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Abstract. Stream GSOS is a specification format for operations and
calculi on infinite sequences. The notion of bisimilarity provides a canoni-
cal proof technique for equivalence of closed terms in such specifications.
In this paper, we focus on open terms, which may contain variables,
and which are equivalent whenever they denote the same stream for
every possible instantiation of the variables. Our main contribution is
to capture equivalence of open terms as bisimilarity on certain Mealy
machines, providing a concrete proof technique. Moreover, we introduce
an enhancement of this technique, called bisimulation up-to substitu-
tions, and show how to combine it with other up-to techniques to obtain
a powerful method for proving equivalence of open terms.

1 Introduction

Structural operational semantics (SOS) can be considered the de facto standard
to define programming languages and process calculi. The SOS framework relies
on defining a specification consisting of a set of operation symbols, a set of labels
or actions and a set of inference rules. The inference rules describe the behaviour
of each operation, typically depending on the behaviour of the parameters. The
semantics is then defined in terms of a labelled transition system over (closed)
terms constructed from the operation symbols. Bisimilarity of closed terms (∼)
provides a canonical notion of behavioural equivalence.

It is also interesting to study equivalence of open terms, for instance to express
properties of program constructors, like the commutativity of a non-deterministic
choice operator. The latter can be formalised as the equation X + Y = Y + X ,
where the left and right hand sides are terms with variables X ,Y. Equivalence
of open terms (∼o) is usually based on ∼: for all open terms t1, t2

t1 ∼o t2 iff for all closed substitutions φ, φ(t1) ∼ φ(t2). (1)
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The main problem of such a definition is the quantification over all substitutions:
one would like to have an alternative characterisation, possibly amenable to the
coinduction proof principle. This issue has been investigated in several works,
like [1,3,7,11,13,15,20].
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Fig. 1. A stream GSOS specification (a) is transformed first into a monadic specifica-
tion (b), then in a Mealy specification (c) and finally in a specification for open terms
(d). In these rules, n and m range over real numbers, b over an arbitrary set B, X over
variables and ς over substitutions of variables into reals.

In this paper, we continue this line of research, focusing on the simpler setting
of streams, which are infinite sequences over a fixed data type. More precisely, we
consider stream languages specified in the stream GSOS format [10], a syntactic
rule format enforcing several interesting properties. We show how to transform
a stream specification into a Mealy machine specification that defines the oper-
ational semantics of open terms. Moreover, a notion of bisimulation – arising in
a canonical way from the theory of coalgebras [16] – exactly characterises ∼o as
defined in (1).

Our approach can be illustrated by taking as running example the fragment
of the stream calculus [18] presented in Fig. 1(a). The first step is to transform a
stream GSOS specification (Sect. 2) into a monadic one (Sect. 3). In this variant
of GSOS specifications, no variable in the source of the conclusion appears in the
target of the conclusion. For example, in the stream specification in Fig. 1(a), the
rule associated to ⊗ is not monadic. The corresponding monadic specification is
illustrated in Fig. 1(b). Notice this process requires the inclusion of a family of
prefix operators (on the right of Fig. 1(b)) that satisfy the imposed restriction.

The second step – based on [8] – is to compute the pointwise extension of
the obtained specification (Sect. 4). Intuitively, we transform a specification of
streams with outputs in a set A into a specification of Mealy machines with
inputs in an arbitrary set B and outputs in A, by replacing each transition a−→
(for a ∈ A) with a transition

b|a−−→ for each input b ∈ B. See Fig. 1(c).
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In the last step (Sect. 5), we fix B = V → A, the set of functions assigning
outputs values in A to variables in V. To get the semantics of open terms, it
only remains to specify the behaviours of variables in V. This is done with the
leftmost rule in Fig. 1(d).

As a result of this process, we obtain a notion of bisimilarity over open
terms, which coincides with behavioural equivalence of all closed instances, and
provides a concrete proof technique for equivalence of open terms. By relating
open terms rather than all its possible instances, this novel technique often
enables to use finite relations, while standard bisimulation techniques usually
require relations of infinite size on closed terms. In Sect. 6 we further enhance this
novel proof technique by studying bisimulation up-to [14]. We combine known
up-to techniques with a novel one which we call bisimulation up-to substitutions.

2 Preliminaries

We define the two basic models that form the focus of this paper: stream systems,
that generate infinite sequences (streams), and Mealy machines, that generate
output streams given input streams.

Definition 2.1. A stream system with outputs in a set A is a pair (X, 〈o, d〉)
where X is a set of states and 〈o, d〉 : X → A × X is a function, which maps a
state x ∈ X to both an output value o(x) ∈ A and to a next state d(x) ∈ X.
We write x

a−→ y whenever o(x) = a and d(x) = y.

Definition 2.2. A Mealy machine with inputs in a set B and outputs in a set A
is a pair (X,m) where X is a set of states and m : X → (A×X)B is a function
assigning to each x ∈ X a map m(x) = 〈ox, dx〉 : B → A × X. For all inputs
b ∈ B, ox(b) ∈ A represents an output and dx(b) ∈ X a next state. We write

x
b|a−−→ y whenever ox(b) = a and dx(b) = y.

We recall the notion of bisimulation for both models.

Definition 2.3. Let (X, 〈o, d〉) be a stream system. A relation R ⊆ X ×X is a
bisimulation if for all (x, y) ∈ R, o(x) = o(y) and (d(x), d(y)) ∈ R.

