
Cyber-Physical Doping Tests

Sebastian Biewer, Holger Hermanns

Saarland University – Computer Science

Saarland Informatics Campus

Saarbrücken, Germany

Pedro R. D’Argenio

Universidad Nacional de Córdoba – FaMAF

CONICET

Córdoba, Argentina

Abstract—We are confronted with a growing number of cases
where device manufacturers equip their products with embedded
software that includes functionalities that are not in the owner’s
interest. Examples include customer lock-in strategies in inkjet
printers and as a prominent case the diesel emissions scandal
in the automotive industry. This software doping phenomenon is
turning more widespread as software is embedded in ever more
devices of daily use.

In this work we present a formal characterization which
can distinguish clean and doped reactive programs, based on
a contract that is assumed to exist between the end user of
a cyber physical device and the manufacturer of the control
software embedded therein. We further discuss our current work
on combining this characterization with the theory of model-
based testing, so as to arrive at a formal basis upon which it will
be possible to perform efficient doping tests in practice.

I. MOTIVATION

Program verification and testing are methods for software

manufacturers to check if their products satisfy certain objec-

tives. Classically, these objectives agree with those of the users

or the general interest. However, we observe a trend where

the interests of the manufacturers diverge from the general

interest, in particular in the context of embedded and cyber-

physical systems. If the software includes functionality that is

in the mere interest of the manufacturer, we call this software

being doped.

Examples of software doping include customer lock-in

strategies as found for instance in inkjet printers [1] that

refuse to work when supplied with a toner or ink cartridge

of a third party manufacturer despite technical compatibility,

and in laptops that refuse to charge if connected to a third-

party battery charger [2]. Such functionalities are clearly in the

interest of the manufacturer, because they boost demand for

original manufacturer accessories or replacement parts instead

of (compatible) third-party parts. They are not in the interest

of the user because of the often excessive pricing of OEM

parts.

The diesel emission scandal received a lot of attention and

is another example of software doping. Modern cars need to

comply to a range of environmental regulations limiting the

level of emissions for various toxic substances, greenhouse

gases, and particles. The prime approach to assure compliance

with these regulations is black-box testing carried out in a

controlled environment: Emission tests are carried out on a

chassis dynamometer where the car is fixed but tires can

rotate freely. During the test, emissions are measured at the

exhaust pipe while the vehicle is made to follow a precisely

defined profile meant to imitate real driving conditions. The

conditions of the test, including speed profile and other details

such as outside temperature, are both standardized and public,

ensuring that the testing can be carried out in a reproducible

way by an independent party, treating the car itself as a black

box.

However, the singularity of the conditions on the chassis dy-

namometer makes it possible to infer when a car is undergoing

an emission test and to intentionally adjust the car behaviour so

as to comply with emission standards, while exceeding them

during normal driving in favour of more economic resource

usage. This surreptitious alteration of functionality is at the

heart of the diesel emissions scandal. It has taken place in

millions of cars equipped with diesel engines in a broad

spectrum of vehicle models originating from various manu-

facturers. A detailled account of how this was achieved in the

case of Volkswagen and of Fiat-Chrysler has been given [3],

illustrating a variety of embedded control mechanisms with

surreptitious functionality inside the cars we drive.

Common to all these examples is that the software user has

little or no control over its execution, and that the functionality

in question is against the interests of user or of society. At the

core of this functionality are proprietary software artefacts and

for the case of the diesel scandal the manufacturers promise

to remove the undesired functionality by an update of their

proprietary software.

Many more examples of software doping exist [4] and it

is turning more widespread as software is embedded in ever

more devices of daily use. The future will thus likely see many

more facets of software doping pestering us.

II. CLEAN AND DOPED SOFTWARE

There is thus a critical research agenda gaining momentum

which focusses on means to identify, understand and even-

tually remedy the various facets of software doping. As a

pivotal step in this endeavour, we need to be able to tell apart

doped software from clean software, be it to certify regulatory

compliance in a cyberphysical environment, be it to prevent

customer lock-in or planned obsolescence by software, be it

to empower trust of device users. The problem of software

doping has been recognized in the literature [5], [4], [6], [7],

[3], and a hierarchy of simple but solid formal definitions

has lately been proposed [8]. It is based on a model of the

embedded software behaviour which in turn is derived from

18

2018 3rd Workshop on Monitoring and Testing of Cyber-Physical Systems

978-1-5386-6748-4/18/$31.00 ©2018 IEEE
DOI 10.1109/MT-CPS.2018.00016



0 200 400 600 800 1,000 1,200
0

5

10

13

Time [s]

D
is

ta
n

ce
[k
m

]

Figure 1: Time-distance profiles of 2013 Sharan and NEDC

a contract that is assumed to be explicitly offered by the

manufacturer. The contract includes the identities of all sensor

inputs relevant to the embedded control problem at hand, a

number of reference tests, and a pair of values identifying

in how far variations in input readings may possibly induce

variations in output behaviour. In this contract, the reference

tests echo the nowadays common practice of public authorities

to check compliance with respect to legal requirements by

performing a few (black-box) tests under lab conditions that

are known publicly, so as to assure reproducibility. The need

for wrapping these reference tests into a broader contract stems

from the fact that otherwise software that alters its behaviour

if outside the singularities of the lab conditions would be

considered clean, not doped.

