
A Hierarchy of Scheduler Classes
for Stochastic Automata

Pedro R. D’Argenio1,2,3, Marcus Gerhold4 , Arnd Hartmanns4(B) ,
and Sean Sedwards5

1 Universidad Nacional de Córdoba, Córdoba, Argentina
dargenio@famaf.unc.edu.ar

2 CONICET, Córdoba, Argentina
3 Saarland University, Saarbrücken, Germany

4 University of Twente, Enschede, The Netherlands
{m.gerhold,a.hartmanns}@utwente.nl

5 University of Waterloo, Waterloo, Canada
sean.sedwards@uwaterloo.ca

Abstract. Stochastic automata are a formal compositional model for
concurrent stochastic timed systems, with general distributions and non-
deterministic choices. Measures of interest are defined over schedulers
that resolve the nondeterminism. In this paper we investigate the power
of various theoretically and practically motivated classes of schedulers,
considering the classic complete-information view and a restriction to
non-prophetic schedulers. We prove a hierarchy of scheduler classes w.r.t.
unbounded probabilistic reachability. We find that, unlike Markovian for-
malisms, stochastic automata distinguish most classes even in this basic
setting. Verification and strategy synthesis methods thus face a tradeoff
between powerful and efficient classes. Using lightweight scheduler sam-
pling, we explore this tradeoff and demonstrate the concept of a useful
approximative verification technique for stochastic automata.

1 Introduction

The need to analyse continuous-time stochastic models arises in many practical
contexts, including critical infrastructures [4], railway engineering [36], space mis-
sion planning [7], and security [28]. This has led to a number of discrete event sim-
ulation tools, such as those for networking [34,35,42], whose probabilistic seman-
tics is founded on generalised semi-Markov processes (GSMP [21,33]). Nonde-
terminism arises through inherent concurrency of independent processes [11],
but may also be deliberate underspecification. Modelling such uncertainty with
probability is convenient for simulation, but not always adequate [3,29]. Vari-
ous models and formalisms have thus been proposed to extend continuous-time

This work is supported by the 3TU.BSR, NWO BEAT (602.001.303) and JST
ERATO HASUO Metamathematics for Systems Design (JPMJER1603) projects, by
ERC grant 695614 (POWVER), and by SeCyT-UNC projects 05/BP12, 05/B497.

c© The Author(s) 2018
C. Baier and U. Dal Lago (Eds.): FOSSACS 2018, LNCS 10803, pp. 384–402, 2018.
https://doi.org/10.1007/978-3-319-89366-2_21

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-89366-2_21&domain=pdf
http://orcid.org/0000-0002-2655-9617
http://orcid.org/0000-0003-3268-8674
http://orcid.org/0000-0002-2903-0823

A Hierarchy of Scheduler Classes for Stochastic Automata 385

stochastic processes with nondeterminism [8,10,19,23,27,38]. It is then possible
to verify such systems by considering the extremal probabilities of a property.
These are the supremum and infimum of the probabilities of the property in the
purely stochastic systems induced by classes of schedulers (also called strategies,
policies or adversaries) that resolve all nondeterminism. If the nondeterminism
is considered controllable, one may alternatively be interested in the planning
problem of synthesising a scheduler that satisfies certain probability bounds.

We consider closed systems of stochastic automata (SA [16]), which extend
GSMP and feature both generally distributed stochastic delays as well as discrete
nondeterministic choices. The latter may arise from non-continuous distributions
(e.g. deterministic delays), urgent edges, and edges waiting on multiple clocks.
Numerical verification algorithms exist for very limited subclasses of SA only:
Buchholz et al. [13] restrict to phase-type or matrix-exponential distributions,
such that nondeterminism cannot arise (as each edge is guarded by a single
clock). Bryans et al. [12] propose two algorithms that require an a priori fixed
scheduler, continuous bounded distributions, and that all active clocks be reset
when a location is entered. The latter forces regeneration on every edge, making
it impossible to use clocks as memory between locations. Regeneration is central
to the work of Ballarini et al. [6], however they again exclude nondeterminism.
The only approach that handles nondeterminism is the region-based approxima-
tion scheme of Kwiatkowska et al. [30] for a model closely related to SA, but
restricted to bounded continuous distributions. Without that restriction [22],
error bounds and convergence guarantees are lost.

Evidently, the combination of nondeterminism and continuous probability
distributions is a particularly challenging one. With this paper, we take on the
underlying problem from a fundamental perspective: we investigate the power of,
and relationships between, different classes of schedulers for SA. Our motivation
is, on the one hand, that a clear understanding of scheduler classes is crucial
to design verification algorithms. For example, Markov decision process (MDP)
model checking works well because memoryless schedulers suffice for reachabil-
ity, and the efficient time-bounded analysis of continuous-time MDP (CTMDP)
exploits a relationship between two scheduler classes that are sufficiently simple,
but on their own do not realise the desired extremal probabilities [14]. When it
comes to planning problems, on the other hand, practitioners desire simple solu-
tions, i.e. schedulers that need little information and limited memory, so as to be
explainable and suitable for implementation on e.g. resource-constrained embed-
ded systems. Understanding the capabilities of scheduler classes helps decide on
the tradeoff between simplicity and the ability to attain optimal results.

We use two perspectives on schedulers from the literature: the classic
complete-information residual lifetimes semantics [9], where optimality is defined
via history-dependent schedulers that see the entire current state, and non-
prophetic schedulers [25] that cannot observe the timing of future events. Within
each perspective, we define classes of schedulers whose views of the state and
history are variously restricted (Sect. 3). We prove their relative ordering w.r.t.
achieving optimal reachability probabilities (Sect. 4). We find that SA distin-
guish most classes. In particular, memoryless schedulers suffice in the complete-
information setting (as is implicit in the method of Kwiatkowska et al. [30]), but

386 P. R. D’Argenio et al.

turn out to be suboptimal in the more realistic non-prophetic case. Consider-
ing only the relative order of clock expiration times, as suggested by the first
algorithm of Bryans et al. [12], surprisingly leads to partly suboptimal, partly
incomparable classes. Our distinguishing SA are small and employ a common
nondeterministic gadget. They precisely pinpoint the crucial differences and how
schedulers interact with the various features of SA, providing deep insights into
the formalism itself.

