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Abstract Contract-based design is an emerging paradigm for correct-by-construction hier-
archical systems: components are associated with assumptions and guarantees expressed as
formal properties; the architecture is analyzed by verifying that each contract of composite
components is correctly refined by the contracts of its subcomponents. The approach is very
efficient, because the overall correctness proof is decomposed into proofs local to each com-
ponent. However, the process for the contract specification and refinement is quite expensive
because the requirements are formalised into formal properties, where part of the complexity
is delegated to the designer, who has the burden of specifying the contracts. Typical problems
include understanding which contracts are necessary, and how they can be simplified without
breaking the correctness of the refinement and other refinements in case some subcontracts
are shared. In this paper, we tackle these problems by proposing a technique to understand
and simplify the contract refinements of a system architecture during the development pro-
cess for the contract specification and refinement. The technique, called tightening, is based
on parameter synthesis. The idea is to generate a set of parametric proof obligations, where
each parameter evaluation corresponds to a variant of the original(s) contract refinement(s),
and to search for tighter variants of the contracts that still ensure the correctness of the refine-
ment(s). We cast this approach in the OCRA framework, where contracts are expressed with
LTL formulas, andwe evaluate its performance and effectiveness on a number of benchmarks.
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1 Introduction

Embedded-software systems are growing in number and technical complexity. They are
becomingmore andmore sophisticated towards open, interconnected and networked systems.
Due to the complexity of the context in which they operate, their defects can cause life-
threatening situations and may have a huge economical impact [19]. In order to improve
their efficiency and cost, their quality must be ensured with a rigorous analysis especially for
those functions that have safety-critical requirements. Formal architectural models provide
an important means to guarantee the correct refinement of system requirements along the
design development and decomposition of the system.

Contract-based design, first conceived for software specification byMeyer [26] and nowa-
days also applied to embedded systems (cfr. e.g., [3–5,15,17,18,22,29]), is an emerging
paradigm for correct-by-construction systems which structures components properties into
contracts. A contract specifies the properties assumed to be satisfied by the component
environment (assumptions), and the properties guaranteed by the component in response
(guarantees). The architecture is analyzed by verifying that each contract of composite com-
ponents is correctly refined by the contracts of its subcomponents.

In the contract framework proposed in [15,16], assumptions and guarantees are speci-
fied as temporal formulas. Checking the correctness of contracts refinement is supported
by generating a set of necessary and sufficient conditions. These proof obligations are tem-
poral formulas obtained from assumptions and guarantees, which are valid if and only if
the refinement is correct. The approach is implemented in the OCRA tool [11,27] and is
parametrized by a linear-time temporal logic, either propositional LTL [28], or LTL with
SMT predicates [14], or HRELTL [13,14], a variant of LTL where formulas represent sets of
hybrid traces, mixing discrete- and continuous-time steps, and therefore amenable to model
properties of hybrid systems. The approach has been used in several contexts and domains.
For example, in the FoReVer [2,20] and AutoFocus [8] framework, the OCRA approach was
adopted to formalize requirements into contracts and to specify their refinements along the
architecture decomposition in a top-down fashion during the development process. More-
over, a significant case study is presented in [6], where different variants of an industrial-size
architectural model of a wheel braking system are analyzed, following the example outlined
in the avionic AIR6110 standard.

The approach is very efficient, because the overall correctness proof is decomposed into
proofs local to each component. However, the development process for the contract specifi-
cation and refinement is quite expensive because the requirements are formalised into formal
properties, where part of the complexity is delegated to the designer, who has the burden of
specifying the contracts. Typical problems include understanding which contracts are neces-
sary for satisfying each contract refinement starting from the system component to the leaf
components in a top-down fashion, and how they can be simplified without breaking the
correctness of the refinement.

In this article,1 we aim to support the development process for the contracts specification
and top-down refinement of a system architecture by proposing a technique to simplify the
contract refinements during this process. Generally speaking, our approach takes as input a
valid contract refinement and attempt to produce a simplified version: first, it finds which
subconstracts are relevant for the refinement; second, it relaxes the contracts involved in the
refinement by weakening the assumption of the parent component and the guarantees of the

1 This is a revised and expanded version of a conference paper presented at SEFM 2016 [10]. A detailed
description of the extension is given in Sect. 7.
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subcomponents. This simplification is really useful at the initial stage of the formalization of
the contracts both to validate the specification highlighting the relevant parts that are necessary
to make the refinement correct and to relax the requirements for subcomponents increasing
the design freedom for different implementation solutions. The general technique is called
tightening and is basedonparameter synthesis. The idea is to generate a set of parametric proof
obligations for a single contract refinement, where each parameter evaluation corresponds
to a variant of the original contract refinement, and to search for tighter variants of the
contracts that still ensure the correctness of the refinement. Inmore details, the procedure first
injects a set of parameters in the contract specification to create a search space of weakened
assumptions of the parent contract and guarantees of the subcontracts. We have defined
pattern-based functions that take as input a formula and they return a parametric formula and
a set of injected parameter. Parameters are injected so that every parameter evaluation yields a
respectively weaker or stronger formula. Moreover, we introduce parameters on the contracts
in order to extend the parametric problem generated above to determine additionally which
subcontracts can be removed from the contract refinement. Then, the intention is to apply this
technique step by step on each contract refinement alongwith the successive decomposition of
the system architecture. Note that, it could be the case that diverse contract refinements share
some subcontracts which means that the tightened variants of a single contract refinement
could possible break the correctness of the others. Consequently, we have developed a robust
tightening technique called parallel tightening in order to deal with the problem of sharing
of contracts by adding the proof obligations of the other contracts’ refinements that have
subcontracts in common. Thereby, we can obtain simplification of the contracts and keep the
correctness of all involved contracts refinements.

We cast this approach in the OCRA framework and we evaluate its performance and effec-
tiveness on a number of benchmarks, including the industrial-size architectures described
in [6].
Outline The remainder of the paper is structured as follows. In Sect. 2 we introduce some
notions used throughout the paper. In Sect. 3, we describe the motivation of using the tight-
ening techniques for supporting the development process for the contracts specification and
refinement of a system architecture. We present in Sect. 4 the formal definition and main
algorithm for tightening a single contract refinement. In Sect. 5 we describe how tightening
of a single contract refinement can be applied iteratively on the different levels of a system
architecture and we solve the related issue of tightening contract refinements that share some
contracts.We describe the experimental evaluation performed in Sect. 6. In Sect. 7 we discuss
the related work. Finally, we discuss in Sect. 8 some conclusions and directions for further
work.

2 Background

2.1 Transition systems

Given a finite set V of variables with a (potentially infinite) domain D, we denote with�(V )

the set of assignments to V , i.e. mapping from V to D. Let V ′ denote a copy of the variables
V , which are used to represent the values of V after a transition.

A transition system (TS) S is a tuple S = 〈V, I, T 〉, where V is a set of (state) variables,
I is a formula over V representing the set of initial states, and T is a formula over V ∪ V ′
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representing the set of transitions. A state s ∈ �(V ) of S is an assignment to the variables
V .

With abuse of notation, we identify a formula φ over V with the set of states that satisfy
φ. Thus, for example, the formula � (“true”) represents the set �(V ). Similarly, we do not
distinguish between a formula φ over V ∪ V ′ and the pairs of states (transitions) that satisfy
φ.

A trace σ of S is an infinite sequence of states σ = s0, s1, . . . such that s0 ∈ I and for all
i ≥ 0, 〈si , si+1〉 ∈ T . Given two transition systems S1 = 〈V1, I1, T1〉 and S2 = 〈V2, I2, T2〉,
we define the synchronous product S1 × S2 as 〈V1 ∪ V2, I1 ∧ I2, T1 ∧ T2〉. Since the product
is commutative and associative, it can be generalized to a set of transitions systems.

2.2 LTL

Given a set of variables V , we assume to be given a set Expr(V ) of Boolean expressions
over V as in [25]. In particular, in this paper we consider standard arithmetic predicates
(<,≤,>,≥, . . .) and functions (+,−, . . .) over integer and real variables, although the
proposed methods can be applied to more general settings.

We define the set of LTL formulas over the variables V with the following grammar rule:

φ := p | φ ∧ φ | φ ∨ φ | ¬φ | Xφ | φUφ | φRφ

where p ranges in Expr(V ). We use the following standard abbreviations: � := p ∨ ¬p,
⊥ := ¬�, φ → ψ := (¬φ) ∨ ψ , Fφ := �Uφ, Gφ := ¬F¬φ.