Definition 2.4. Let (X,m) be a Mealy machine. A relation R ⊆ X × X is a
bisimulation if for all (x, y) ∈ R and b ∈ B, ox(b) = oy(b) and (dx(b), dy(b)) ∈ R.

For both kind of systems, we say that x and y are bisimilar, notation x ∼ y,
if there is a bisimulation R s.t. x R y.

Stream systems and Mealy machines, as well as the associated notions of
bisimulation, are instances of the theory of coalgebras [16]. Coalgebras provide a
suitable mathematical framework to study state-based systems and their seman-
tics at a high level of generality. In the current paper, the theory of coalgebras
underlies and enables our main results.
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Definition 2.5. Given a functor F : Set → Set, an F -coalgebra is a pair (X, d),
where X is a set (called the carrier) and d : X → FX is a function (called the
structure). An F -coalgebra morphism from d : X → FX to d′ : Y → FY is a
map h : X → Y such that Fh ◦ d = d′ ◦ h.

Stream systems and Mealy machines are F -coalgebras for the functors FX =
A × X and FX = (A × X)B , respectively.

The semantics of systems modelled as coalgebras for a functor F is provided
by the notion of final coalgebra. A coalgebra ζ : Z → FZ is called final if for
every F -coalgebra d : X → FX there is a unique morphism |[−]| : X → Z such
that |[−]| is a morphism from d to ζ. We call |[−]| the coinductive extension of d.

Intuitively, a final coalgebra ζ : Z → FZ defines all possible behaviours of
F -coalgebras, and |[−]| assigns behaviour to all states x, y ∈ X. This motivates
to define x and y to be behaviourally equivalent iff |[x]| = |[y]|. Under the con-
dition that F preserves weak pullbacks, behavioural equivalence coincides with
bisimilarity, i.e., x ∼ y iff |[x]| = |[y]| (see [16]). This condition is satisfied by (the
functors for) stream systems and Mealy machines. In the sequel, by ∼ we hence
refer both to bisimilarity and behavioural equivalence.

Final coalgebras for stream systems and Mealy machines will be pivotal for
our exposition. We briefly recall them, following [9,16]. The set Aω of streams
over A carries a final coalgebra for the functor FX = A × X. For every stream
system 〈o, d〉 : X → A × X, the coinductive extension |[−]| : X → Aω assigns to
a state x ∈ X the stream a0a1a2 . . . whenever x a0−−→ x1

a1−−→ x2
a2−−→ . . .

Recalling a final coalgebra for Mealy machines requires some more care. Given
a stream β ∈ Bω, we write β!n for the prefix of β of length n. A function
c : Bω → Aω is causal if for all n ∈ N and all β,β′ ∈ Bω: β!n = β′!n entails
c(β)!n = c(β′)!n. The set Γ (Bω, Aω) = {c : Bω → Aω | c is causal} carries
a final coalgebra for the functor FX = (A × X)B . For every Mealy machine
m : X → (A × X)B , the coinductive extension |[−]| : X → Γ (Bω, Aω) assigns
to each state x ∈ X and each input stream b0b1b2 · · · ∈ Bω the output stream
a0a1a2 · · · ∈ Aω whenever x

b0|a0−−−−→ x1
b1|a1−−−−→ x2

b2|a2−−−−→ . . .

2.1 System Specifications

Different kinds of transition systems, like stream systems or Mealy machines, can
be specified by means of algebraic specification languages. The syntax is given by
an algebraic signature Σ, namely a collection of operation symbols {fi | i ∈ I}
where each operator fi has a (finite) arity ni ∈ N. For a set X, TΣX denotes
the set of Σ-terms with variables over X. The set of closed Σ-terms is denoted
by TΣ∅. We omit the subscript when Σ is clear from the context.

A standard way to define the operational semantics of these languages is
by means of structural operational semantics (SOS) [12]. In this approach, the
semantics of each of the operators is described by syntactic rules, and the behav-
iour of a composite system is given in terms of the behaviour of its components.
We recall stream GSOS [10], a specification format for stream systems.
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Definition 2.6. A stream GSOS rule r for a signature Σ and a set A is a rule

x1
a1−−→ x′

1 · · · xn
an−−→ x′

n

f(x1, . . . , xn)
a−→ t

(2)

where f ∈ Σ with arity n, x1, . . . , xn, x′
1, . . . , x

′
n are pairwise distinct variables, t

is a term built over variables {x1, . . . , xn, x′
1, . . . , x

′
n} and a, a1, . . . , an ∈ A. We

say that r is triggered by (a1, . . . , an) ∈ An.
A stream GSOS specification is a tuple (Σ, A,R) where Σ is a signature, A

is a set of actions and R is a set of stream GSOS rules for Σ and A s.t. for each
f ∈ Σ of arity n and each tuple (a1, . . . , an) ∈ An, there is only one rule r ∈ R
for f that is triggered by (a1, . . . , an).

A stream GSOS specification allows us to extend any given stream system
〈o, d〉 : X → A×X to a stream system 〈o, d〉 : TX → A×TX, by induction: the
base case is given by 〈o, d〉, and the inductive cases by the specification. This
construction can be defined formally in terms of proof trees, or by coalgebraic
means; we adopt the latter approach, which is recalled later in this section.