Our study furthermore forms the basis for the application of lightweight
scheduler sampling (LSS) to SA. LSS is a technique to use Monte Carlo sim-
ulation/statistical model checking with nondeterministic models. On every LSS
simulation step, a pseudo-random number generator (PRNG) is re-seeded with
a hash of the identifier of the current scheduler and the (restricted) information
about the current state (and previous states, for history-dependent schedulers)
that the scheduler’s class may observe. The PRNG’s first iterate then determines
the scheduler’s action deterministically. LSS has been successfully applied to
MDP [18,31,32] and probabilistic timed automata [15,26]. Using only constant
memory, LSS samples schedulers uniformly from a selected scheduler class to find
“near-optimal” schedulers that conservatively approximate the true extremal
probabilities. Its principal advantage is that it is largely indifferent to the size
of the state space and of the scheduler space; in general, sampling efficiency
depends only on the likelihood of selecting near-optimal schedulers. However,
the mass of near-optimal schedulers in a scheduler class that also includes the
optimal scheduler may be less than the mass in a class that does not include
it. Given that the mass of optimal schedulers may be vanishingly small, it may
be advantageous to sample from a class of less powerful schedulers. We explore
these tradeoffs and demonstrate the concept of LSS for SA in Sect. 5.

Other Related Work. Alur et al. first mention nondeterministic stochastic
systems similar to SA in [2]. Markov automata (MA [19]), interactive Markov
chains (IMC [27]) and CTMDP are special cases of SA restricted to exponential
distributions. Song et al. [37] look into partial information distributed schedulers
for MA, combining earlier works of de Alfaro [1] and Giro and D’Argenio [20]
for MDP. Their focus is on information flow and hiding in parallel specifications.
Wolf et al. [39] investigate the power of classic (time-abstract, deterministic and
memoryless) scheduler classes for IMC. They establish (non-strict) subset rela-
tionships for almost all classes w.r.t. trace distribution equivalence, a very strong
measure. Wolovick and Johr [41] show that the class of measurable schedulers
for CTMDP is complete and sufficient for reachability problems.

2 Preliminaries

For a given set S, its power set is P(S). We denote by R, R+, and R
+
0 the sets of

real numbers, positive real numbers and non-negative real numbers, respectively.
A (discrete) probability distribution over a set Ω is a function μ : Ω → [0, 1], such
that support(μ) def= {ω ∈ Ω | μ(ω) > 0 } is countable and

∑
ω∈support(μ) μ(ω) = 1.

Dist(Ω) is the set of probability distributions over Ω. We write D(ω) for the Dirac

A Hierarchy of Scheduler Classes for Stochastic Automata 387

distribution for ω, defined by D(ω)(ω) = 1. Ω is measurable if it is endowed
with a σ-algebra σ(Ω): a collection of measurable subsets of Ω. A (continuous)
probability measure over Ω is a function μ : σ(Ω) → [0, 1], such that μ(Ω) = 1
and μ(∪i∈I Bi) =

∑
i∈I μ(Bi) for any countable index set I and pairwise disjoint

measurable sets Bi ⊆ Ω. Prob(Ω) is the set of probability measures over Ω. Each
μ ∈ Dist(Ω) induces a probability measure. Given probability measures μ1 and
μ2, we denote by μ1 ⊗ μ2 the product measure: the unique probability measure
such that (μ1 ⊗ μ2)(B1 × B2) = μ1(B1) · μ2(B2), for all measurable B1 and B2.
For a collection of measures (μi)i∈I , we analogously denote the product measure
by

⊗
i∈I μi. Let Val def= V → R

+
0 be the set of valuations for an (implicit)

set V of (non-negative real-valued) variables. 0 ∈ Val assigns value zero to all
variables. Given X ⊆ V and v ∈ Val , we write v[X] for the valuation defined
by v[X](x) = 0 if x ∈ X and v[X](y) = v(y) otherwise. For t ∈ R

+
0 , v + t is the

valuation defined by (v + t)(x) = v(x) + t for all x ∈ V .

Stochastic Automata [16] extend labelled transition systems with stochastic
clocks: real-valued variables that increase synchronously with rate 1 over time
and expire some random amount of time after having been restarted. Formally:

Definition 1. A stochastic automaton (SA) is a tuple 〈Loc, C, A,E, F, �init 〉,
where Loc is a countable set of locations, C is a finite set of clocks, A is the
finite action alphabet, and E : Loc → P(P(C) × A × P(C) × Dist(Loc)) is the
edge function, which maps each location to a finite set of edges that in turn
consist of a guard set of clocks, a label, a restart set of clocks and a distribution
over target locations. F : C → Prob(R+

0) is the delay measure function that maps
each clock to a probability measure, and �init ∈ Loc is the initial location.

We also write �
G,a,R−−−−→E μ for 〈G, a,R, μ〉 ∈ E(�). W.l.o.g. we restrict to SA

where edges are fully characterised by source state and action label, i.e. whenever
�

G1,a,R1−−−−−→E μ1 and �
G2,a,R2−−−−−→E μ2, then G1 = G2, R1 = R2 and μ1 = μ2.

Intuitively, an SA starts in �init with all clocks expired. An edge �
G,a,R−−−−→E μ

may be taken only if all clocks in G are expired. If any edge is enabled, some
edge must be taken (i.e. all actions are urgent and thus the SA is closed). When
an edge is taken, its action is a, all clocks in R are restarted, other expired
clocks remain expired, and we move to successor location �′ with probability
μ(�′). There, another edge may be taken immediately or we may need to wait
until some further clocks expire, and so on. When a clock c is restarted, the time
until it expires is chosen randomly according to the probability measure F (c).

Example 1. We show an example SA, M0, in Fig. 1. Its initial location is �0. It
has two clocks, x and y, with F (x) and F (y) both being the continuous uniform
distribution over the interval [0, 1]. No time can pass in locations �0 and �1,
since they have outgoing edges with empty guard sets. We omit action labels
and assume every edge to have a unique label. On entering �1, both clocks are
restarted. The choice of going to either �2 or �3 from �1 is nondeterministic, since

388 P. R. D’Argenio et al.

Fig. 1. Example SA M0 Fig. 2. Excerpt of the TPTS semantics of M0

the two edges are always enabled at the same time. In �2, we have to wait until
the first of the two clocks expires. If that is x, we have to move to location ✓; if it
is y, we have to move to ✗. The probability that both expire at the same time is
zero. Location �3 behaves analogously, but with the target states interchanged.

Timed Probabilistic Transition Systems form the semantics of SA. They
are finitely-nondeterministic uncountable-state transition systems:

Definition 2. A (finitely nondeterministic) timed probabilistic transition sys-
tem (TPTS) is a tuple 〈S,A′, T, sinit 〉. S is a measurable set of states. A′ =
R

+ 	 A is the alphabet, partitioned into delays in R
+ and jumps in A.

T : S → P(A′ × Prob(S)) is the transition function, which maps each state to
a finite set of transitions, each consisting of a label in A′ and a measure over
target states. The initial state is sinit ∈ S. For all s ∈ S, we require |T (s)| = 1
if ∃ 〈t, μ〉 ∈ T (s) : t ∈ R

+, i.e. states admitting delays are deterministic.