Traces over V are infinite sequences of assignments to V . Given a trace σ = s0, s1, . . .,
we denote with σ [i] the i + 1-th state si and with σ i the suffix trace starting from s[i].

Given a trace σ and an LTL formula φ over V , we define σ |� φ as follows:

– σ |� p iff p evaluates to true given the assignment σ [0]
– σ |� φ ∨ ψ iff σ |� φ or σ |� ψ

– σ |� φ ∧ ψ iff σ |� φ and σ |� ψ

– σ |� ¬φ iff σ �|� φ

– σ |� Xφ iff σ 1 |� φ

– σ |� φUψ iff there exists i ≥ 0 s.t. σ i |� ψ and for all j , 0 ≤ j < i , σ j |� φ

– σ |� φRψ iff for all i ≥ 0 σ i |� ψ or there exists j , 0 ≤ j < i , s.t. σ j |� φ

The satisfiability problem is the problem of checking if for a given LTL formula φ there
exists a trace σ such that σ |� φ.

Given a TS S = 〈V, I, T 〉 and an LTL formula φ over V , S |� φ if for all trace σ of
S, σ |� φ. The satisfiability problem of an LTL formula over V can be reduced to model
checking by considering the universal model as transition system: i.e., φ is satisfiable iff
〈V,�,�〉 �|� ¬φ.

Note that we are considering in general infinite-state transition systems for which these
problems are undecidable. Our methods are based on SMT-based algorithms as those imple-
mented in nuXmv [9].

2.3 Parameter synthesis

The goal of parameter synthesis is to find the set of all parameter evaluations for which a given
property is satisfied. Let S be a transition system and let U be a set of parameters, we define
the parametric transition system P = (V,U, IU , TU ), where IU is a formula over V ∪U and
TU is a formula over V ∪U ∪ V ′. We define the parameters as frozen, i.e., we set their value
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in the initial state and preserve it during the execution of the system. Given a valuation for
the parameters (γ ∈ �(U )), and a formula ψ we write γ (ψ) = ψ[u/γ (u)]u∈U , to indicate
that each parameter has been substituted with its value. Given a parametric transition system
P and a valuation for the parameters γ , we can compute the induced transition system,
by replacing the parameters with their valuation: Pγ = (V, γ (IU ), γ (TU )). Given an LTL
property φ expressed over the state variables and parameters, the parameter region ρ is the
set of assignments to the parameters such that the property is satisfied by every trace of the
induced system, formally: ρ = {γ | Pγ |� γ (φ)}.

In this paper, we consider Boolean parameters and, with abuse of notation, we identify
a parameter evaluation γ with the set {p | p ∈ U, γ (p) = �}. The parameter region is
monotonic iff whenever γ ⊆ γ ′, if γ ∈ ρ then γ ′ ∈ ρ. The monotonicity of the parameter
region is typically exploited by parameter synthesis algorithms that enumerate the parameter
evaluations γ such that Pγ �|� γ (φ). In fact, one can proceed with γ of increasing cardinality
and as soon as Pγ |� γ (φ) all γ ′ with γ ⊆ γ ′ can be included in ρ. Thus, in case of
monotonicity, the parameter region can be represented by the set of minimal sets γ such that
Pγ |� γ (φ) (taking implicitly the upward closure).

2.4 Contract refinement

In order to simplify the presentation, in this paper, we define a contract refinement indepen-
dently from the component interfaces. In practice, in the tool support we consider, contracts
are specified in terms of component input/output ports and the refinement has to take into
account the connections among ports in component decomposition.

A contract C over the variables V is a pair 〈A,G〉 of LTL formulas over V representing
respectively an assumption and a guarantee. We also denote A by A(C), G by G(C), and
¬A ∨ G by n f (C). Let C = 〈A,G〉 be a contract over V . Let I and E be TS over V . We
say that I is a correct implementation of C iff I |� A → G. We say that E is a correct
environment of C iff E |� A. We denote by I(C) and E(C), respectively, the set of correct
implementations and the set of correct environments of C . Given two contracts C and C ′
over V , we say that C refines C ′ (denoted by C � C ′) iff I(C ′) ⊆ I(C) and E(C) ⊆ E(C ′).

In a system architecture, each contract is associated to a component. If a component
is decomposed into subcomponents, the associated contracts of the parent component are
implemented by the composition of the subcomponents’ implementations. Similarly, the
environment of the contract of a subcomponent is given by the composition of the environment
of the composite component and the implementations of the other subcomponents. In order
to prove that such decomposition is correct, we generalize the refinement notion to a set of
contracts.

Given a contract C and a set of contracts Sub = {C1, . . . ,Cn}, we say that Sub is a
refinement of C , written Sub � C , iff the following conditions hold:

1. the correct implementations of the sub-contracts form a correct implementation of C : let
V be the variables of C ,

{S1 × · · · × Sn | S1 ∈ I(C1), . . . , Sn ∈ I(Cn)} ⊆ I(C)

2. for every Ci ∈ Sub, the correct implementation of the other sub-contracts and a correct
environment of C form a correct environment of Ci : let Vi be the variables of Ci ,

{E × S1 × · · · × S j �=i × · · · × Sn |
E ∈ E(C), for all j, 1 ≤ j ≤ n, j �= i, S j ∈ I(C j )} ⊆ E(Ci )
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In [15,16], we proved that the refinement is correct if and only if the following proof
obligations (PO(Sub,C)) are valid temporal formulas:

n f (C1) ∧ · · · ∧ n f (Cn) → n f (C)

A ∧
∧

1≤ j≤n, j �=i

n f (C j ) → Ai (for every i, 1 ≤ i ≤ n)

3 Motivation

3.1 Contract-based design

The contract-based design flow considered in this paper is depicted in Fig. 1, using the
example of a control system with a redundant sensor. The example is taken from a case
study developed in the FoReVer project [2,20]. This simple control example takes as input
a value, speed, representing the physical speed of the system and returns a brake signal,
brake. The system is decomposed into a RedundantSensor that reads the physical value
and a ControlUnit that reads the speed from the sensor and produces corresponding control
signals to the brakes. As the name suggests, the RedundantSensor is implemented with two
redundant Sensors, so that the systemworks even if one of the sensor fails. In order to analyze

Fig. 1 Contract-based design flow
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the behavior of the system in the presence of failures, we introduce two inputs, fail1 and
fail2, which represent the failures of the two sensors.

The design starts with the view of the ControlSystem as a whole black box with ports
to interact with its environment. Then, it is decomposed into RedundantSensor and
ControlUnit components. The RedundantSensor is in turn decomposed into two
redundant Sensor subcomponents, two Monitor subcomponents, and a Selector. The
decomposition also defines how the ports of the component being decomposed are mapped
down into the decomposition. For example, the “left” ports of the ControlSystem are
mapped onto the “left” ports of the RedundantSensor. At the lower level, speed and
fail1 are mapped to the input of first sensor, while the inputs of the second sensor are given
by speed and fail2.

Each component in the hierarchy is associated with a set of contracts, depicted in
green, specifying the acceptable behaviors for the component and its environment. So, for
example, ControlSystem has a contract speed_control consisting of the guaran-
tee G(speed ≥ th → brake), where th is a threshold parameter of the system, and
the assumption ¬fail1 ∧ ¬fail2 ∧ G(¬fail1 ∨ ¬fail2), i.e., initially none of the
sensors is failing while in every future state it sufficient that one of the two is not failing.

Contracts are refined, following the decomposition of components. For example, the con-
tracts of the ControlSystem are refined by some contracts of the RedundantSensor
and the ControlUnit subcomponents. The framework guarantees that, under specific con-
ditions (corresponding to correct contract refinement), if the contracts of the subcomponents
hold, then the contract of the parent component also holds.

The contract-based top-down development process can be schematized with the following
loop (as reported in the report [2] of the FoReVer project):

1. select a component (let us call it S) without subcomponents and decompose it specifying
the children subcomponents;

2. for each type of the defined subcomponents, declare the component and its input and
output ports;

3. detail the decomposition of the component S chosen at step 1 defining the connections
among the subcomponents and the delegation connections between S and the subcom-
ponents;

4. for each type of the subcomponents, specify the contracts that are necessary to fulfil the
contracts of S;

5. for each contract C of S specify the refinement relationship, i.e., which contracts of the
subcomponents refine C ;

6. check the refinement with OCRA and, if not correct, adjust the contracts in order to
remove all issues in the refinement;

7. if there are no more components to be refined, terminate successfully; otherwise, go to
1.