There are two important uses of the above construction: (A) applying it to
the (unique) stream system carried by the empty set ∅ yields a stream system
over closed terms, i.e., of the form T∅ → A× T∅; (B) applying the construction
to the final coalgebra yields a stream system of the form TAω → A× TAω. The
coinductive extension |[−]| : TAω → Aω of this stream system is, intuitively, the
interpretation of the operations in Σ on streams in Aω.

a a−→ a
∀a ∈ A

x
a−→ x′ y

b−→ y′

alt(x, y) a−→ alt(y′, x′)
∀a, b ∈ A

Fig. 2. The GSOS-rules of our running example

alt(a, alt(b, c))

alt(alt(c, b), a)

a c

Fig. 3. A stream system

Example 2.1. Let (Σ, A,R) be a stream GSOS specification where the signature
Σ consists of constants {a | a ∈ A} and a binary operation alt. The set R
contains the rules in Fig. 2. For an instance of (A), the term alt(a, alt(b, c)) ∈ T∅
defines the stream system depicted in Fig. 3. For an instance of (B), the operation
alt : Aω × Aω → Aω maps streams a0a1a2 . . . , b0b1b2 . . . to a0b1a2b2 . . . .

Example 2.2. We now consider the specification (Σ,R, R) which is the fragment
of the stream calculus [17,18] consisting of the constants n ∈ R and the binary
operators sum ⊕ and (convolution) product ⊗. The set R is defined in Fig. 1(a).
For an example of (A), consider n ⊕ m

n+m−−−−→ 0 ⊕ 0 0−→ 0 ⊕ 0 0−→ . . . . For (B),
the induced operation ⊕ : Rω × Rω → Rω is the pointwise sum of streams, i.e.,
it maps any two streams n0n1 . . . , m0m1 . . . to (n0 +m0)(n1 +m1) . . . .
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Definition 2.7. We say that a stream GSOS rule r as in (2) is monadic if t is a
term built over variables {x′

1, . . . , x
′
n}. A stream GSOS specification is monadic

if all its rules are monadic.

The specification of Example 2.1 satisfies the monadic stream GSOS format,
while the one of Example 2.2 does not since, in the rules for ⊗, the variable y
occurs in the arriving state of the conclusion.

The notions introduced above for stream GSOS, as well as the analogous
ones for standard (labeled transition systems) GSOS [5], can be reformulated
in an abstract framework – the so-called abstract GSOS [10,19] – that will be
pivotal for the proof of our main result.

In this setting, signatures are represented by polynomial functors: a signature
Σ corresponds to the polynomial functor ΣX =

∐
i∈I X

ni . For instance, the
signature Σ in Example 2.1 corresponds to the functor ΣX = A + (X × X),
while the signature of Example 2.2 corresponds to the functor ΣX = R+ (X ×
X) + (X ×X). Models of a signature are seen as algebras for the corresponding
functor.

Definition 2.8. Given a functor F : Set → Set, an F -algebra is a pair (X, d),
where X is the carrier set and d : FX → X is a function. An algebra homo-
morphism from an F -algebra (X, d) to an F -algebra (Y, d′) is a map h : X → Y
such that h ◦ d = d′ ◦ Fh.

Particularly interesting are initial algebras: an F -algebra is called initial if there
exists a unique algebra homomorphism from it to every F -algebra. For a functor
corresponding to a signature Σ, the initial algebra is (T∅,κ) where κ : ΣT∅ → T∅
maps, for each i ∈ I, the tuple of closed terms t1, . . . tni to the closed term
fi(t1, . . . tni). For every set X, we can define in a similar way κX : ΣTX → TX.
The free monad over Σ consists of the endofunctor T : Set → Set, mapping every
set X to TX, together with the natural transformations η : Id =⇒ T (interpre-
tation of variables as terms) and µ : TT =⇒ T (glueing terms built of terms).
Given an algebra σ : ΣY → Y , for any function f : X → Y there is a unique
algebra homomorphism f† : TX → Y from (TX,κX) to (Y,σ). In particular, the
identity function id : X → X induces a unique algebra homomorphism from TX
to X, which we denote by σ# : TX → X; this is the interpretation of terms in σ.

Definition 2.9. An abstract GSOS specification (of Σ over F ) is a natural
transformation λ : Σ(Id × F ) =⇒ FT . A monadic abstract GSOS specification
(in short, monadic specification) is a natural transformation λ : ΣF =⇒ FT .

By instantiating the functor F in the above definition to the functor for streams
(FX = A×X) one obtains all and only the stream GSOS specifications. Instead,
by taking the functor for Mealy machines (FX = (A × X)B) one obtains the
Mealy GSOS format [10]: for the sake of brevity, we do not report the concrete
definition here but this notion will be important in Sect. 5 where, to deal with
open terms, we transform stream specifications into Mealy GSOS specifications.
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Example 2.3. For every set X, the rules in Example 2.1 define a function λX :
A+(A×X)× (A×X) → (A×TΣX) as follows: each a ∈ A is mapped to (a, a)
and each pair (a, x′), (b, y′) ∈ (A×X)× (A×X) is mapped to (a, alt(y′, x′)) [10].

We focus on monadic distributive laws for most of the paper, and since they
are slightly simpler than abstract GSOS specifications, we only recall the relevant
concepts for monadic distributive laws. However, we note that the concepts below
can be extended to abstract GSOS specifications; see, e.g., [4,10] for details.