We also write s
a−→T μ for 〈a, μ〉 ∈ T (s). A run is an infinite alternating sequence

s0a0s1a1. . . ∈ (S×A′)ω, with s0 = sinit . A history is a finite prefix of a run ending
in a state, i.e. an element of (S × A′)∗ × S. Runs resolve all nondeterministic
and probabilistic choices. A scheduler resolves only the nondeterminism:

Definition 3. A measurable function s : (S ×A′)∗ ×S → Dist(A′ × Prob(S)) is
a scheduler if, for all histories h ∈ (S × A′)∗ × S, 〈a, μ〉 ∈ support(s(h)) implies
lsth

a−→T μ, where lsth is the last state of h.

Once a scheduler has chosen si
a−→T μ, the successor state si+1 is picked randomly

according to μ. Every scheduler s defines a probability measure Ps on the space
of all runs. For a formal definition, see [40]. As is usual, we restrict to non-Zeno
schedulers that make time diverge with probability one: we require Ps(Π∞) = 1,
where Π∞ is the set of runs where the sum of delays is ∞. In the remainder of this
paper we consider extremal probabilities of reaching a set of goal locations G:

Definition 4. For G ⊆ Loc, let JG
def= { 〈�, v, e〉 ∈ S | � ∈ G }. Let S be a

class of schedulers. Then PS
min(G) and PS

max(G) are the minimum and maximum
reachability probabilities for G under S, defined as PS

min(G) = infs∈S Ps(ΠJG
)

and PS
max(G) = sups∈S Ps(ΠJG

), respectively.

A Hierarchy of Scheduler Classes for Stochastic Automata 389

Semantics of Stochastic Automata. We present here the residual lifetimes
semantics of [9], simplified for closed SA: any delay step must be of the minimum
delay that makes some edge become enabled.

Definition 5. The semantics of an SA M = 〈Loc, C, A,E, F, �init 〉 is the TPTS

[[M]] = 〈Loc × Val × Val , A 	 R
+, TM , 〈�init ,0,0〉〉

where the states are triples 〈�, v, e〉 of the current location �, a valuation v assign-
ing to each clock its current value, and a valuation e keeping track of all clocks’
expiration times. TM is the smallest transition function satisfying inference rules

�
G,a,R−−−−→E μ En(G, v, e)

〈�, v, e〉 a−→TM μ ⊗ D(v[R]) ⊗ SampleRe

t ∈ R
+ ∃�

G,a,R−−−−→E μ : En(G, v + t, e) ∀ t′ ∈ [0, t), �
G,a,R−−−−→E μ : ¬ En(G, v + t′, e)

〈�, v, e〉 t−→TM D(〈�, v + t , e〉)
with En(G, v, e) def= ∀x ∈ G : v(x) ≥ e(x) characterising the enabled edges and

SampleR
e

def=
⊗

c∈C

{
F (c) if c ∈ R

D(e(c)) if c /∈ R.

The second rule creates delay steps of t time units if no edge is enabled from now
until just before t time units have elapsed (third premise) but then, after exactly
t time units, some edge becomes enabled (second premise). The first rule applies

if an edge �
G,a,R−−−−→E μ is enabled: a transition is taken with the edge’s label, the

successor state’s location is chosen by μ, v is updated by resetting the clocks in R
to zero, and the expiration times for the restarted clocks are resampled. All other
expiration times remain unchanged. Notice that [[M]] is also a nondeterministic
labelled Markov process [40] (a proof can be found in [17]).

Example 2. Figure 2 outlines the semantics of M0. The first step from �0 to all
the states in �1 is a single transition. Its probability measure is the product of
F (x) and F (y), sampling the expiration times of the two clocks. We exemplify
the behaviour of all of these states by showing it for the case of expiration times
e(x) and e(y), with e(x) < e(y). In this case, to maximise the probability of
reaching ✓, we should take the transition to the state in �2. If a scheduler s can
see the expiration times, noting that only their order matters here, it can always
make the optimal choice and achieve P{s}

max({ ✓ }) = 1.

3 Classes of Schedulers

We now define classes of schedulers for SA with restricted information, hiding
in various combinations the history and parts of states such as clock values and
expiration times. All definitions consider TPTS as in Definition 5 with states
〈�, v, e〉 and we require for all s that 〈a, μ〉 ∈ support(s(h)) ⇒ lsth

a−→T μ, as in
Definition 3.

390 P. R. D’Argenio et al.

3.1 Classic Schedulers

We first consider the “classic” complete-information setting where schedulers can
in particular see expiration times. We start with restricted classes of history-
dependent schedulers. Our first restriction hides the values of all clocks, only
revealing the total time since the start of the history. This is inspired by the step-
counting or time-tracking schedulers needed to obtain optimal step-bounded or
time-bounded reachability probabilities on MDP or Markov automata:

Definition 6. A classic history-dependent global-time scheduler is a measurable
function s : (S|�,t,e × A′)∗ × S|�,t,e → Dist(A′ × Prob(S)), where S|�,t,e def= Loc ×
R

+
0 ×Val with the second component being the total time t elapsed since the start

of the history. We write Shist
�,t,e for the set of all such schedulers.

We next hide the values of all clocks, revealing only their expiration times:

Definition 7. A classic history-dependent location-based scheduler is a mea-
surable function s : (S|�,e × A′)∗ × S|�,e → Dist(A′ × Prob(S)), where S|�,e def=
Loc × Val, with the second component being the clock expiration times e. We
write Shist

�,e for the set of all such schedulers.

Having defined three classes of classic history-dependent schedulers, Shist
�,v,e,

Shist
�,t,e and Shist

�,e , noting that Shist
�,v,e denotes all schedulers of Definition 3, we

also consider them with the restriction that they only see the relative order of
clock expiration, instead of the exact expiration times: for each pair of clocks
c1, c2, these schedulers see the relation ∼ ∈ {<,=, >} in e(c1) − v(c1) ∼ e(c2) −
v(c2). E.g. in �1 of Example 2, the scheduler would not see e(x) and e(y), but
only whether e(x) < e(y) or vice-versa (since v(x) = v(y) = 0, and equality
has probability 0 here). We consider this case because the expiration order is
sufficient for the first algorithm of Bryans et al. [12], and would allow optimal
decisions in M0 of Fig. 1. We denote the relative order information by o, and
the corresponding scheduler classes by Shist

�,v,o, S
hist
�,t,o and Shist

�,o . We now define
memoryless schedulers, which only see the current state and are at the core of
e.g. MDP model checking. On most formalisms, they suffice to obtain optimal
reachability probabilities.

Definition 8. A classic memoryless scheduler is a measurable function s : S →
Dist(A′ × Prob(S)). We write Sml

�,v,e for the set of all such schedulers.