3.2 Need of tightening

The general development process for the contracts specification and refinement has been
successfully applied in several frameworks [2,8] and on realistic case studies like in [6].
However, the process is quite expensive because the requirements are formalized into formal
properties, where part of the complexity is delegated to the designer, who has the burden
of specifying the contracts. It is clear that there is a missing of analysis methods for the
improvement of contract understanding during the development process for the contracts
specification and refinement. Automatic synthesis of the contract specification would be
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ideal for this purpose, for example, if we have a partial specification of a contract refinement,
we can automatically synthesize the assumption/guarantee of one of the subcontracts and
thus understand in more details the contract specification. However, automatic synthesis is
not in general feasible especially in the case of first-order formulas. Therefore, we aim at
providing at least support when the contract refinement is manually specified.

Consider the ControlSystem example above. The Selector component has a con-
tract with assumption “true” and guarantee:

current_use = 1∧
G((current_use = 1 ∧ switch_current_use) → X (current_use = 2))∧
G((current_use = 2 ∧ switch_current_use) → X (current_use = 1))

where current_use is 1 or 2 depending on whether the output is linked to the output
of sensor1 or sensor2 respectively, and switch_current_use triggers the change of
current_use when the monitor of the current sensor detects a failure. Notice, however,
that initially the current sensor is sensor1 and therefore there no need to assume (in the
top-level assumption) that ¬fail2 (i.e., that initially sensor2 does not fail).

As another example, consider a different system assumption on the occurrence of sensor
faults:

¬fail1 ∧ (G(¬fail1) ∨ G(¬fail2))

i.e., we assume that we cannot have both sensors eventually failing. Since initially the selector
is using sensor1 and switch_current_use only triggers the change of current_use
to sensor2 when the monitor of sensor1 detects a failure, given the stronger assump-
tion, it will never switch back to sensor1. Thus, the part G((current_use = 2 ∧
switch_current_use) → X (current_use = 1)) of the above guarantee is not
necessary.

In general, itmay happen to specify contracts on the subcomponents that aremore demand-
ing than necessary or that contain unwanted redundancies. It may happen also that, the
designer specifies a very strong assumption on the system to make the refinement correct and
later wants to relax the assumption while keeping the design correct. More generally, given a
correct contract refinement, we would like to understand if the guarantees of subcomponents
and assumption on the composite component can be weakened. Finally, the designer could
include irrelevant subcontracts on a contract refinement that can be removed. Then, wewould
also like to provide the designer with information regarding which contracts are sufficient
for (or prevent) correct refinement. We address all these issues by defining a problem called
top-down tightening of a contract refinement.2

4 Tightening of a single contract refinement

In this section, we present the formal definition of local tightening for a single contract
refinement and the algorithms for computing a top-down tightening of a given contract
refinement.

2 In [10], we also considered a bottom-up tightening but did not prove to be useful in practice for the top-down
process described above, and thus we are omitting it here.
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4.1 Formal definition

We now define formally the problem of tightening a contract refinement as follows. Given
a contract C , and a set of contracts Sub such that Sub � C , a tightening of this contract
refinement is given by a contract C ′, a subset Sub of Sub, and a set of contracts Sub′ =
{C ′

S | CS ∈ Sub} such that:

– Sub′ � C ′
– C ′ � C and, for every CS ∈ Sub, CS � C ′

S .

A top-down tightening is a tightening as defined above such thatG(C) = G(C ′) and, for all
CS ∈ Sub,A(CS) = A(C ′

S). We can easily prove that, equivalently, a top-down tightening is
given by a contract C ′, a subset Sub of Sub, and a set of contracts Sub′ = {C ′

S | CS ∈ Sub}
such that:

– Sub′ � C ′
– A(C) |� A(C ′) and, for every CS ∈ Sub, G(CS) |� G(C ′

S).

4.2 The algorithm

We present now the main algorithm for top-down tightening of a contract refinement which
takes as input a valid contract refinement Sub � C and produces as output a number of
tightened versions of the given contract and its subcontracts. The procedure first injects
a set P of parameters in the contract specification to create a search space of weakened
assumptions of the parent contract C and guarantees of the subcontracts in Sub. Second, it
creates the related proof obligations that are now parametrized by P . Additionally, we inject
extra parameters on each contract in order to detect which contracts are sufficient for correct
refinement. Then, we want to find for which configurations of the parameters the contract
refinement holds. This is a multiple parameter synthesis problem, because we have to search
for the assignment to P such that all proof obligations are valid. Thus, as third step, we
propose two alternative ways to solve this problem (see Sect. 4.4). In the first step, we make
sure that the injection of parameters creates a monotonic parameter region by construction,
which can be exploited by the synthesis algorithm.

Algorithm 1 Tightening a contract refinement
Require: a contract C and a set of subcontracts Sub such that Sub � C
Ensure: a set of 〈Sub′,C ′〉 such that Sub ⊆ Sub and Sub′ � C ′ and C ′ � C and, for every CS ∈ Sub,

CS � C ′
S .

1: {Calling top-down algorithm on Sub and C}
2: 〈〈SubP ,CP 〉, P〉 = TopDownT ightening(Sub,C)

3: {Extended Proof Obligations with extra parameters on the contracts}
4: Psub = {p1, . . . , pn} with n = |Sub| {one new parameter for each subcontract}
5: PO = ExtendedPO(SubP ,CP , Psub)
6: P = P ∪ Psub
7: {Solve multiple parameter synthesis problem}
8: param_region = SolveMultipleParamSynt Problem(PO, P)

9: {Generate output}
10: GenerateT ightenedContract Re f (PO, param_region)

These steps are formalized as follows, while the pseudo-code is shown in Algorithm 1.
Suppose we want to obtain a top-down tightening of Sub � C .
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1. We transformC and Sub (line 2) into parametrized versionsCP and SubP = {CP
S | CS ∈

Sub} with parameters P such that for every evaluation γ of P , if γ (SubP ) � γ (CP ),
then 〈γ (CP ), γ (SubP )〉 is a top-down tightening of 〈C, Sub〉.

2. We extend the construction of the proof obligations (line 5) of γ (SubP ) � γ (CP )

by injecting further parameters PSub = {pCS |CS ∈ Sub}, one for each subcontract
CS ∈ Sub, such that for every evaluation γ of P ∪ PSub, γ (SubPγ ) � γ (CP ) where

SubPγ = {CP
S | γ (pCS ) = �}.

3. We solve the multiple parameter synthesis problem (line 8) by either:

(a) finding the region Wφ for each proof obligation and then intersecting such sets of
parameter, i.e., W = {γ ∈ �(P) s.t. |� γ (φ(V, P)) for all φ ∈ PO(V, P)} =⋂

φ∈PO Wφ ; or
(b) encoding it into an equivalent proof obligation φPO so that {γ ∈ �(P) s.t. |� γ (φ)

for every φ ∈ PO(V, P)} = {γ ∈ �(P) s.t. |� γ (φPO)}.
Note that the output of the algorithm produces a set of tightened variants of the given

contract refinement. The designer has to analyze these results and may decide to substitute
the current specification with one of the tightened versions. Moreover, providing the different
ways in which the specification can be simplified may improve the understanding of why the
contract refinement is correct.

4.3 Generation of the parametric problem

4.3.1 Injecting parameters in the formulas

In this subsection, we describe how we introduce parameters in the formulas that define the
assumption and guarantee of the contracts and generate a monotonic parameter synthesis
problem. The high-level transformation is described in Algorithm 2 for top-down tightening
of Sub � C where the assumption of the parent contractC and guarantees of the subcontracts
in Sub are weakened.

Algorithm 2 Top-down tightening (TopDownT ightening(Sub,C))
Require: a contract C and a set of contracts Sub = {C1, . . . ,Cn}
Ensure: 〈〈SubP ,CP 〉, P〉
1: P = ∅ {Set of parameters}
2: SubP = ∅
3: for all CS ∈ Sub do
4: 〈φ, P ′〉 = Weaken(G(CS))

5: P = P ∪ P ′
6: SubP = SubP ∪ {〈A(CS), φ〉}
7: end for
8: 〈φ, P ′〉 = Weaken(A(C))

9: P = P ∪ P ′
10: CP = 〈φ,G(C)〉
11: return 〈〈SubP ,CP 〉, P〉

The Weaken and Strengthen functions are described respectively in Algorithms 3 and
4. They take as input a formula and they return a parametric formula and a set of injected
parameters. The definition assumes that every new parameter p is a fresh symbol. The number
of parameters is linear in the size of the formula.
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Parameters are injected so that every parameter evaluation yields a respectively weaker
or stronger formula.