A monadic abstract GSOS specification induces a distributive law ρ : TF =⇒
FT . This distributive law allows us to extend any F -coalgebra d : X → FX to
an F -coalgebra on terms:

TX
Td !! TFX

ρX !! FTX

This construction generalises and formalises the aforementioned extension of
stream systems to terms by means of a stream GSOS specification. In particular,
(A) the unique coalgebra on the empty set ! : ∅ → F∅ yields an F -coalgebra on
closed terms T∅ → FT∅. If F has a final coalgebra (Z, ζ), the unique morphism
|[−]|c : T∅ → Z defines the semantics of closed terms.

T∅ TF∅ FT∅

(A)

Z FZ

|[−]|c

T ! ρ∅

ζ

F |[−]|c

TZ TFZ FTZ

(B)

Z FZ

|[−]|a

Tζ ρZ

ζ

F |[−]|a

Further (B), the final coalgebra (Z, ζ) yields a coalgebra on TZ. By finality,
we then obtain a T -algebra over the final F -coalgebra, which we denote by
|[−]|a : TZ → Z and we call it the abstract semantics. We define the algebra
induced by λ as the Σ-algebra σ : ΣZ → Z given by

ΣZ
ΣηZ !! ΣTZ

κZ !! TZ
|[−]|a !! Z . (3)

3 Making Arbitrary Stream GSOS Specifications
Monadic

The results presented in the next section are restricted to monadic specifica-
tions, but one can prove them for arbitrary GSOS specifications by exploiting
some auxiliary operators, introduced in [8] with the name of buffer. Theorem 6.1
in Sect. 6 only holds for monadic GSOS specifications. This does not restrict
the applicability of our approach: as we show below, arbitrary stream GSOS
specifications can be turned into monadic ones.

Let (Σ, A,R) be a stream GSOS specification. The extended signature Σ̃ is
given by {f̃ | f ∈ Σ} ∪ {a. | a ∈ A}. The set of rules R̃ is defined as follows:
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– For all a, b ∈ A, R̃ contains the following rule

x
b−→ x′

a.x
a−→ b.x′

(4)

– For each rule r = x1
a1−−→x′

1 ··· xn
an−−→x′

n

f(x1,...,xn)
a−→t(x1,...,xn,x′

1,...,x
′
n)

∈ R, the set R̃ contains

r̃ =
x1

a1−−→ x′
1 · · · xn

an−−→ x′
n

f̃(x1, . . . , xn)
a−→ t̃(a1.x′

1, . . . , a
′
n.x

′
n, x

′
1, . . . , x

′
n)

(5)

where t̃ is the term obtained from t by replacing each g ∈ Σ by g̃ ∈ Σ̃.

The specification (Σ̃, A, R̃) is now monadic and preserves the original semantics
as stated by the following result.

Theorem 3.1. Let (Σ, A,R) be a stream GSOS specification and (Σ̃, A, R̃) be
the corresponding monadic one. Then, for all t ∈ TΣ∅, t ∼ t̃.

Example 3.1. Consider the non-monadic specification in Example 2.2. The cor-
responding monadic specification consists of the rules in Fig. 1(b) where, to keep
the notation light, we used operation symbols f rather than f̃ .

4 Pointwise Extensions of Monadic GSOS Specifications

The first step to deal with the semantics of open terms induced by a stream GSOS
specification is to transform the latter into a Mealy GSOS specification. We
follow the approach in [8] which is defined for arbitrary GSOS but, as motivated
in Sect. 3, we restrict our attention to monadic specifications.

Let (Σ, A,R) be a monadic stream GSOS specification and B some input
alphabet. The corresponding monadic Mealy GSOS specification is a tuple
(Σ, A,B,R), where R is the least set of Mealy rules which contains, for each

stream GSOS rule r = x1
a1−−→x′

1 ··· xn
an−−→x′

n

f(x1,...,xn)
a−→t(x′

1,...,x
′
n)

∈ R and b ∈ B, the Mealy rule

rb defined by

rb =
x1

b|a1−−−→ x′
1 · · · xn

b|an−−−→ x′
n

f(x1, . . . , xn)
b|a−−→ t(x′

1, . . . , x
′
n)

(6)

An example of this construction is shown in Fig. 1(c).
Recall from Sect. 2 that any abstract GSOS specification induces a Σ-algebra

on the final F -coalgebra. Let σ : ΣAω → Aω be the algebra induced by the
stream specification and σ : ΣΓ (Bω, Aω) → Γ (Bω, Aω) the one induced by
the corresponding Mealy specification. Theorem 4.1, at the end of this section,
informs us that σ is the pointwise extension of σ.



Bisimilarity of Open Terms in Stream GSOS 43

Definition 4.1. Let g : (Aω)n → Aω and ḡ : (Γ (Bω, Aω))n → Γ (Bω, Aω) be two
functions. We say that ḡ is the pointwise extension of g iff for all c1, . . . , cn ∈
Γ (Bω, Aω) and β ∈ Bω, ḡ(c1, . . . , cn)(β) = g(c1(β), . . . , cn(β)). This notion is
lifted in the obvious way to Σ-algebras for an arbitrary signature Σ.

Example 4.1. Recall the operation ⊕ : Aω × Aω → Aω from Example 2.2 that
arises from the specification in Fig. 1(a) (it is easy to see that the same operation
also arises from the monadic specification in Fig. 1(b)). Its pointwise extension
⊕̄ : Γ (Bω,Rω) × Γ (Bω,Rω) → Γ (Bω,Rω) is defined for all c1, c2 ∈ Γ (Bω,Rω)
and β ∈ Bω as (c1⊕̄c2)(β) = c1(β) ⊕ c2(β). Theorem 4.1 tells us that ⊕̄ arises
from the corresponding Mealy GSOS specification (Fig. 1(c)).