We apply the same restrictions as for history-dependent schedulers:

Definition 9. A classic memoryless global-time scheduler is a measurable func-
tion s : S|�,t,e → Dist(A′ × Prob(S)), with S|�,t,e as in Definition 6. We write
Sml

�,t,e for the set of all such schedulers.

Definition 10. A classic memoryless location-based scheduler is a measurable
function s : S|�,e → Dist(A′ × Prob(S)), with S|�,e as in Definition 7. We write
Sml

�,e for the set of all such schedulers.

Again, we also consider memoryless schedulers that only see the expiration order,
so we have memoryless scheduler classes Sml

�,v,e, S
ml
�,t,e, S

ml
�,e, S

ml
�,v,o, S

ml
�,t,o and

Sml
�,o. Class Sml

�,o is particularly attractive because it has a compact finite domain.

A Hierarchy of Scheduler Classes for Stochastic Automata 391

3.2 Non-prophetic Schedulers

Consider the SA M0 in Fig. 1. No matter which of the previously defined sched-
uler classes we choose, we always find a scheduler that achieves probability 1 to
reach ✓, and a scheduler that achieves probability 0. This is because they can all
see the expiration times or expiration order of x and y when in �1. When in �1,
x and y have not yet expired—this will only happen later, in �2 or �3—yet the
schedulers already know which clock will “win”. The classic schedulers can thus
be seen to make decisions based on the timing of future events. This prophetic
scheduling has already been observed in [9], where a “fix” in the form of the spent
lifetimes semantics was proposed. Hartmanns et al. [25] have shown that this not
only still permits prophetic scheduling, but even admits divine scheduling, where
a scheduler can change the future. The authors propose a complex non-prophetic
semantics that provably removes all prophetic and divine behaviour.

Much of the complication of the non-prophetic semantics of [25] is due to it
being specified for open SA that include delayable actions. For the closed SA
setting of this paper, prophetic scheduling can be more easily excluded by hiding
from the schedulers all information about what will happen in the future of the
system’s evolution. This information is only contained in the expiration times e
or the expiration order o. We can thus keep the semantics of Sect. 2 and modify
the definition of schedulers to exclude prophetic behaviour by construction.

In what follows, we thus also consider all scheduler classes of Sect. 3.1 with
the added constraint that the expiration times, resp. the expiration order, are not
visible, resulting in the non-prophetic classes Shist

�,v , Shist
�,t , Shist

� , Sml
�,v, Sml

�,t and
Sml

� . Any non-prophetic scheduler can only reach ✓ of M0 with probability 1
2 .

4 The Power of Schedulers

Now that we have defined a number of classes of schedulers, we need to determine
what the effect of the restrictions is on our ability to optimally control an SA.
We thus evaluate the power of scheduler classes w.r.t. unbounded reachability
probabilities (Definition 4) on the semantics of SA. We will see that this simple
setting already suffices to reveal interesting differences between scheduler classes.

For two scheduler classes S1 and S2, we write S1 � S2 if, for all SA and
all sets of goal locations G, PS1

min(G) ≤ PS2
min(G) and PS1

max(G) ≥ PS2
max(G). We

write S1 � S2 if additionally there exists at least one SA and set G′ where
PS1
min(G

′) < PS2
min(G

′) or PS1
max(G

′) > PS2
max(G

′). Finally, we write S1 ≈ S2 for
S1 � S2 ∧ S2 � S1, and S1 �≈ S2, i.e. the classes are incomparable, for
S1 �� S2 ∧ S2 �� S1. Unless noted otherwise, we omit proofs for S1 � S2

when it is obvious that the information available to S1 includes the information
available to S2. All our distinguishing examples are based on the resolution of
a single nondeterministic choice between two actions to eventually reach one of
two locations. We therefore prove only w.r.t. the maximum probability, pmax,
for these examples since the minimum probability is given by 1 − pmax and an
analogous proof for pmin can be made by relabelling locations. We may write
Pmax(S

y
x) for PSy

x
max({ ✓ }) to improve readability.

392 P. R. D’Argenio et al.

Fig. 3. Hierarchy of classic scheduler classes Fig. 4. Non-prophetic classes

4.1 The Classic Hierarchy

We first establish that all classic history-dependent scheduler classes are equiv-
alent:

Proposition 1. Shist
�,v,e ≈ Shist

�,t,e ≈ Shist
�,e .

Proof. From the transition labels in A′ = A	R
+ in the history (S′ ×A′)∗, with

S′ ∈ {S, S|�,t,e, S|�,e } depending on the scheduler class, we can reconstruct the
total elapsed time as well as the values of all clocks: to obtain the total elapsed
time, sum the labels in R

+ up to each state; to obtain the values of all clocks, do
the same per clock and perform the resets of the edges identified by the actions.

The same argument applies among the expiration-order history-dependent
classes:

Proposition 2. Shist
�,v,o ≈ Shist

�,t,o ≈ Shist
�,o .

However, the expiration-order history-dependent schedulers are strictly less pow-
erful than the classic history-dependent ones:

Proposition 3. Shist
�,v,e � Shist

�,v,o.

Proof. Consider the SA M1 in Fig. 5. Note that the history does not provide
any information for making the choice in �1: we always arrive after having spent
zero time in �0 and then having taken the single edge to �1. We can analytically
determine that Pmax(S

hist
�,v,e) = 3

4 by going from �1 to �2 if e(x) ≤ 1
2 and to �3

otherwise. We would obtain a probability equal to 1
2 by always going to either

�2 or �3 or by picking either edge with equal probability. This is the best we can
do if e is not visible, and thus Pmax(S

hist
�,v,o) = 1

2 : in �1, v(x) = v(y) = 0 and the
expiration order is always “y before x” because y has not yet been started.

Just like for MDP and unbounded reachability probabilities, the classic history-
dependent and memoryless schedulers with complete information are equivalent:

Proposition 4. Shist
�,v,e ≈ Sml

�,v,e.

A Hierarchy of Scheduler Classes for Stochastic Automata 393

Fig. 5. SA M1 Fig. 6. SA M2 Fig. 7. SA M3

Proof sketch. Our definition of TPTS only allows finite nondeterministic choices,
i.e. we have a very restricted form of continuous-space MDP. We can thus adapt
the argument of the corresponding proof for MDP [5, Lemma 10.102]: For each
state (of possibly countably many), we construct a notional optimal memoryless
(and deterministic) scheduler in the same way, replacing the summation by an
integration for the continuous measures in the transition function. It remains to
show that this scheduler is indeed measurable. For TPTS that are the semantics
of SA, this follows from the way clock values are used in the guard sets so that
optimal decisions are constant over intervals of clock values and expiration times
(see e.g. the arguments in [12] or [30]).