III. DOPED EMISSION CLEANING

Fig. 1 illustrates the problem in the context of the diesel

emission system used in a Volkswagen Sharan model from

2013. The engine control unit (ECU) of this car contains

several pairs of piecewise-linear time-distance functions which

define the gray and white areas in Fig. 1. If the current trip

(i.e., the time-distance profile of the vehicle after engine start)

stays within the white area, the ECU performs the best possible

emission cleaning. However, once it moves outside of the

white area emission cleaning is turned off [3]. The blue curve

in the lower white area is the time-distance profile of the New

European Driving Cycle (NEDC), which is the only test diesel

cars had to pass for admission in EU in 2013. Noticeably, the

boundaries of the white area tightly enclose this curve.

In order to capture in how far a clean software is allowed

to deviate in emissions if the driving profile deviates from

the standard behaviour (e.g. as it materializes on a chassis

dynamometer when driving the NEDC) the definition put

forward in [8] assumes a contract to exist between software

manufacturer and user. Intuitively, this contract is meant to

ensure that if the input to the control software changes only

slightly (e.g., if the distance in Fig. 1 crosses the gray area

briefly), then the output of the program (e.g. the number of

NOx particles in the exhaust gas) is to deviate only in a

reasonably bounded way, too. This is not the case for the

Sharan, since emission cleaning is turned off once hitting the

gray area whence the number of particles in the exhaust gas

increases significantly.

IV. FROM CONTRACT TO TEST

The above mentioned contractual formulation provides a

basis to distinguish whether a program is clean or doped, and

is amenable to model-checking style verification [8]. This,

however, requires a white-box setting, i.e., a setting where

the embedded control program is known to the analysis in

all details. But since commercial embedded control software

usually is of a proprietary nature, a black-box approach

to software doping is needed instead. Indeed, the contract

definitions can be twisted so as to enable the generation of

model-based test cases tailored for discovering the existence

of software doping. This approach is being developed into a

full-fledged methodology as ongoing work.

ACKNOWLEDGMENT

This work is partly supported by ERC Advanced Grant

695614 (POWVER), by the Saarbrücken Graduate School of

Computer Science, by the Sino-German CDZ project 1023

(CAP), and by SeCyT-UNC 05/BP12 and 05/B497.

REFERENCES

[1] J. C. Dvorak, “The secret printer companies are keeping from you,” PC
Mag UK, http://uk.pcmag.com/printers/60628/opinion/the-secret-printer-
companies-are-keeping-from-you, 2012, Online; accessed: 2018-03-23.

[2] Tritech Computer Solutions, “Dell laptops reject third-party
batteries and AC adapters/chargers. Hardware vendor lock-in?”
https://nctritech.wordpress.com/2010/01/26/dell-laptops-reject-third-
party-batteries-and-ac-adapterschargers-hardware-vendor-lock-in/, 2010,
Online; accessed: 2018-03-23.

[3] M. Contag, G. Li, A. Pawlowski, F. Domke, K. Levchenko, T. Holz, and
S. Savage, “How they did it: An analysis of emission defeat devices in
modern automobiles,” in 2017 IEEE Symposium on Security and Privacy.
IEEE Computer Society, 2017, pp. 231–250.

[4] G. Barthe, P. R. D’Argenio, B. Finkbeiner, and H. Hermanns, “Facets
of software doping,” in 7th International Symposium on Leveraging
Applications of Formal Methods, ISOLA 2016, Part II, ser. LNCS, vol.
9953. Springer, 2016, pp. 601–608.

[5] L. Hatton and M. van Genuchten, “When software crosses a line,” IEEE
Software, vol. 33, no. 1, pp. 29–31, 2016.

[6] M. Huisman, H. Bos, S. Brinkkemper, A. van Deursen, J. F. Groote,
P. Lago, J. van de Pol, and E. Visser, “Software that meets its intent,”
in 7th International Symposium on Leveraging Applications of Formal
Methods, ISOLA 2016, Part II. Springer, 2016, pp. 609–625.

[7] K. Baum, “What the hack is wrong with software doping?” in 7th
International Symposium on Leveraging Applications of Formal Methods,
ISOLA 2016, Part II, ser. LNCS, vol. 9953. Springer, 2016, pp. 633–647.

[8] P. R. D’Argenio, G. Barthe, S. Biewer, B. Finkbeiner, and H. Her-
manns, “Is your software on dope? - Formal analysis of surreptitiously
”enhanced” programs,” in 26th European Symposium on Programming,
ESOP 2017, ser. LNCS, vol. 10201. Springer, 2017, pp. 83–110.

19