In [8], the construction in (6) is generalised from stream specifications to
arbitrary abstract GSOS. The key categorical tool is the notion of costrength
for an endofunctor F : Set → Set. Given two sets B and X, we first define
εb : XB → X as εb(f) = f(b) for all b ∈ B. Then, csFB,X : F (XB) → (FX)B is a
natural map in B and X, given by csFB,X(t)(b) = (F εb)(t).

Now, given a monadic specification λ : ΣF =⇒ FT , we define λ̄ : Σ(FB) =⇒
(FT )B as the natural transformation that is defined for all sets X by

Σ(FX)B
csΣ

B,FX !! (ΣFX)B
λB
X !! (FTX)B . (7)

Observe that λ̄ is also a monadic specification, but for the functor FB rather than
the functor F . The reader can easily check that for F being the stream functor
FX = A×X, the resulting λ̄ is indeed the Mealy specification corresponding to
λ as defined in (6).

It is worth to note that the construction of λ̄ for an arbitrary abstract GSOS
λ : Σ(Id×F ) =⇒ FT , rather than a monadic one, would not work as in (7). The
solution devised in [8] consists of introducing some auxiliary operators as already
discussed in Sect. 3. The following result has been proved in [8] for arbitrary
abstract GSOS, with these auxiliary operators. Our formulation is restricted to
monadic specifications.

Theorem 4.1. Let F be a functor with a final coalgebra (Z, ζ), and let (Z̄, ζ̄)
be a final FB-coalgebra. Let λ : ΣF =⇒ FT be a monadic distributive law, and
σ : ΣZ → Z the algebra induced by it. The algebra σ̄ : ΣZ̄ → Z̄ induced by λ̄ is
a pointwise extension of σ.

In the theorem above, the notion of pointwise extension should be understood
as a generalisation of Definition 4.1 to arbitrary final F and FB-coalgebras. This
generalised notion, that has been introduced in [8], will not play a role for our
paper where F is fixed to be the stream functor FX = A × X.

5 Mealy Machines over Open Terms

We now consider the problem of defining a semantics for the set of open terms
TV for a fixed set of variables V. Our approach is based on the results in the
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previous sections: we transform a monadic GSOS specification for streams with
outputs in A into a Mealy machine with inputs in AV and outputs in A, i.e., a
coalgebra for the functor FX = (A × X)A

V
. The coinductive extension of this

Mealy machine provides the open semantics: for each open term t ∈ TV and
variable assignment ψ : V → Aω, it gives an appropriate output stream in Aω.
This is computed in a stepwise manner: for an input ς : V → A, representing
“one step” of a variable assignment ψ, we obtain one step of the output stream.

We start by defining a Mealy machine c : V → (A × V)AV
on the set of

variables V as on the left below, for all X ∈ V and ς ∈ AV :

c(X )(ς) = (ς(X ),X ) X ς|ς(X )"" (8)

Concretely, this machine has variables as states and for each ς : V → A a self-
loop, as depicted on the right. Now, let λ : Σ(A × −) ⇒ A × T be a monadic
stream specification and λ̄ : Σ((A×−)A

V
) ⇒ (A×T (−))A

V
be the induced Mealy

specification, as defined in (7). As mentioned in Sect. 2, λ̄ defines a distributive
law ρ : T ((A × −)A

V
) ⇒ (A × T (−))A

V
, which allows to extend c (see (8)) to a

coalgebra mλ : TV → (A × TV)AV
, given by

TV Tc !! T (A × V)AV ρV !! (A × TV)AV
. (9)

This is the Mealy machine of interest.

Example 5.1. Consider the stream specification λ of the operation alt, given in
Example 2.1. The states of the Mealy machine mλ are the open terms TV. The
transitions of terms are defined by the set of rules

a
ς|a−−→ a

x
ς|a−−→ x′ y

ς|b−−→ y′

alt(x, y)
ς|a−−→ alt(y′, x′)

for all ς : V → A and a, b ∈ A

together with the transitions for the variables as in (8). For instance, for each
X ,Y,Z ∈ V and all ς, ς ′ : V → A, we have the following transitions in mλ:

alt(X , alt(Y,Z))

alt(alt(Z,Y),X )
ς|ς(X ) ς ′|ς ′(Z)

Example 5.2. For the fragment of the stream calculus introduced in Example 2.2,
the Mealy machine over open terms is defined by the rules in Fig. 1(d). Below
we draw the Mealy machines of some open terms that will be useful later.

X ⊕ Y

ς|ς(X )+ς(Y)

##
Y ⊕ X

ς|ς(Y)+ς(X )

##
(X ⊕ Y) ⊕ Z

ς|(ς(X )+ς(Y))+ς(Z)

$$
X ⊕ (Y ⊕ Z)

ς|ς(X )+(ς(Y)+ς(Z))

$$
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We define the open semantics below by the coinductive extension of mλ.
Let Γ̃ = Γ ((AV)ω, Aω) be the set of causal functions c : (AV)ω → Aω, which
is the carrier of the final coalgebra for the functor FX = (A × X)A

V
. Notice

that a function c : (AV)ω → Aω can equivalently be presented as a function
c̃ : (Aω)V → Aω (swapping the arguments in the domain). Given such a function
c : (AV)ω → Aω and a function ψ : V → Aω, in the sequel, we sometimes abuse
of notation by writing c(ψ) where we formally mean c̃(ψ).