On the other hand, when restricting schedulers to see the expiration order
only, history-dependent and memoryless schedulers are no longer equivalent:

Proposition 5. Shist
�,v,o � Sml

�,v,o.

Proof. Consider the SA M2 in Fig. 6. Let soptml(l,v,o) be the (unknown) optimal
scheduler in Sml

�,v,o w.r.t. the max. probability of reaching ✓. Define sbetterhist(l,v,o) ∈
Shist

�,v,o as: when in �2 and the last edge in the history is the left one (i.e. x is
expired), go to �3; otherwise, behave like soptml(l,v,o). This scheduler distinguishes

Shist
�,v,o and Sml

�,v,o (by achieving a strictly higher max. probability than soptml(l,v,o)) if
and only if there are some combinations of clock values (aspect v) and expiration
orders (aspect o) in �2 that can be reached with positive probability via the left
edge into �2, for which soptml(l,v,o) must nevertheless decide to go to �4.

All possible clock valuations in �2 can be achieved via either the left or the
right edge, but taking the left edge implies that x expires before z in �2. It
is thus sufficient to show that soptml(l,v,o) must go to �4 in some cases where x

394 P. R. D’Argenio et al.

expires before z. The general form of schedulers in Sml
�,v,o in �2 is “go to �3 iff

(a) x expires before z and v(x) ∈ S1 or (b) z expires before x and v(x) ∈ S2”
where the Si are measurable subsets of [0, 8]. S2 is in fact irrelevant : whatever
soptml(l,v,o) does when (b) is satisfied will be mimicked by sbetterhist(l,v,o) because z can
only expire before x when coming via the right edge into �2. Conditions (a) and
(b) are independent.

With S1 = [0, 8], the max. probability is 77
96 = 0.802083̄. Since this is the

only scheduler in Sml
�,v,o that is relevant for our proof and never goes to l4 when

x expires before z, it remains to show that the max. probability under soptml(l,v,o)

is > 77
96 . With S1 = [0, 35

12), we have a max. probability of 7561
9216 ≈ 0.820421. Thus

soptml(l,v,o) must sometimes go to l4 even when the left edge was taken, so sbetterhist(l,v,o)

achieves a higher probability and thus distinguishes the classes.

Knowing only the global elapsed time is less powerful than knowing the full
history or the values of all clocks:

Proposition 6. Shist
�,t,e � Sml

�,t,e and Sml
�,v,e � Sml

�,t,e.

Proof sketch. Consider the SA M3 in Fig. 7. We have Pmax(S
hist
�,t,e) = 1: when

in �3, the scheduler sees from the history which of the two incoming edges was
used, and thus knows whether x or y is already expired. It can then make the
optimal choice: go to �4 if x is already expired, or to �5 otherwise. We also have
Pmax(S

ml
�,v,e) = 1: the scheduler sees that either v(x) = 0 or v(y) = 0, which

implies that the other clock is already expired, and the argument above applies.
However, Pmax(S

ml
�,t,e) < 1: the distribution of elapsed time t on entering �3 is

itself independent of which edge is taken. With probability 1
4 , exactly one of e(x)

and e(y) is below t in �3, which implies that that clock has just expired and thus
the scheduler can decide optimally. Yet with probability 3

4 , the expiration times
are not useful: they are both positive and drawn from the same distribution,
but one unknown clock is expired. The wait for x in �1 ensures that comparing
t with the expiration times in e does not reveal further information in this case.

In the case of MDP, knowing the total elapsed time (i.e. steps) does not make
a difference for unbounded reachability. Only for step-bounded properties is that
extra knowledge necessary to achieve optimal probabilities. With SA, however,
it makes a difference even in the unbounded case:

Proposition 7. Sml
�,t,e � Sml

�,e.

Proof. Consider SA M4 in Fig. 8. We have Pmax(S
ml
�,t,e) = 1: in �2, the remaining

time until y expires is e(y) and the remaining time until x expires is e(x) − t for
the global time value t as �2 is entered. The scheduler can observe all of these
quantities and thus optimally go to �3 if x will expire first, or to �4 otherwise.
However, Pmax(S

ml
�,e) < 1: e(x) only contains the absolute expiration time of x,

but without knowing t or the expiration time of z in �1, and thus the current
value v(x), this scheduler cannot know with certainty which of the clocks will
expire first and is therefore unable to make an optimal choice in �2.

A Hierarchy of Scheduler Classes for Stochastic Automata 395

Fig. 8. SA M4 Fig. 9. SA M5 Fig. 10. SA M6

Finally, we need to compare the memoryless schedulers that see the clock expi-
ration times with memoryless schedulers that see the expiration order. As noted
in Sect. 3.1, these two views of the current state are incomparable unless we also
see the clock values:

Proposition 8. Sml
�,v,e � Sml

�,v,o.

Proof. Sml
�,v,e �� Sml

�,v,o follows from the same argument as in the proof of Propo-
sition 3. Sml

�,v,e � Sml
�,v,o is because knowing the current clock values v and the

expiration times e is equivalent to knowing the expiration order, since that is
precisely the order of the differences e(c) − v(c) for all clocks c.

Proposition 9. Sml
�,t,e �≈ Sml

�,t,o.

Proof. Sml
�,t,e �� Sml

�,t,o follows from the same argument as in the proof of Propo-
sition 3. For Sml

�,t,e �� Sml
�,t,o, consider the SA M3 of Fig. 7. We know from the

proof of Proposition 6 that Pmax(S
ml
�,t,e) < 1. However, if the scheduler knows

the order in which the clocks will expire, it knows which one has already expired
(the first one in the order), and can thus make the optimal choice in �3 to achieve
Pmax(S

ml
�,t,o) = 1.

Proposition 10. Sml
�,e �≈ Sml

�,o.

Proof. The argument of Proposition 9 applies by observing that, in M3 of
Fig. 7, we also have Pmax(S

ml
�,e) < 1 via the same argument as for Sml

�,t,e in
the proof of Proposition 6.

Among the expiration-order schedulers, the hierarchy is as expected:

Proposition 11. Sml
�,v,o � Sml

�,t,o � Sml
�,o.

396 P. R. D’Argenio et al.

Proof sketch. Consider M5 of Fig. 9. To maximise the probability, in �3 we should
go to �4 whenever x is already expired or close to expiring, for which the amount
of time spent in �2 is an indicator. Sml

�,o only knows that x may have expired
when the expiration order is “x before y”, but definitely has not expired when it
is “y before x”. Schedulers in Sml

�,t,o can do better: They also see the amount of
time spent in �2. Thus Sml

�,t,o � Sml
�,o. If we modify M5 by adding an initial delay

on x from a new �0 to �1 as in M3, then the same argument can be used to prove
Sml

�,v,o � Sml
�,t,o: the extra delay makes knowing the elapsed time t useless with

positive probability, but the exact time spent in l2 is visible to Sml
�,v,o as v(x).