We remark that we do not aim to obtain the weakest or strongest version of a formula. In
our approach, the definition ofWeaken and Strengthen functions is pattern-based where new
patterns can be investigated to complement or improve the current ones.

In the following, we use φW to denote the formula injected with parameters by Weaken
(i.e.,Weaken(φ) = 〈φW , P〉) andwithφS the formula injectedwith parameters by Strengthen
(i.e., Strengthen(φ) = 〈φS, P〉)
Theorem 1 For any parameter evaluation γ , φ → γ (φW ) and γ (φS) → φ.

Proof We prove the theorem by induction on the structure of the formula. The result of
Weaken and Strengthen is outlined in Tables 1 and 2. It is routine to check line by line on
the fourth column of the tables that, for every γ , φ → γ (φW ) and γ (φS) → φ, based on
the inductive hypothesis that φ1 → γ (φW

1 ), φ2 → γ (φW
2 ), γ (φS

1 ) → φ1, and γ (φS
2 ) → φ2.

Note, in particular, that the weakening of ¬φ1 is given by ¬φS
1 and thus ¬φ1 → ¬γ (φS

1 )

because by induction γ (φS
1 ) → φ1. Similarly for strengthening ¬φ1. ��

It follows immediately that Algorithm 2 yields a correct top-down tightening, as stated in
the following corollary.

Corollary 1 Let C be a contract and Sub a set of contracts. Let 〈〈SubP ,CP 〉, P〉 be the
result of T opDownT ightening(Sub,C). Then, for any evaluation γ of the parameters P,
if γ (SubP ) � γ (CP ) then 〈γ (SubP ), γ (CP )〉 is a top-down tightening of 〈Sub,C〉.

Moreover, the parameter injection is designed so that the semantics of the parametric
formulas is monotonic with respect to the parameter evaluations.

Table 1 Simplification table forWeaken(φ)

Formula φ Weaken(φ) = 〈φW , P〉 Evaluation γ γ (φW )

a < b p1 → (a < b) ∧ p2 → (a ≤ b) {p1, p2} a < b

{p1} a < b

{p2} a ≤ b

∅ �
φ1 ∧ φ2 p1 → φW

1 ∧ p2 → φW
2 {p1, p2} γ (φW

1 ) ∧ γ (φW
2 )

{p1} γ (φW
1 )

{p2} γ (φW
2 )

∅ �
φ1 ∨ φ2 φW

1 ∨ φW
2 NA γ (φW

1 ) ∨ γ (φW
2 )

φ1 R φ2 p1 → (φW
1 ∧ φW

2 ) ∧ p2 → (φW
1 R φW

2 ) {p1, p2} γ (φW
1 ) ∧ γ (φW

2 )

{p2} γ (φW
1 ) R γ (φW

2 )

{p1} γ (φW
1 ) ∧ γ (φW

2 )

∅ �
φ1 U φ2 φW

1 U φW
2 NA γ (φW

1 ) U γ (φW
2 )

¬φ1 ¬φS
1 NA ¬γ (φS

1 )

123



Form Methods Syst Des (2018) 52:88–116 99

Table 2 Simplification table for Strengthen(φ)

Formula φ Strengthen(φ) = 〈φS , P〉 Evaluation γ γ (φS)

a ≤ b ¬p1 → (a < b) ∧ ¬p2 →
(a = b) ∧ (p1 ∧ p2) →
(a ≤ b)

{p1, p2} a ≤ b

{p2} a < b

{p1} a = b

∅ ⊥
φ1 ∨ φ2 ¬p1 → φS

1 ∧ ¬p2 →
φS
2 ∧(p1∧p2) → (φS

1 ∨φS
2 )

{p1, p2} γ (φS
1 ) ∨ γ (φS

2 )

{p2} γ (φS
1 )

{p1} γ (φS
2 )

∅ γ (φS
1 ) ∧ γ (φS

2 )

φ1 ∧ φ2 φS
1 ∧ φS

2 NA γ (φS
1 ) ∧ γ (φS

2 )

φ1 U φ2 ¬p → φS
2 ∧ p → φS

1 U φS
2 {p} γ (φS

1 ) U γ (φS
2 )

∅ γ (φS
2 )

φ1 R φ2 φS
1 R φS

2 NA γ (φS
1 ) R γ (φS

2 )

¬φ1 ¬φW
1 NA ¬γ (φW

1 )

Theorem 2 If γ ⊆ γ ′, then γ ′(φW ) → γ (φW ) and γ (φS) → γ ′(φS).

Proof Looking again at Tables 1 and 2, one can check the monotonicity case by case. In
fact, for each type of formula, the lines report the result of Weaken and Strengthen sorted
according to the strength of the parameter evaluation (third column). More precisely, if γ is
below γ ′, then either they are incomparable or γ ⊂ γ ′. Therefore it is routine to prove that,
in the second case, γ ′(φW ) → γ (φW ) and γ (φS) → γ ′(φS) (fourth column). ��

Note that parameters are introduced per contract, so they are shared by different occur-
rences of the assumption/guarantee in the proof obligations. It is immediate to show that,
thanks to the structured way in which formulas are either strengthened or weakened, the
resulting synthesis problem is monotonic, as stated in the following corollary.

Corollary 2 Let C be a contract and Sub a set of contracts. Let 〈〈SubP ,CP 〉, P〉 be the
result of T opDownT ightening(Sub,C). Then, for any evaluation γ, γ ′ of the parameters
P such that γ ⊆ γ ′, if γ (SubP ) � γ (CP ) then γ ′(SubP ) � γ ′(CP ).

4.3.2 Injecting parameters on the contracts

In this subsection,wedescribe howwe introduceparameters on the contracts in order to extend
the parametric problem generated above to determine additionally which subcontracts can be
removed from the contract refinement. This is done as part of the procedure ExtendedPO
called in Algorithm 1.

Themain goal here is to generate a parametric problem to be able to find a possibly smaller
subset of subcontracts that still refines the parent contract, that is, given a contract C , and a
set of contracts Sub such that Sub � C , we want to find a set Sub ⊆ Sub such that Sub � C .
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Algorithm 3Weaken(φ)

Require: a formula φ

Ensure: 〈φW , P〉
1: if φ = a > b (similar for φ = a < b) then
2: φW = p1 → (a > b) ∧ p2 → (a ≥ b)
3: return 〈φW , {p1, p2}〉
4: else if φ = φ1 ∧ φ2 then
5: 〈φW

1 , P1〉 = Weaken(φ1), 〈φW
2 , P2〉 = Weaken(φ2)

6: φW = p1 → φW
1 ∧ p2 → φW

2
7: return 〈φW , P1 ∪ P2 ∪ {p1, p2}〉
8: else if φ = φ1 ∨ φ2 then
9: 〈φW

1 , P1〉 = Weaken(φ1), 〈φW
2 , P2〉 = Weaken(φ2)

10: φW = φW
1 ∨ φW

2
11: return 〈φW , P1 ∪ P2〉
12: else if φ = φ1 R φ2 then
13: 〈φW

1 , P1〉 = Weaken(φ1), 〈φW
2 , P2〉 = Weaken(φ2)

14: φW = p1 → (φW
1 ∧ φW

2 ) ∧ p2 → (φW
1 R φW

2 )

15: return 〈φW , P1 ∪ P2 ∪ {p1, p2}〉
16: else if φ = φ1 U φ2 then
17: 〈φW

1 , P1〉 = Weaken(φ1), 〈φW
2 , P2〉 = Weaken(φ2)

18: φW = φW
1 U φW

2
19: return 〈φW , P1 ∪ P2〉
20: else if φ = ¬φ1 then
21: 〈φS

1 , P1〉 = Strengthen(φ1)

22: return 〈¬φS
1 , P1〉

23: else
24: return 〈p → φ, {p}〉
25: end if

We define formally ExtendedPO as follows. Given a contract C , a set of contracts Sub,
and a set of parameters PSub (|PSub| = |Sub|, i.e., one new parameter for each subcontract in
Sub), the extended set of proof obligations (PO) with extra parameters is defined as follows:

– The extended proof obligation for satisfying the top level contract

n∧

i=1

(pi → (Ai → Gi )) → (A → G)

– For each 1 ≤ j ≤ n, we have n extended proof obligations:

( n∧

i=1∧i �= j

(pi → (Ai → Gi )) ∧ A
)

→ (p j → A j )

The idea is that we inject activation variables, one for each subcontract, which are used
for activating the corresponding contract Ci . We then construct the proof obligations and at
the same time we perform an extension of these proof obligations so that these extensions
encode the problem of finding Sub′.