Definition 5.1. Let λ : Σ(A× −) ⇒ A× T be a monadic stream GSOS specifi-
cation. The open semantics of λ is the coinductive extension |[−]|o : TV → Γ̃ of
the Mealy machine mλ : TV → (A × TV)AV

defined in (9).

Behavioural equivalence of open terms can now be checked by means of
bisimulations on Mealy machines (Definition 2.4). We define open bisimilarity,
denoted by ∼o, as the greatest bisimulation on mλ. Obviously, for all open terms
t1, t2 ∈ TV it holds that t1 ∼o t2 iff |[t1]|o = |[t2]|o. The following result provides
another useful characterisation of |[−]|o.

Lemma 5.1. Let λ be a monadic stream GSOS specification, with induced alge-
bra σ : ΣAω → Aω. Let λ̄ be the corresponding Mealy specification, with induced
algebra σ̄ : ΣΓ̃ → Γ̃ . Then the open semantics |[−]|o is the unique homomorphism
making the diagram below commute:

ΣTV ΣΓ̃

TV Γ̃

V

Σ|[ ]|o

κV σ̄
|[ ]|o

ηV
proj

(10)

where η and κ are defined by initiality (Sect. 2), and for each X ∈ V and ψ : V →
Aω, proj(X )(ψ) = ψ(X ).

Observe that, by virtue of Theorem 4.1, the algebra σ̄ is the pointwise extension
of σ. This fact will be useful in the next section to relate ∼o with bisimilarity
on the original stream system.

5.1 Abstract, Open and Closed Semantics

Recall from Sect. 2 the abstract semantics |[−]|a : TAω → Aω arising as in (B)
from a monadic stream specification λ. The following proposition is the key to
prove Theorem 5.1 relating open bisimilarity and abstract semantics.

Proposition 5.1. Let |[−]|a and |[−]|o be the abstract and open semantics respec-
tively of a monadic stream GSOS specification λ. For any t ∈ TV, ψ : V → Aω:

|[t]|o(ψ) = |[(Tψ)(t)]|a .

As a simple consequence, we obtain the following characterization of ∼o.
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Theorem 5.1. For all t1, t2 ∈ TV, |[t1]|o = |[t2]|o iff for all ψ : V → Aω:
|[Tψ(t1)]|a = |[Tψ(t2)]|a.

This is one of the main results of this paper: Tψ(t1) and Tψ(t2) are expres-
sions in TAω built from symbols of the signature Σ and streams α1, . . .αn ∈ Aω.
By checking t1 ∼o t2 one can prove that the two expressions are equivalent for
all possible streams α1, . . .αn ∈ Aω.

Example 5.3. By using the Mealy machine mλ in Example 5.1, the relation

R ={(alt(X , alt(Y,Z)), alt(X , alt(W,Z))), (alt(alt(Z,Y),X ), alt(alt(Z,W),X ))}

is easily verified to be a bisimulation (Definition 2.4). In particular this shows
that |[alt(X , alt(Y,Z))]|o = |[alt(X , alt(W,Z))]|o. By Theorem 5.1, we have that
|[Tψ(alt(X , alt(Y,Z)))]|a = |[Tψ(alt(X , alt(W,Z)))]|a for all ψ : V → Aω, i.e.,

alt(α1, alt(α2,α3)) ∼ alt(α1, alt(α4,α3)) for all α1,α2,α3,α4 ∈ Aω.

The above law can be understood as an equivalence of program schemes stating
that one can always replace the stream α2 by an arbitrary stream α4, without
changing the result.

Example 5.4. By using the Mealy machines in Example 5.2, it is easy to check
that both {((X ⊕Y)⊕Z,X ⊕ (Y⊕Z))} and {(X ⊕Y,Y⊕X )} are bisimulations.
This means that |[(X ⊕ Y) ⊕ Z]|o = |[X ⊕ (Y ⊕ Z)]|o and |[X ⊕ Y]|o = |[Y ⊕ X ]|o.
By Theorem 5.1 we obtain associativity and commutativity of ⊕:

(α1 ⊕ α2)⊕ α3 ∼ α1 ⊕ (α2 ⊕ α3) and α1 ⊕ α2 ∼ α2 ⊕ α1 for all α1,α2,α3 ∈ Aω.

Example 5.5. In a similar way, one can check that {((a+b).(X ⊕Y), a.X ⊕b.Y) |
a, b ∈ R} is a bisimulation. This means that |[(a+ b).(X ⊕ Y)]|o = |[a.X ⊕ b.Y]|o
for all a, b ∈ R and, using again Theorem 5.1, we conclude that (a+b).(α1⊕α2) ∼
a.α1 ⊕ b.α2 for all α1,α2 ∈ Aω.

Often, equivalence of open terms is defined by relying on the equivalence of
closed terms: two open terms are equivalent iff under all possible closed sub-
stitutions, the resulting closed terms are equivalent. For ∼o, this property does
not follow immediately by Theorem 5.1, where variables range over streams, i.e.,
elements of the final coalgebra. One could assume that all the behaviours of the
final coalgebra are denoted by some term, however this restriction would rule
out most of the languages we are aware of: in particular, the stream calculus
that can express only the so-called rational streams [18].