We have thus established the hierarchy of classic schedulers shown in Fig. 3,
noting that some of the relationships follow from the propositions by transitivity.

4.2 The Non-prophetic Hierarchy

Each non-prophetic scheduler class is clearly dominated by the classic and
expiration-order scheduler classes that otherwise have the same information,
for example Shist

�,v,e � Shist
�,v (with very simple distinguishing SA). We show that

the non-prophetic hierarchy follows the shape of the classic case, including the
difference between global-time and pure memoryless schedulers, with the notable
exception of memoryless schedulers being weaker than history-dependent ones.

Proposition 12. Shist
�,v ≈ Shist

�,t ≈ Shist
� .

Proof. This follows from the argument of Proposition 1.

Proposition 13. Shist
�,v � Sml

�,v.

Proof. Consider the SA M6 in Fig. 10. It is similar to M4 of Fig. 8, and our
arguments are thus similar to the proof of Proposition 7. On M6, we have
Pmax(S

hist
�,v) = 1: in �2, the history reveals which of the two incoming edges was

used, i.e. which clock is already expired, thus the scheduler can make the optimal
choice. However, if neither the history nor e is available, we get Pmax(S

ml
�,v) = 1

2 :
the only information that can be used in �2 are the values of the clocks, but
v(x) = v(y), so there is no basis for an informed choice.

Proposition 14. Shist
�,t � Sml

�,t and Sml
�,v � Sml

�,t .

Proof. Consider the SA M3 in Fig. 7. We have Pmax(S
hist
�,t) = Pmax(S

ml
�,v) = 1,

but Pmax(S
ml
�,t) = 1

2 by the same arguments as in the proof of Proposition 6.

Proposition 15. Sml
�,t � Sml

� .

Proof. Consider the SA M4 in Fig. 8. The schedulers in Sml
� have no information

but the current location, so they cannot make an informed choice in �2. This and
the simple loop-free structure of M4 make it possible to analytically calculate
the resulting probability: Pmax(S

ml
�) = 17

24 = 0.7083. If information about the
global elapsed time t in �2 is available, however, the value of x is revealed. This
allows making a better choice, e.g. going to �3 when t ≤ 1

2 and to �4 otherwise,
resulting in Pmax(S

ml
�,t) ≈ 0.771 (statistically estimated with high confidence).

A Hierarchy of Scheduler Classes for Stochastic Automata 397

We have thus established the hierarchy of non-prophetic schedulers shown in
Fig. 4, where some relationships follow from the propositions by transitivity.

5 Experiments

We have built a prototype implementation of lightweight scheduler sampling for
SA by extending the Modest Toolset’s [24] modes simulator, which already
supports deterministic stochastic timed automata (STA [8]). With some care,
SA can be encoded into STA. Using the original algorithm for MDP of [18],
our prototype works by providing to the schedulers a discretised view of the
continuous components of the SA’s semantics, which, we recall, is a continuous-
space MDP. The currently implemented discretisation is simple: for each real-
valued quantity (the value v(c) of clock c, its expiration time e(c), and the global
elapsed time t), it identifies all values that lie within the same interval [i

n , i+1
n),

for integers i, n. We note that better static discretisations are almost certainly
possible, e.g. a region construction for the clock values as in [30].

We have modelled M1 through M6 as STA in Modest. For each sched-
uler class and model in the proof of a proposition, and discretisation factors
n ∈ { 1, 2, 4 }, we sampled 10 000 schedulers and performed statistical model
checking for each of them in the lightweight manner. In Fig. 11 we report the min.
and max. estimates, (p̂min, p̂max)..., over all sampled schedulers. Where different
discretisations lead to different estimates, we report the most extremal values.
The subscript denotes the discretisation factors that achieved the reported esti-
mates. The analysis for each sampled scheduler was performed with a number of
simulation runs sufficient for the overall max./min. estimates to be within ± 0.01
of the true maxima/minima of the sampled set of schedulers with probability
≥0.95 [18]. Note that p̂min is an upper bound on the true minimum probability
and p̂max is a lower bound on the true maximum probability.

Increasing the discretisation factor or increasing the scheduler power gener-
ally increases the number of decisions the schedulers can make. This may also
increase the number of critical decisions a scheduler must make to achieve the
extremal probability. Hence, the sets of discretisation factors associated to spe-
cific experiments may be informally interpreted in the following way:

– {1, 2, 4}: Fine discretisation is not important for optimality and optimal
schedulers are not rare.

– {1, 2}: Fine discretisation is not important for optimality, but increases rarity
of optimal schedulers.

– {2, 4}: Fine discretisation is important for optimality, optimal schedulers are
not rare.

– {1}: Optimal schedulers are very rare.
– {2}: Fine discretisation is important for optimality, but increases rarity of

schedulers.
– {4}: Fine discretisation is important for optimality and optimal schedulers

are not rare.

398 P. R. D’Argenio et al.

Fig. 11. Results from the prototype of lightweight scheduler sampling for SA

The results in Fig. 11 respect and differentiate our hierarchy. In most cases, we
found schedulers whose estimates were within the statistical error of calculated
optima or of high confidence estimates achieved by alternative statistical tech-
niques. The exceptions involve M3 and M4. We note that M4 makes use of an
additional clock, increasing the dimensionality of the problem and potentially
making near-optimal schedulers rarer. The best result for M3 and class Sml

l,t,e

was obtained using discretisation factor n = 2: a compromise between nearness
to optimality and rarity. A greater compromise was necessary for M4 and classes
Sml

l,t,e,S
ml
l,e , where we found near-optimal schedulers to be very rare and achieved

best results using discretisation factor n = 1.
The experiments demonstrate that lightweight scheduler sampling can pro-

duce useful and informative results with SA. The present theoretical results will
allow us to develop better abstractions for SA and thus to construct a refinement
algorithm for efficient lightweight verification of SA that will be applicable to
realistically sized case studies. As is, they already demonstrate the importance
of selecting a proper scheduler class for efficient verification, and that restricted
classes are useful in planning scenarios.

6 Conclusion

We have shown that the various notions of information available to a scheduler
class, such as history, clock order, expiration times or overall elapsed time, almost
all make distinct contributions to the power of the class in SA. Our choice of
notions was based on classic scheduler classes relevant for other stochastic mod-
els, previous literature on the character of nondeterminism in and verification of
SA, and the need to synthesise simple schedulers in planning. Our distinguishing
examples clearly expose how to exploit each notion to improve the probability

A Hierarchy of Scheduler Classes for Stochastic Automata 399

of reaching a goal. For verification of SA, we have demonstrated the feasibility
of lightweight scheduler sampling, where the different notions may be used to
finely control the power of the lightweight schedulers. To solve stochastic timed
planning problems defined via SA, our analysis helps in the case-by-case selec-
tion of an appropriate scheduler class that achieves the desired tradeoff between
optimal probabilities and ease of implementation of the resulting plan.