Note that if p j is assigned to false, the whole proof obligation concerning the entailment
of the assumption A j is equivalent to trivially true. Such a parameter, however, makes that
proof obligation non-monotone. So, in this case, the synthesis engine may be less efficient.

In any case, the result is correct, as proved in the following theorem, i.e. for every parameter
evaluation on ExtendedPO , the resulting contract refinement is correct.
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Algorithm 4 Strengthen(φ)

Require: a formula φ

Ensure: 〈φS , P〉
1: if φ = a ≤ b (similar for a ≥ b) then
2: φS = ¬p1 → (a < b) ∧ ¬p2 → (a = b) ∧ (p1 ∧ p2) → (a ≤ b)
3: return 〈φS , {p1, p2}〉
4: else if φ = φ1 ∨ φ2 then
5: 〈φS

1 , P1〉 = Strengthen(φ1), 〈φS
2 , P2〉 = Strengthen(φ2)

6: φS = ¬p1 → φS
1 ∧ ¬p2 → φS

2 ∧ (p1 ∧ p2) → (φS
1 ∨ φS

2 )

7: return 〈φS , P1 ∪ P2 ∪ {p1, p2}〉
8: else if φ = φ1 ∧ φ2 then
9: 〈φS

1 , P1〉 = Strengthen(φ1), 〈φS
2 , P2〉 = Strengthen(φ2)

10: φS = φS
1 ∧ φS

2
11: return 〈φS , P1 ∪ P2〉
12: else if φ = φ1 U φ2 then
13: 〈φS

1 , P1〉 = Strengthen(φ1), 〈φS
2 , P2〉 = Strengthen(φ2)

14: φS = ¬p → φS
2 ∧ p → φS

1 U φS
2

15: return 〈φS , P1 ∪ P2 ∪ {p}〉
16: else if φ = φ1 R φ2 then
17: 〈φS

1 , P1〉 = Strengthen(φ1), 〈φS
2 , P2〉 = Strengthen(φ2)

18: φS = φS
1 R φS

2
19: return 〈φS , P1 ∪ P2〉
20: else if φ = ¬φ1 then
21: 〈φW

1 , P1〉 = Weaken(φ1)

22: return 〈¬φW
1 , P1〉

23: else
24: return 〈¬p → φ, {p}〉
25: end if

First, let us define the subset of contracts Sub corresponding to a given parameter evalu-
ation γ as Subγ = {CS ∈ Sub | γ (pCS ) = �}.
Theorem 3 Let 〈〈SubP ,CP 〉, P〉 the result of T opDownT ightening(Sub,C) for a given
contract C and a set of contracts Sub. Let PSub be a set of parameters containing one
new parameter for each subcontract in SubP . Then, for all parameter evaluation γ ,
γ (ExtendedPO(〈SubP ,CP 〉, PSub)) and PO(γ (SubPγ ), γ (CP )) are equivalent.

Proof We prove that if φ ∈ ExtendedPO(〈SubP ,CP 〉, PSub)), then either γ (φ) is valid
or there exists an equivalent proof obligation in PO(γ (SubPγ ), γ (CP )).

Supposeφ is the extended proof obligation for the top level contract, that is,
∧

1≤i≤n(pi →
(Ai → Gi )) → (A → G). Then, γ (φ) is equivalent to

∧
1≤i≤n,γ (pi )=� γ ((Ai → Gi ) →

(A → G)), which belongs to PO(γ (SubPγ ), γ (CP )).
Suppose φ is the extended proof obligation of theCS assumption, whereCS ∈ Sub. Thus,

φ = ∧
1≤i≤n(pi → (Ai → Gi )) → (A → p j → A j ). If γ (p j ) = ⊥, then γ (φ) is equiv-

alent to true. If instead γ (p j ) = �, then, γ (φ) is equivalent to
∧

1≤i≤n,γ (pi )=� γ ((Ai →
Gi ) → (A → A j )), which belongs to PO(γ (SubPγ ), γ (CP )).

Similarly, we can prove that for every ψ in PO(γ (SubPγ ), γ (CP )), there exists φ ∈
ExtendedPO(〈SubP ,CP 〉, PSub) such that ψ is equivalent to γ (φ). ��
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4.4 Multiple validity parameter synthesis problem

The approach to solve the tightening problem proposed in Sect. 4.2 introduces the problem
of finding the parameter evaluations γ such that each formula φ(P, V ) ∈ PO instantiated
with γ is valid. In other words, we want to find for which configurations of the parameters
the contract refinement holds. Each validity problem can be reduced to a model checking
problem but the parameter evaluation is shared by the different verification problems. This is
distinct from the standard parameter synthesis problem where only one verification problem
is considered. In fact, we have to search for the assignment to P such that all proof obligations
are valid. We called this problem a multiple validity parameter synthesis problem (to be not
confused with multiple objective parameter synthesis problem). In the following subsections
we propose two approaches to deal with this problem, which are alternative solutions for the
function SolveMultipleParamSynt Problem(PO, P) called in Algorithm 1.

4.4.1 Compositional approach

The simplest solution is to find the parameter region for each proof obligation and calculate
the intersection of the results. The correctness of the approach is formalized by the following
theorem.

Theorem 4 If W = {γ ∈ �(P) such that |� γ (φ(V, P)) for all φ ∈ PO(V, P)} and
Wφ = {γ ∈ �(P) such that |� γ (φ(V, P))}, then W = ⋂

φ∈PO Wφ .

Proof It trivially derives from the definition of sets intersection. ��

4.4.2 Encoding all proof obligations into a single one

As an alternative approach, we propose to reduce the multiple validity problems to one
validity problem by renaming the variables in V and taking the conjunction of the proof
obligations. Namely, if PO = {φ1, . . . , φn} we create the formula φPO(P, V1, . . . , Vn) =∧

1≤ j≤n φ j [Vj/V ], where Vj contains one copy v j for each variable v ∈ V and φ j [Vj/V ]
is the formulas obtained by substituting every variable v ∈ V with v j (while the parameters
P remain unchanged).

Theorem 5 For all parameter evaluation γ , γ (φPO ) is valid iff, for all formulas φ ∈ PO,
γ (φ) is valid.

Proof ⇒) Suppose for some φ j ∈ PO , γ (φ j ) is not valid. Let σ be a trace over V satisfying
¬γ (φ j ). Let us define the trace σ j such that, for every i ≥ 0, for all v ∈ V , σ j [i](v j ) =
σ [ j](v). Let us extend σ j to a trace σ ′

j over V1 ∪ · · · ∪ Vn assigning variables not in Vj in an
arbitrary way. Then σ ′

j satisfies ¬γ (φPO ).
⇐) Suppose for φPO is not valid. Let σ be a trace over V1∪· · ·∪Vn satisfying¬γ (φPO ).

Then, there exists j , 1 ≤ j ≤ n, such that σ |� ¬γ (φ j [Vj/V ]). Let us define the trace σ j

such that, for every i ≥ 0, for all v ∈ V , σ j [i](v) = σ [ j](v j ). Then σ ′
j satisfies ¬γ (φ j ). ��

4.4.3 Minimal configuration of the parameters

For each parameter evaluation, we should present to the user the corresponding tightened
contract refinement. Since the parameter region may be really large, it is not feasible to
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present all possible configurations andwe need to select some representative cases. In fact, we
present onlyminimal configurations, assumingmonotonicity. This is an under-approximation
and in case the parameter region is not upward closed (non-monotonicity), there may be
supsersets (less tightenedversions) that are not in the paremeter region.However, all presented
configurations are correct tightening (and thus correct contract refinements).

