis, whose satisfaction is very
demanding in terms of sensors placement, we defined (strong) manifestability, a
new weaker property. Then, we constructed different structures from the system
model to check manifestability by using equivalence techniques. The entailment
relations between different properties were proved and demonstrated on exam-
ples from the literature. Thus, engineers have a variety of criteria to design
systems with optimal trade-off between safety and cost. One interesting future

128 L. Ye et al.

work is to extend our approach for distributed systems composed of a set of
components, each one being modeled as a FSM with synchronization events.

References

1. Agarwal, A., Madalinski, A., Haar, S.: Effective verification of weak diagnosability.
In: Proceedings of the 8th IFAC Symposium on Fault Detection, Supervision and
Safety for Technical Processes (SAFEPROCESS 2012), pp. 636–641. IFAC (2012)

2. Bertrand, N., Fabre, É., Haar, S., Haddad, S., Hélouët, L.: Active diagnosis for
probabilistic systems. In: Muscholl, A. (ed.) FoSSaCS 2014. LNCS, vol. 8412, pp.
29–42. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-54830-7 2

3. Bertrand, N., Haddad, S., Lefaucheux, E.: Foundation of diagnosis and predictabil-
ity in probabilistic systems. In: 34th International Conference on Foundation of
Software Technology and Theoretical Computer Science, FSTTCS 2014, 15–17
December 2014, New Delhi, India, pp. 417–429 (2014)

4. Bertrand, N., Haddad, S., Lefaucheux, E.: Diagnosis in infinite-state probabilis-
tic systems. In: 27th International Conference on Concurrency Theory, CONCUR
2016, 23–26 August 2016, Québec City, Canada, pp. 37:1–37:15 (2016)

5. Bonchi, F., Pous, D.: Checking NFA Equivalence with Bisimulations up to Congru-
ence. In: Proceedings of 40th ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages (POPL-2013), pp. 457–468. ACM (2013)

6. Büchi, J.R.: On a decision method in restricted second order arithmetic. Z. Math.
Logik Grundlag. Math 6, 66–92 (1960)

7. Cassandras, C.G., Lafortune, S.: Introduction To Discrete Event Systems, 2nd edn.
Springer, Heidelberg (2008). https://doi.org/10.1007/978-0-387-68612-7

8. Germanos, V., Haar, S., Khomenko, V., Schwoon, S.: Diagnosability under weak
fairness. ACM Trans. Embed. Comput. Syst. 14(4), 69 (2015)

9. Haar, S., Haddad, S., Melliti, T., Schwoon, S.: Optimal constructions for active
diagnosis. J. Comput. Syst. Sci. 83(1), 101–120 (2017)

10. Jiang, S., Huang, Z., Chandra, V., Kumar, R.: A polynomial time algorithm for
testing diagnosability of discrete event systems. Trans. Autom. Control 46(8),
1318–1321 (2001)

11. Papineau, D.: Philosophical Naturalism. Blackwell Publishers, Hoboken (1993)
12. Pencolé, Y.: Diagnosability analysis of distributed discrete event systems. In: Pro-

ceedings of the 16th European Conference on Articifial Intelligent (ECAI 2004),
pp. 43–47. IOS Press, Nieuwe Hemweg (2004)

13. Sampath, M., Sengupta, R., Lafortune, S., Sinnamohideen, K., Teneketzis, D.:
Diagnosability of discrete event system. Trans. Autom. Control 40(9), 1555–1575
(1995)

14. Schumann, A., Huang, J.: A scalable jointree algorithm for diagnosability. In: Pro-
ceedings of the 23rd American National Conference on Artificial Intelligence (AAAI
2008), pp. 535–540. AAAI Press, Menlo Park (2008)

15. Schumann, A., Pencolé, Y.: Scalable diagnosability checking of event-driven sys-
tem. In: Proceedings of the Twentieth International Joint Conference on Artificial
Intelligence (IJCAI 2007), pp. 575–580. International Joint Conferences on Artifi-
cial Intelligence Inc., Menlo Park (2007)

16. Shu, S., Lin, F.: Detectability of discrete event systems with dynamic event obser-
vation. Syst. Control Lett. 59(1), 9–17 (2010)

https://doi.org/10.1007/978-3-642-54830-7_2
https://doi.org/10.1007/978-0-387-68612-7

How to Be Sure a Faulty System Does Not Always Appear Healthy? 129

17. Shu, S., Lin, F.: I-detectability of discrete-event systems. IEEE Trans. Autom. Sci.
Eng. 10(1), 187–196 (2013)

18. Sistla, A.P., Vardi, M.Y., Wolper, P.: The complementation problem for Büchi
automata with applications to temporal logic. Theor. Comput. Sci. 49(2–3), 217–
237 (1987)

19. Thorsley, D., Teneketzis, D.: Diagnosability of stochastic discrete-event systems.
IEEE Trans. Autom. Control 50(4), 476–492 (2005)

20. Ye, L., Dague, P.: Diagnosability analysis of discrete event systems with
autonomous components. In: Proceedings of the 19th European Conference on
Artificial Intelligence (ECAI 2010), pp. 105–110. IOS Press, Nieuwe Hemweg (2010)

21. Ye, L., Dague, P., Longuet, D., Briones, L.B., Madalinski, A.: Fault manifestabil-
ity verification for discrete event systems. In: Proceedings of the 22nd European
Conference on Artificial Intelligence (ECAI 2016), pp. 1718–1719. IOS Press (2016)

	How to Be Sure a Faulty System Does Not Always Appear Healthy?
	1 Introduction
	2 Motivating Example
	3 Manifestability for DESs
	3.1 Models of DESs
	3.2 Diagnosability and Manifestability

	4 Manifestability Verification
	4.1 System Diagnosers
	4.2 Manifestability Checking
	4.3 Algorithm

	5 Experimental Results
	6 Related Work
	7 Conclusion and Future Work
	References