We expect the arguments of this paper to extend to steady-state/frequency
measures (by adding loops back from absorbing to initial states in our examples),
and that our results for classic schedulers transfer to SA with delayable actions.
We propose to use the results to develop better abstractions for SA, the next
goal being a refinement algorithm for efficient lightweight verification of SA.

References

1. de Alfaro, L.: The verification of probabilistic systems under memoryless partial-
information policies is hard. Technical report, DTIC Document (1999)

2. Alur, R., Courcoubetis, C., Dill, D.: Model-checking for probabilistic real-time
systems. In: Albert, J.L., Monien, B., Artalejo, M.R. (eds.) ICALP 1991. LNCS,
vol. 510, pp. 115–126. Springer, Heidelberg (1991). https://doi.org/10.1007/3-540-
54233-7 128

3. Andel, T.R., Yasinsac, A.: On the credibility of MANET simulations. IEEE Com-
put. 39(7), 48–54 (2006)

4. Avritzer, A., Carnevali, L., Ghasemieh, H., Happe, L., Haverkort, B.R., Koziolek,
A., Menasché, D.S., Remke, A., Sarvestani, S.S., Vicario, E.: Survivability evalu-
ation of gas, water and electricity infrastructures. Electr. Notes Theor. Comput.
Sci. 310, 5–25 (2015)

5. Baier, C., Katoen, J.P.: Principles of Model Checking. MIT Press, Cambridge
(2008)

6. Ballarini, P., Bertrand, N., Horváth, A., Paolieri, M., Vicario, E.: Transient anal-
ysis of networks of stochastic timed automata using stochastic state classes. In:
Joshi, K., Siegle, M., Stoelinga, M., D’Argenio, P.R. (eds.) QEST 2013. LNCS,
vol. 8054, pp. 355–371. Springer, Heidelberg (2013). https://doi.org/10.1007/978-
3-642-40196-1 30

7. Bisgaard, M., Gerhardt, D., Hermanns, H., Krčál, J., Nies, G., Stenger, M.:
Battery-aware scheduling in low orbit: the GomX–3 case. In: Fitzgerald, J., Heit-
meyer, C., Gnesi, S., Philippou, A. (eds.) FM 2016. LNCS, vol. 9995, pp. 559–576.
Springer, Cham (2016). https://doi.org/10.1007/978-3-319-48989-6 34

8. Bohnenkamp, H.C., D’Argenio, P.R., Hermanns, H., Katoen, J.P.: MoDeST: a
compositional modeling formalism for hard and softly timed systems. IEEE Trans.
Softw. Eng. 32(10), 812–830 (2006)

9. Bravetti, M., D’Argenio, P.R.: Tutte le algebre insieme: concepts, discussions and
relations of stochastic process algebras with general distributions. In: Baier, C.,
Haverkort, B.R., Hermanns, H., Katoen, J.-P., Siegle, M. (eds.) Validation of
Stochastic Systems. LNCS, vol. 2925, pp. 44–88. Springer, Heidelberg (2004).
https://doi.org/10.1007/978-3-540-24611-4 2

10. Bravetti, M., Gorrieri, R.: The theory of interactive generalized semi-Markov pro-
cesses. Theor. Comput. Sci. 282(1), 5–32 (2002)

https://doi.org/10.1007/3-540-54233-7_128
https://doi.org/10.1007/3-540-54233-7_128
https://doi.org/10.1007/978-3-642-40196-1_30
https://doi.org/10.1007/978-3-642-40196-1_30
https://doi.org/10.1007/978-3-319-48989-6_34
https://doi.org/10.1007/978-3-540-24611-4_2

400 P. R. D’Argenio et al.

11. Brázdil, T., Krčál, J., Křet́ınský, J., Řehák, V.: Fixed-delay events in generalized
semi-Markov processes revisited. In: Katoen, J.-P., König, B. (eds.) CONCUR
2011. LNCS, vol. 6901, pp. 140–155. Springer, Heidelberg (2011). https://doi.org/
10.1007/978-3-642-23217-6 10

12. Bryans, J., Bowman, H., Derrick, J.: Model checking stochastic automata. ACM
Trans. Comput. Log. 4(4), 452–492 (2003)

13. Buchholz, P., Kriege, J., Scheftelowitsch, D.: Model checking stochastic automata
for dependability and performance measures. In: DSN, pp. 503–514. IEEE Com-
puter Society (2014)

14. Butkova, Y., Hatefi, H., Hermanns, H., Krčál, J.: Optimal continuous time Markov
decisions. In: Finkbeiner, B., Pu, G., Zhang, L. (eds.) ATVA 2015. LNCS, vol. 9364,
pp. 166–182. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24953-
7 12

15. D’Argenio, P.R., Hartmanns, A., Legay, A., Sedwards, S.: Statistical approximation
of optimal schedulers for probabilistic timed automata. In: Ábrahám, E., Huisman,
M. (eds.) IFM 2016. LNCS, vol. 9681, pp. 99–114. Springer, Cham (2016). https://
doi.org/10.1007/978-3-319-33693-0 7

16. D’Argenio, P.R., Katoen, J.P.: A theory of stochastic systems part I: stochastic
automata. Inf. Comput. 203(1), 1–38 (2005)

17. D’Argenio, P.R., Lee, M.D., Monti, R.E.: Input/output stochastic automata. In:
Fränzle, M., Markey, N. (eds.) FORMATS 2016. LNCS, vol. 9884, pp. 53–68.
Springer, Cham (2016). https://doi.org/10.1007/978-3-319-44878-7 4

18. D’Argenio, P.R., Legay, A., Sedwards, S., Traonouez, L.M.: Smart sampling for
lightweight verification of Markov decision processes. STTT 17(4), 469–484 (2015)

19. Eisentraut, C., Hermanns, H., Zhang, L.: On probabilistic automata in continuous
time. In: LICS, pp. 342–351. IEEE Computer Society (2010)

20. Giro, S., D’Argenio, P.R.: Quantitative model checking revisited: neither decidable
nor approximable. In: Raskin, J.-F., Thiagarajan, P.S. (eds.) FORMATS 2007.
LNCS, vol. 4763, pp. 179–194. Springer, Heidelberg (2007). https://doi.org/10.
1007/978-3-540-75454-1 14

21. Haas, P.J., Shedler, G.S.: Regenerative generalized semi-Markov processes. com-
mun. stat. Stochast. Models 3(3), 409–438 (1987)