In practice, we use an off-the-shelf algorithm, reported in [7], to compute the parameter
region which generates the minimal configurations of the parameters under the monotonicity
assumption. In the compositional approach, we compute the parameter region for each proof
obligation by calling each time the off-the-shelf algorithm. After that, we intersect such sets
of minimal configurations of the parameters. Additionally, we compute the prime implicants
of the intersection result to obtain the minimal configurations of the parameters such that all
proof obligations are valid. In the second solution, the problem is reduced to one validity
problemwhichmeans that only one time the off-the-shelf algorithm is called and it is obtained
the minimal parameters of the region.

We would like to remark also that we have defined two alternatives solutions considering
different encodings of the problem and also taking into account the number of times to be call
the parameter synthesis algorithm reported in [7] which is used as back-end for computing the
parameter region. Note that we obtain the same parameter region as result for each contract
refinement with both approaches. It is clear that the encoding of all proof obligations into a
single one is syntactically more complex than the composition approach. Moreover, the off-
the-shelf algorithm is called only one time for computing the parameter region, contrary to
the compositional approachwhich is called each time for each proof obligation. Furthermore,
we have to integrate each result as was explained above such that all proof obligations are
valid. In Sect. 6, we compare the performance of both approaches.

5 Tightening the whole system architecture

5.1 Applying tightening within a system architecture

Let us now explain how we can apply the single tightening technique on the whole system
architecture during the development process for the contract specification and refinement.
Let us take the architecture example from Fig. 1. We start from the system component
ControlSystem, where only the contract speed_control is defined. This contract is
refined by (1) the contract sense of the redundant sensor, which guarantees that the value
passed to the control unit approximates the physical value with a bounded error; (2) the
contract sensed_speed_is_present of the redundant sensor, which guarantees that
the value provided by the sensor is always available; (3) the contract speed_control,
which similarly to the system contract guarantees that if the speed is above the threshold,
then a brake command is issued. After checking the contract refinement is correct, we are
able to apply single top-down tightening on the parent contract speed_control of the
system component in order to simplify the contract refinement. Suppose in this case we do
not obtain any simplification and we proceed in a top-down fashion in the decomposition
tree.

We consider now the RedundantSensor where two contracts are defined, sense
and sensed_speed_is_present (see Fig. 2), which are refined by the contracts of the
subcomponents of RedundantSensor. After the contracts specification and refinement is
completed at this level and the check of the correctness of the contract refinements for sense
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Fig. 2 Sharing of contracts between sense and sensed_speed_is_present in component BSCU

and sensed_speed_is_present of component BSCU is successful, we proceed with
tightening these contracts.

We observe that these contracts share many subcontracts, and in particular they share the
subcontract of the Selector component, which as explained in Sect. 3.2 can be simpli-
fied. In this situation, independently from the order of tightening the contracts sense and
sensed_speed_is_present, the result of each one can in principle break the correct-
ness of the other and vice versa. This is due to the fact that the tightening technique proposed
in the previous section only ensures the correctness of an individual contract refinement. We
call this the problem of sharing contracts.

We propose a solutionwhere we ensure that, whenwe are tightening a contract refinement,
the correctness of the parallel refinements (those that share some subcontractswith the current
one) is preserved. We called this solution parallel tightening which is presented in Sect. 5.2.

Although parallel tightening produces a result that is correct also in the case of shared
subcontracts, ensuring that all refinements are correct may mean that no simplification is
possible. As an alternative approach, we can simply duplicate the shared contracts so that the
refinements are independent and can be tightened as proposed in Sect. 4. This duplication
approach is described in more detail in Sect. 5.3.

We would like to remark here that we are not proposing an automatic application of tight-
ening, simplifying all contract refinements of a system architecture iteratively until reaching
a fixpoint. We think that from the designer side, it will be really difficult to understand such
tightened results at once. Thus, we propose to analyze one tightening result at a time, as
explained at the beginning of the section.

5.2 Parallel tightening of a contract refinement

We define formally the problem of parallel tightening of a contract refinement as follows.
Given a contractC , a set of contracts Sub such that Sub � C , and a set of contract refinements
Subk � CRk such that for every k, 1 ≤ k ≤ n, Subk ∩ Sub �= ∅, a parallel tightening of
this contract refinement is given by a contract C ′, a subset Sub of Sub, and a set of contracts
Sub′ = {C ′

S | CS ∈ Sub} such that:
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– Sub′ � C ′
– C ′ � C and, for every CS ∈ Sub, CS � C ′

S .
– Sub′

k � CRk , for every k, 1 ≤ k ≤ n

where Sub′
k = {CS | CS ∈ Subk \ Sub} ∪ {C ′

S | CS ∈ Subk ∩ Sub} (i.e., if the subcontract
is not shared, it remains the same; otherwise, it is simplified).

In order to deal with a parallel contract refinement, we have to generate not only the proof
obligations of the given contract refinement Sub � C but also the proof obligations of the
related contract refinements whose have subcontracts in common. Suppose we want to obtain
a parallel top-down tightening of Sub � C , we add steps 3 and 4 to the original procedure
as follows:

1. We transform C and Sub into parametrized versions CP and SubP = {CP
S | CS ∈ Sub}

with parameters P such that for every evaluation γ of P , if γ (SubP ) � γ (CP ), then
〈γ (CP ), γ (SubP )〉 is a top-down tightening of 〈C, Sub〉.

2. We extend the construction of the proof obligations of γ (SubP ) � γ (CP ) by injecting
further parameters PSub = {pCS |CS ∈ Sub}, one for each subcontract CS ∈ Sub, such
that for every evaluation γ of P ∪ PSub, γ (SubP ) � γ (CP ) where SubPγ = {CP

S |
γ (pCS ) = �}.

3. We search for those contract refinements Subk � CRk such that Subk ∩ Sub �= ∅.
4. We generate the proof obligations for each of these related contract refinements Subk �

CRk considering the parametric version of the subcontracts in common, andwe add them
to the set PO .

5. We solve the multiple parameter synthesis problem by either the compositional approach
or encoding all POs into a single one.

These new steps are sketched in Algorithm 5.

Algorithm 5 Parallel tightening of a contract refinement
Require: a contract C , a set of subcontracts Sub such that Sub � C , and a set of contract refinements

Subk � CRk such that for every k, 1 ≤ k ≤ n, Subk ∩ Sub �= ∅
Ensure: a set of 〈Sub′,C ′〉 such that Sub ⊆ Sub and Sub′ � C ′ and C ′ � C and, for every CS ∈ Sub,

CS � C ′
S , and Sub′

k � CRk , for every k, 1 ≤ k ≤ n where Sub′
k = {CS | CS ∈ Subk \ Sub} ∪ {C ′

S |
CS ∈ Subk ∩ Sub}

1: {Calling top-down algorithm on Sub and C}
2: 〈〈SubP ,CP 〉, P〉 = TopDownT ightening(Sub,C)

3: Psub = {p1, . . . , pn} with n = |Sub| {one new parameter for each subcontract}
4: PO = ExtendedPO(SubP ,CP , Psub)
5: P = P ∪ Psub
6: for all Subk � CRk do
7: {Replace original shared subcontracts by the parametric version of them}
8: SubPk = {CS | CS ∈ Subk \ Sub} ∪ {CP

S | CS ∈ Subk ∩ Sub}
9: PO = PO ∪ Construct PO(SubPk ,CRk )
10: end for
11: {Solve multiple parameter problem by encoding all POs into a single PO or using the compositional

approach}
12: param_region = SolveMultipleParamSynt Problem(PO, P)

13: {Generate output}
14: GenerateT ightenedContract Re f (PO, param_region)
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5.3 Removing the sharing of contracts by duplication

In order to deal with the problem stated above regarding some situations when parallel
tightening does not produce good results, we propose a solution by removing the sharing
of contracts by duplication of contracts and running single tightening on the input contract
refinement. Let us better explain thismethod using an example, by taking up again the contract
refinements depicted in Fig. 2, where there are two contract refinements.

Suppose now that we want to tighten the contract refinement (1) using parallel tightening.
As a result we do not get any tightening, obtaining the same contract refinement. Then, we
first duplicate the contracts that are shared by the two refinements. We update the contract
refinements so that one uses the original subcontracts,while the other uses the duplicated ones.
For example, we duplicate the contract switch of Selector and update the refinements as
shown in Fig. 3. Finally, we are able to run the single tightening procedure on each refinement
in isolation.