The following theorem, that is the second main result of this paper, only
requires that the stream GSOS specification is sufficiently expressive to describe
arbitrary finite prefixes. We use that any closed substitution φ : V → T∅ defines
φ† : TV → T∅ (see Sect. 2.1).
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Theorem 5.2. Suppose λ : Σ(A × −) ⇒ A × TΣ is a monadic stream GSOS
specification which contains, for each a ∈ A, the prefix operator a.− as specified
in (4) in Sect. 3. Further, assume T∅ is non-empty.

Let |[−]|c and |[−]|o be the closed and open semantics respectively of λ. Then
for all t1, t2 ∈ TV: |[t1]|o = |[t2]|o iff |[φ†(t1)]|c = |[φ†(t2)]|c for all φ : V → T∅.

Example 5.6. The specification in Fig. 2 does not include the prefix operator,
therefore it does not meet the assumptions of Theorem 5.2. Instead, the monadic
GSOS specification in Fig. 1(b) contains the prefix. Recall from Example 5.5
that (a + b).(X ⊕ Y) ∼o a.X ⊕ b.Y. Using Theorem 5.2, we can conclude that
(a+ b).(t1 ⊕ t2) ∼ a.t1 ⊕ b.t2 for all t1, t2 ∈ T∅.

6 Bisimulation Up-To Substitutions

In the previous section, we have shown that bisimulations on Mealy machines
can be used to prove equivalences of open terms specified in the stream GSOS
format. In this section we introduce up-to substitutions, an enhancement of the
bisimulation proof method that allows to deal with smaller, often finite, relations.
We also show that up-to substitutions can be effectively combined with other
well-known up-to techniques such as up-to bisimilarity and up-to context.

Intuitively, in a bisimulation up-to substitutions R, the states reached by a
pair of states do not need to be related by R, but rather by θ(R), for some
substitution θ : V → TV. We give a concrete example. Suppose we extend the
stream calculus of Example 2.2 with the operators f and g defined by the rules
in Fig. 4. In Fig. 5, we have the pointwise extensions of these new operators.
It should be clear that f(X ) ∼ g(X ). To try to formally prove f(X ) ∼ g(X ),
consider the relation R = {(f(X ), g(X ))}. For all ς : V → A, there are tran-

sitions f(X )
ς|ς(X )−−−−→ f(X ⊕ X ) and g(X )

ς|ς(X )−−−−→ g(X ⊕ X ). The outputs of
both transitions coincide but the reached states are not in R, hence R is not a
bisimulation. However it is a bisimulation up-to substitutions, since the arriving
states are related by θ(R), for some substitution θ mapping X to X ⊕X . In fact,
without this technique, any bisimulation relating f(X ) and g(X ) should contain
infinitely many pairs.

x
a−→ x′

f(x)
a−→ f(x′ ⊕ x′)

x
a−→ x′

g(x)
a−→ g(x′ ⊕ x′)

Fig. 4. f and g, operators over streams

x
ς|a−−→ x′

f(x)
ς|a−−→ f(x′ ⊕ x′)

x
ς|a−−→ x′

g(x)
ς|a−−→ g(x′ ⊕ x′)

Fig. 5. Pointwise extensions of f and g.

In order to prove the soundness of this technique, as well as the fact that it
can be safely combined with other known up-to techniques, we need to recall
some notions of the theory of up-to techniques in lattices from [14]. Given a
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Mealy machine (X,m), we consider the lattice (P(X × X),⊆) of relations over
X, ordered by inclusion, and the monotone map b : P(X × X) → P(X × X)
defined for all R ⊆ X × X as

b(R) = {(s, t) ∈ X × X | ∀b ∈ B, os(b) = ot(b) and ds(b) R dt(b)}. (11)

It is easy to see that post fixed points of b, i.e., relations R such that R ⊆
b(R), are exactly bisimulations for Mealy machines (Definition 2.4) and that its
greatest fixed point is ∼.

For a monotone map f : P(X ×X) → P(X ×X), a bisimulation up-to f is a
relation R such that R ⊆ bf(R). We say that f is compatible with b if fb(R) ⊆
bf(R) for all relations R. Two results in [14] are pivotal for us: first, if f is
compatible and R ⊆ bf(R) then R ⊆ ∼; second if f1 and f2 are compatible with
b then f1 ◦ f2 is compatible with b. The first result informs us that bisimilarity
can be proved by means of bisimulations up-to f , whenever f is compatible. The
second result states that compatible up-to techniques can be composed.

We now consider up-to techniques for the Mealy machine over open terms
(TV,mλ) as defined in Sect. 5. Recall that bisimilarity over this machine is called
open bisimilarity, denoted by ∼o. Up-to substitutions is the monotone function
(−)∀θ : P(TV × TV) → P(TV × TV) mapping every R ⊆ TV × TV to

(R)∀θ = {(θ(t1), θ(t2)) | θ : V → TV and t1 R t2}.

Similarly, we define up-to context as the monotone function mapping every rela-
tionR ⊆ TV×TV to its contextual closure C(R) and up-to (open) bisimilarity as
the function mapping R to ∼o R ∼o = {(t1, t2) | ∃t′1, t′2 s.t. t1 ∼o t′1 R t′2 ∼o t2}.

Compatibility with b of up-to context and up-to bisimilarity hold immedi-
ately by the results in [6]. For the novel technique, up-to substitutions, we have:

Theorem 6.1. The function (−)∀θ is compatible with b.