22. Hahn, E.M., Hartmanns, A., Hermanns, H.: Reachability and reward checking for
stochastic timed automata. In: Electronic Communications of the EASST, AVoCS
2014, vol. 70 (2014)

23. Harrison, P.G., Strulo, B.: SPADES - a process algebra for discrete event simula-
tion. J. Log. Comput. 10(1), 3–42 (2000)

24. Hartmanns, A., Hermanns, H.: The Modest Toolset: an integrated environment
for quantitative modelling and verification. In: Ábrahám, E., Havelund, K. (eds.)
TACAS 2014. LNCS, vol. 8413, pp. 593–598. Springer, Heidelberg (2014). https://
doi.org/10.1007/978-3-642-54862-8 51

25. Hartmanns, A., Hermanns, H., Krčál, J.: Schedulers are no Prophets. In: Probst,
C.W., Hankin, C., Hansen, R.R. (eds.) Semantics, Logics, and Calculi. LNCS,
vol. 9560, pp. 214–235. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-
27810-0 11

26. Hartmanns, A., Sedwards, S., D’Argenio, P.: Efficient simulation-based verification
of probabilistic timed automata. In: WSC. IEEE (2017). https://doi.org/10.1109/
WSC.2017.8247885

27. Hermanns, H.: Interactive Markov Chains: The Quest for Quantified Quality.
LNCS, vol. 2428. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-
45804-2

https://doi.org/10.1007/978-3-642-23217-6_10
https://doi.org/10.1007/978-3-642-23217-6_10
https://doi.org/10.1007/978-3-319-24953-7_12
https://doi.org/10.1007/978-3-319-24953-7_12
https://doi.org/10.1007/978-3-319-33693-0_7
https://doi.org/10.1007/978-3-319-33693-0_7
https://doi.org/10.1007/978-3-319-44878-7_4
https://doi.org/10.1007/978-3-540-75454-1_14
https://doi.org/10.1007/978-3-540-75454-1_14
https://doi.org/10.1007/978-3-642-54862-8_51
https://doi.org/10.1007/978-3-642-54862-8_51
https://doi.org/10.1007/978-3-319-27810-0_11
https://doi.org/10.1007/978-3-319-27810-0_11
https://doi.org/10.1109/WSC.2017.8247885
https://doi.org/10.1109/WSC.2017.8247885
https://doi.org/10.1007/3-540-45804-2
https://doi.org/10.1007/3-540-45804-2

A Hierarchy of Scheduler Classes for Stochastic Automata 401

28. Hermanns, H., Krämer, J., Krčál, J., Stoelinga, M.: The value of attack-defence
diagrams. In: Piessens, F., Viganò, L. (eds.) POST 2016. LNCS, vol. 9635, pp.
163–185. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49635-
0 9

29. Kurkowski, S., Camp, T., Colagrosso, M.: MANET simulation studies: the incred-
ibles. Mob. Comput. Commun. Rev. 9(4), 50–61 (2005)

30. Kwiatkowska, M., Norman, G., Segala, R., Sproston, J.: Verifying quantitative
properties of continuous probabilistic timed automata. In: Palamidessi, C. (ed.)
CONCUR 2000. LNCS, vol. 1877, pp. 123–137. Springer, Heidelberg (2000).
https://doi.org/10.1007/3-540-44618-4 11

31. Legay, A., Sedwards, S., Traonouez, L.M.: Estimating rewards & rare events in
nondeterministic systems. In: Electronic Communications of the EASST, AVoCS
2015, vol. 72 (2015)

32. Legay, A., Sedwards, S., Traonouez, L.-M.: Scalable verification of Markov decision
processes. In: Canal, C., Idani, A. (eds.) SEFM 2014. LNCS, vol. 8938, pp. 350–362.
Springer, Cham (2015). https://doi.org/10.1007/978-3-319-15201-1 23

33. Matthes, K.: Zur Theorie der Bedienungsprozesse. In: 3rd Prague Conference on
Information Theory, Stat. Dec. Fns. and Random Processes, pp. 513–528 (1962)

34. NS-3 Consortium: ns-3: A Discrete-event Network Simulator for Internet Systems.
https://www.nsnam.org/

35. Pongor, G.: OMNeT: objective modular network testbed. In: MASCOTS, pp. 323–
326. The Society for Computer Simulation (1993)

36. Ruijters, E., Stoelinga, M.: Better railway engineering through statistical model
checking. In: Margaria, T., Steffen, B. (eds.) ISoLA 2016. LNCS, vol. 9952, pp.
151–165. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-47166-2 10

37. Song, L., Zhang, L., Godskesen, J.C.: Late weak bisimulation for Markov automata.
CoRR abs/1202.4116 (2012)

38. Strulo, B.: Process algebra for discrete event simulation. Ph.D. thesis, Imperial
College of Science, Technology and Medicine. University of London, October 1993

39. Wolf, V., Baier, C., Majster-Cederbaum, M.E.: Trace semantics for stochastic sys-
tems with nondeterminism. Electr. Notes Theor. Comput. Sci. 164(3), 187–204
(2006)

40. Wolovick, N.: Continuous probability and nondeterminism in labeled transition sys-
tems. Ph.D. thesis, Universidad Nacional de Córdoba, Córdoba, Argentina (2012)

41. Wolovick, N., Johr, S.: A characterization of meaningful schedulers for continuous-
time Markov decision processes. In: Asarin, E., Bouyer, P. (eds.) FORMATS 2006.
LNCS, vol. 4202, pp. 352–367. Springer, Heidelberg (2006). https://doi.org/10.
1007/11867340 25

42. Zeng, X., Bagrodia, R.L., Gerla, M.: Glomosim: a library for parallel simulation
of large-scale wireless networks. In: PADS, pp. 154–161. IEEE Computer Society
(1998)

https://doi.org/10.1007/978-3-662-49635-0_9
https://doi.org/10.1007/978-3-662-49635-0_9
https://doi.org/10.1007/3-540-44618-4_11
https://doi.org/10.1007/978-3-319-15201-1_23
https://www.nsnam.org/
https://doi.org/10.1007/978-3-319-47166-2_10
https://doi.org/10.1007/11867340_25
https://doi.org/10.1007/11867340_25

402 P. R. D’Argenio et al.

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the chapter’s
Creative Commons license, unless indicated otherwise in a credit line to the material. If
material is not included in the chapter’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

	A Hierarchy of Scheduler Classes for Stochastic Automata
	1 Introduction
	2 Preliminaries
	3 Classes of Schedulers
	3.1 Classic Schedulers
	3.2 Non-prophetic Schedulers

	4 The Power of Schedulers
	4.1 The Classic Hierarchy
	4.2 The Non-prophetic Hierarchy

	5 Experiments
	6 Conclusion
	References