This alternative method can be also applied during the development process in a top-down
fashion ensuring the preservation of the correctness of contract refinements for dealing with
the problem of shared contracts. The order in which the contract refinements are selected for
removing the sharing of contracts by duplication and then run single top-down tightening is
arbitrary.

6 Experimental evaluation

6.1 Details of the implementation

Wehave implemented the algorithms described in the previous sections on top ofOCRA [11],
a tool for architectural design based on contract-based design. In more details, we imple-
mented a new command in OCRA called ocra_tighten_contract_refinement
that takes as input an OCRA specification, a contract’s name, a component’s name, and pro-
duces as output a number of OCRA specifications containing the tightened versions of the

Fig. 3 Duplication of contract switch in component Selector
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given contract and its subcontracts. The command has an option to allow the user to select the
approach to the multiple synthesis problem (see Sect. 4.4), either the compositional approach
(Sect. 4.4.1) or the encoding approach (Sect. 4.4.2). Other options in the command deal with
the problem of sharing contracts: the user can choose to perform a parallel tightening or
duplicate the contracts and run a single top-down tightening. Regarding the parameter syn-
thesis algorithm, we have used as back-end an implementation reported in [7]. Since the
synthesis is quite expensive for large number of parameters, we arbitrarily limit the injection
to 350 parameters so that only the higher level of the formula structure is considered during
weakening/strengthening (i.e., during the recursion of Algorithms 3 and 4, when reaching
350 parameters, the recursion is stopped and subfomulas are considered without modifica-
tions). This allows to get a tightening also in cases in which the definitions would produce
many more parameters making the synthesis blow up.

We also implemented self checks to validate the results: first, we automatically check
that each tightened contract refinement is correct; second, we automatically check for each
tightened specification that the original formula entails the weakened formula.

6.2 Description of benchmarks

We have taken several benchmarks from case studies developed using OCRA in past projects.
Some examples are: different versions of the Redundant Sensor described in Sect. 3.1, dif-
ferent variants of a Wheel Brake System [6,15], and an Airbag system [1]. Particularly,
an interesting case study is taken from [6], where the authors presented a complete formal
analysis of the different architectures described in the AIR6110 [30], a document describing
the informal design of a Wheel Brake System (WBS), covering all the phases of the pro-
cess, and modeled the case study by means of a combination of formal methods including
contract-based design using OCRA, model checking and safety analysis.

Overall, the benchmarks suite comprises 909 contract refinements, with on average 8.4
subcontracts. 593 out of these 909 share some contracts with other contract refinements.

6.3 Experimental results

6.3.1 Tightening a single contract refinement

We carried out an experimental evaluation on the 909 contract refinements comparing the
contract specification before and after simplificationwith respect to the length of the formulas
on the original contracts.3 The results of applying single top-down tightening is shown in
Fig. 4, where blue crosses represent those cases which all subcontracts are relevant after
tightening and red circles indicates those cases in which the simplification involves the
removal of some irrelevant subcontracts. From the results, we can clearly see a significant
simplification. 268 out of the 909 contract refinements did not get any simplification, which
seems a reasonable result.

In Fig. 5, it is shown how our approach scales with respect to the number of parameters
used for tightening a contract refinement and the time for computing the parameter region
for three extended versions of the WBS example. In Fig. 6 we compare the performance for
computing the parameter region using the encoding and compositional approaches for single
top-down tightening.We can see that the compositional approach is muchmore efficient than
the encoding one. This is probably due to the fact that many assumptions are true (on average

3 We consider the standard definition of the length of a formula (number of symbols), apart from the length
of � and ⊥, which is set to 0.
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Fig. 4 Analysis of length of formulas for single top-down tightening

Fig. 5 Parameter scalability for single top-down tightening

Fig. 6 Comparison between compositional and encode approach for single top-down tightening
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Table 3 Results of irrelevant contracts for single top-down tightening

Case study # Contract refinement Avg. # original
subcontracts

Avg. # irrelevant
contracts

wbs arch1 106 9.14 4.26

wbs arch2 v1 68 3.47 0.82

wbs arch2 v2 109 11.04 4.93

wbs arch2bis v1 68 3.47 0.77

wbs arch2bis v2 109 11.04 5.14

wbs arch2bis v3 109 11.04 5.21

wbs arch3 122 11.04 4.97

wbs arch4 122 11.04 5.17

Modified CRs wbs arch2 v1 12 28 22

Modified CRs wbs arch3 12 28 22

Modified CRs wbs arch4 12 28 22

Lift system 1 4 0

Simple wbs 1 3 0

wbs arp v1 3 3.66 1.33

wbs arp v2 4 3.25 1.25

wbs arp v3 5 3.2 1.45

wbs arp v4 5 3.2 1.45

wbs arp v4.1 4 3 1.45

wbs arp v2 ext 7 2 1

wbs arp v3 ext 7 1 0

wbs arp v4 ext 7 2 1

Airbag 7 2.42 0

Monitors v1 1 6 2

Monitors v2 1 6 0

gb2 1 3 0

Redundant sensors v1 3 5.66 0

Redundant sensors v2 3 5.66 0

5.04) so that the corresponding proof obligations are trivial and do not restrict the resulting
parameter region. In the compositional approach, this means that the computation time for
these proof obligation is negligible. In the encoding approach, although the resulting region
is the same, the problem is syntactically more complex.

We also report on Table 3 the results of the average of the irrelevant subcontracts removed
for each case study on single tightening (fourth column). We can observe that such num-
ber is higher for those benchmarks with a complex architecture. The reason is because the
designer has to select manually the subcontracts which became a more difficult task with big
architectures. Consequently, he/she may include subcontracts that are not relevant.

6.3.2 Taking into account shared contracts

For analyzing the problem of sharing of contracts we have considered the 593 contract
refinements that contain shared contracts. We have run parallel tightening on these where
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Fig. 7 Analysis of length of formulas applying duplication and single top-down tightening

Fig. 8 Comparison between compositional and encode approach for parallel top-down tightening

we did not get any simplification in most of them. More precisely, we can simplify only 5
contract refinements. This is a result that can be expected due to we are including the proof
obligations of other contract refinements that shared some contracts and it is not possible
to get any simplification by keeping all contract refinements correct. Therefore, we have
applied duplication of contracts and then run single tightening on those contract refinements
that we did not get any simplification with parallel tightening and we have obtained a lot
of improvement deployed in Fig. 7, where blue crosses represents those cases which all
subcontracts are relevant after tightening and red circles indicates those cases in which the
simplification involves the removal of some irrelevant subcontracts. Moreover, we remark
that for only 31 contract refinements we did not get any simplification.

Finally, we show in Fig. 8 a comparison of the synthesis approaches for parallel top-down
tightening. We can observe that in some cases the compositional approach is faster than the
encoding one and vice versa. The performance of the encoding approach is therefore better
than the single tightening case. This is probably due to the fact that in the parallel problem,
there are more cases in which multiple proof obligations restrict significantly the parameter
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Fig. 9 WBS arch4 (simplified version)

region. In fact, as said above, we did not get any simplification in general, which means
that the intersection of the parameter regions obtained from the different proof obligation is
empty. The encoding approachmay take benefit by propagating constraints on the parameters
given by one proof obligation to simplify other proof obligations in the monolithic encoding.

All benchmarks have been performedwith a time limit of 10min considering the checking
of the contract refinement after tightening, the computation of the parameter region for the
encoding and the compositional approach, and the check of the entailments properties. For
the 909 contract refinements, 65 could not be completed applying single tightening within
the timeout. We have run our experiments on a Linux machine with 8 CPU of 3.40 Ghz Intel
Xeon, with a memory of 15 Gb. The benchmarks and executables for reproducing the results
are available at https://es.fbk.eu/people/demasi/TightenArch/experiments.html.

6.4 An example of applying tightening on a system architecture

In this subsection we report the evaluation of our tightening techniques on a case study where
we have applied these step by step following the process described in Sect. 5 and manually
inspecting the results at each step.