As a consequence of the above theorem and the results in [14], up-to substi-
tutions can be used in combination with up-to bisimilarity and up-to context (as
well as any another compatible up-to technique) to prove open bisimilarity. We
will show this in the next, concluding example, for which a last remark is useful:
the theory in [14] also ensures that if f is compatible with b, then f(∼) ⊆ ∼. By
Theorem 6.1, this means that (∼o)∀θ ⊆ ∼o. The same obviously holds for the
contextual closure: C(∼o) ⊆ ∼o.

Example 6.1. We prove that the convolution product ⊗ distributes over the sum
⊕, i.e., α1 ⊗ (α2 ⊕ α3) ∼ (α1 ⊗ α2) ⊕ (α1 ⊗ α3) for all streams α1,α2,α3 ∈ Rω.
By Theorems 5.1 and 6.1, to prove our statement it is enough to show that R =
{(X⊗(Y⊕Z), (X⊗Y)⊕(X⊗Z))} is a bisimulation up-to ∼o C(∼o (−)∀θ ∼o) ∼o.

By rules in Fig. 1(d), for all ς : V → R, the transitions of the open terms are

– X ⊗(Y⊕Z)
ς|ς(X )×(ς(Y)+ς(Z))−−−−−−−−−−−−−−→ (ς(X )⊗(Y⊕Z))⊕(X ⊗(ς(Y)+ς(Z)).(Y⊕Z))

– (X ⊗ Y) ⊕ (X ⊗ Z)
ς|ς(X )×ς(Y)+ς(X )×ς(Z)−−−−−−−−−−−−−−−−−→

((ς(X ) ⊗ Y) ⊕ (X ⊗ ς(Y).Y)) ⊕ ((ς(X ) ⊗ Z) ⊕ (X ⊗ ς(Z).Z))
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For the outputs, it is evident that ς(X ) × (ς(Y) + ς(Z)) = ς(X ) × ς(Y) +
ς(X )× ς(Z). For the arriving states we need a few steps, where for all ς : V → R
and X ∈ V, ς(X ) denotes either a real number (used as a prefix) or a constant
of the syntax (Example 2.2).

(a) X ⊗ (ς(Y).Y ⊕ ς(Z).Z) R∀θ (X ⊗ ς(Y).Y) ⊕ (X ⊗ ς(Z).Z).
(b) By Example 5.5 and C(∼o) ⊆∼o, we have that:

X ⊗ (ς(Y) + ς(Z)).(Y ⊕ Z) ∼o X ⊗ (ς(Y).Y ⊕ ς(Z).Z).
(c) By (b) and (a):

X ⊗ (ς(Y) + ς(Z)).(Y ⊕ Z) ∼oR∀θ∼o (X ⊗ ς(Y).Y) ⊕ (X ⊗ ς(Z).Z).
(d) ς(X ) ⊗ (Y ⊕ Z) R∀θ (ς(X ) ⊗ Y) ⊕ (ς(X ) ⊗ Z).
(e) Using (d) and (c) with context C = ⊕ :

(ς(X ) ⊗ (Y ⊕ Z)) ⊕ (X ⊗ (ς(Y) + ς(Z)).(Y ⊕ Z))
C(∼oR∀θ∼o) ((ς(X )⊗Y)⊕ (ς(X )⊕Z))⊕ ((X ⊗ ς(Y).Y)⊕ (X ⊗ ς(Z).Z)).

(f) By Example 5.4 (associativity and commutativity of ⊕) and (∼o)∀ρ ⊆ ∼o:
((ς(X ) ⊗ Y) ⊕ (ς(X ) ⊕ Z)) ⊕ ((X ⊗ ς(Y).Y) ⊕ (X ⊗ ς(Z)).Z))
∼o ((ς(X ) ⊗ Y) ⊕ (X ⊗ ς(Y).Y)) ⊕ ((ς(X ) ⊗ Z) ⊕ (X ⊗ ς(Z).Z)).

(g) By (e) and (f):
(ς(X ) ⊗ (Y ⊕ Z)) ⊕ (X × (ς(Y) + ς(Z)).(Y ⊕ Z))
∼oC(∼oR∀θ∼o)∼o ((ς(X )⊗Y)⊕(X⊗ς(Y).Y))⊕((ς(X )⊗Z)⊕(X⊗ς(Z).Z)).

7 Final Remarks

In this paper we have studied the semantics of open terms specified in the stream
GSOS format. Our recipe consists in translating the stream specification into a
Mealy specification giving semantics to all open terms. Remarkably, this seman-
tics equates two open terms if and only if they are equivalent under all possible
interpretations of variables as streams (Theorem 5.1) or under the interpretation
of variables as closed terms (Theorem 5.2). Furthermore, semantic equivalence
can be checked by means of the bisimulation proof method enhanced with a
technique called up-to substitutions (Theorem 6.1).

Our work can be considered as a first step toward a (co)algebraic under-
standing of the semantics of open terms in the general setting of abstract GSOS
[10,19]. While our approach exploits several peculiarities of the final coalgebra
for stream systems, several intermediate results hold in the general setting: for
instance, the construction in Sect. 3 transforming arbitrary stream GSOS speci-
fications into monadic ones, seems to hold for arbitrary abstract GSOS. Another
promising clue in this direction comes from the way we specified the semantics
of variables in Sect. 5: it is reminiscent of the technique adopted in [2] for dealing
with open terms of process calculi denoting labeled transition systems.
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