We take the most complex architecture, arch4, defined in [6] and we apply tighten-
ing on the contract refinements from the system component to the leaf components in a
top-down fashion. A simplified version of the system architecture of arch44 is depicted
in Fig. 9. We will show the application of our technique only for a subset of contracts
just for a reason of space. We start from the system component called wbs_arch4
which is decomposed into a physical system and a control system. We take one of its

4 A complete documentation for the different architectures defined in [6] can be found in https://es-static.fbk.
eu/projects/air6110/.
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contracts never_inadvertent_braking_of_wheel_8 and we apply single tight-
ening. As a result, we obtain 2 tightened variants of this contract refinement. While the
new refinements are correct, other contract refinements are broken due to the fact that
never_inadvertent_braking_of_wheel_8 shares some subcontracts with other
contracts (e.g., never_inadvertent_braking_of_wheel_i for 0 ≤ i ≤ 7)
defined in the system component like the subcontract system_validity from con-
trol system component. Then, we run parallel tightening on this contract and we do
not get any tightened variant. Therefore, we remove the sharing of contracts by dupli-
cation and we obtain two tightened variants as a result. We now take one of these
variants and we continue in the decomposition of the contract considering the con-
tract expected_behavior_brake_as_cmd_8 in the ControlSystem component
which is just refined by the subcontract expected_behavior_brake_as_cmd_8 of
the BSCU component. We run just a single tightening on this contract and we do not obtain
any simplification.

We continue going into a top-down fashion and we would like to tighten the contract
expected_behavior_brake_as_cmd_8 in the BSCU component which is decom-
posed into two redundant Channel, an OrGate, and a 12 SwitchGate components. This
contract shares several subcontracts with other contracts (e.g., expected_behavior_
brake_as_cmd_j for 0 ≤ j ≤ 7) defined in the BSCU component. The shared subcon-
tracts correspond to different subcomponents, e.g., system_validity,
command_creation_alternate_k (1 ≤ k ≤ 4), and command_creation_
normal_l (1 ≤ l ≤ 8) of the Channel component. Also, subcontract or_behavior
of the OrGate component. We first try with parallel tightening but we do not get any
simplification. Then, we remove the sharing of contracts by duplication and we obtain
as result that several subcontracts are not needed for the contract refinement. In this
case that the subcontracts command_creation_alternate_k (1 ≤ k ≤ 4) and
command_creation_normal_l (1 ≤ l ≤ 8) are irrelevant. We have investigated
the reason and we observe that the contract system_validity is too weak. Therefore,
we manually strengthen the contract and we rerun the procedure of duplication and we
observe that now two more contracts channel_1.command_creation_normal_8
and channel_2.command_creation_normal_8 for the two redundant Channel
are relevant for this contract refinement.

We continue by tightening the contract command_creation_normal_8 from
the Channel component which is refined by the subcontract command_creation_
normal_8 of CommandSystem component. This contract from theChannel component
does not share contracts. By applying tightening, we do not obtain any simplification.

We continue in a top-down fashion where we observe that the Channel compo-
nent is decomposed into component MonitorSystem and CommandSystem, where
the first one is a leaf component which means that we have covered one branch of
decomposition and the refinements of contracts from the system component. Subse-
quently, we tighten the contract command_creation_normal_8 of CommandSystem
component. This component is decomposed in four WheelPairCommandSystem
components. The contract command_creation_normal_8 is refined by contract
command_creation of WheelPairCommandSystem component. This is shared by
contract command_creation_normal_4 of CommandSystem. Thus, we run parallel
tightening on the contract and we do not get any tightened variant. Then, we try by remov-
ing the sharing by duplication and we get a simplified version of the contract refinement
command_creation_normal_8. Finally, as CommandSystem is a leaf component
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we have covered another branch of decomposition and the contracts refinement from the
system component.

We conclude that the tightening techniques can support the designer during the process for
the contracts specification and refinement and also when the specification of the architecture
is already complete like in this case.

6.5 Discussion of the results

As shown by the results in Fig. 4, contract tightening is very effective and can simplify
some formulas aggressively. This may be found surprising, especially for models coming
from a solid benchmark, like the one presented in [6]. Investigating further the reason why
such simplifications are possible, we discovered that in some cases there are indeed shared
contracts. We evaluated these cases using the parallel tightening technique to see when
the simplifications could be maintained keeping correct all refinements in the specification
and the result showed that in the case of [6] none of such simplifications was possible.
This means that in order to apply the tightening we have to first separate the refinements
by either duplicating or removing the shared subcontract. We have applied on these cases
the procedure for removing the sharing of contracts by duplication and we have obtained
significant simplifications. This strengthens the usability of tightening: the designer typically
focuses on having the contract refinement correct and reuse as much as possible existing
contracts without caring about the burden of the engine due to the additional redundant
contracts. In a second phase, tightening can be run to eliminate such redundancy in a fully
automatic way. On the other hand, we have observed in some situations that redundancy is
introduced by the designer on the functionality of the components in order to dealwith failures
of the system. In general, the tightening techniques cannot detect this kind of redundancy
and consequently it is removed, so the designer after inspecting the result of tightening has
to decide to keep the redundancy or not in this case.

We remark that the tightening technique assists/supports designers on the specification
of the contracts and refinement during the development process by simplifying the contract
refinements at the level of formulas and contracts. The designers are responsible of analyzing
the tightening results and decide for example which one of them is taken for continue with
the application of the approach in a top-down fashion. Moreover, duplication of contracts
could produce complicated specifications if all duplicates are considered and not significant
simplification is obtained. Then, after applying single tightening the designer should analyze
the results and taking into account the sharing of contracts, he/she has to decide to keep the
original refinement or the result obtained on the duplication of the contracts.

7 Related work

This article is a revised and expanded version of a conference paper presented at SEFM
2016 [10] and it extends it as follows: (1) it describes how the tightening techniques can sup-
port in general the development process in a top-down fashion for the contracts specification
and refinement of a system architecture; (2) it extends the formal definition of tightening to
provide the designerwith information regardingwhich contracts are sufficient for (or prevent)
correct refinement; (3) it introduces the problem of sharing contracts and provides a solu-
tion for this problem called parallel tightening, moreover, proposes an automatic approach
for removing the sharing of contracts by duplication; (4) it presents a new approach for the
multiple validity parameter synthesis problem called compositional approach; and (5) it pro-
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poses a more thorough experimental analysis, including more insights on the results of single
tightening, an evaluation taking into account shared contracts, and a comparison of the two
synthesis approaches.

We are not aware of similar works in the context of contract-based design. The problem of
contract tightening is related to vacuity checking [24], unsatisfiability core extraction [12].
Unsatisfiability cores are used also to find which portions of a system model are relevant
in an inductive proof [21]. Unsatisfiability cores are typically restricted to conjunctions of
formulas. The probablymost relatedwork is the extension of the notion of unsatisfiability core
to temporal formulas expressed in LTL proposed in [31]. However, the design problem, the
formal problem, and the technical solution are very different. First, differently from the above-
mentioned problems, we are not weakening/strengthening the occurrence of a subformula,
but we need to weaken/strengthen all occurrences of an assumption/guarantee inside the
proof obligations in the same way. Second, we do not have just one property to simplify,
but every assumption/guarantee that is simplified occurs in different proof obligations; this
corresponds to different unsatisfiability or model checking problems to consider at the same
time. Third, we reduce the problem to a parameter synthesis problem and we ensure the
monotonicity of parameters to ensure scalable results.

Also thework described in [23] addresses the problemof simplifying a contract refinement,
but with a different purpose and solution: the approach relies on a library of contracts and
refinement relations considered as additional inputs to the refinement check problem, and
simplifies the contract refinement based on such library. The main objective of the authors
is to improve the performance of the refinement check based on the library, while we search
for a tighter version of the contracts that still ensure the correctness of the refinement.

8 Conclusions and future work

We have presented in this article a technique to support the development process for the
contracts specification and refinement of a system architecture by simplifying the contract
refinements along this process. Motivated by the need of validating contract-based designs,
we have defined the problem of tightening a contract refinement. This consists of automati-
cally synthesizing simplified versions of the involved assumptions and guarantees, including
removing those that are irrelevant in the contract refinement. We consider also the tighten-
ing problem within a system architecture that contains multiple contract refinements that
share some subcontracts. Our tightening techniques are based on the synthesis of param-
eters of temporal satisfiability problems. We have evaluated the approach on a number of
benchmarks and showed that the solution is effective and scalable. Moreover, we have also
manually inspected the results on a significant case study obtaining interesting feedback.

In future research, we plan to extend the approach to consider also the tightening of metric
operators and the preservation of realizability. We also plan to detect and avoid the removal
of redundancy introduced by the designer for specific goals like incorporating redundancy
by adding additional components in order to deal with failures of the system.
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