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Abstract. In a previous work, we introduced an input/output variant of
stochastic automata (IOSA) that, once the model is closed (i.e., all syn-
chronizations are resolved), the resulting automaton is fully stochastic,
that is, it does not contain non-deterministic choices. However, such vari-
ant is not sufficiently versatile for compositional modelling. In this article,
we extend IOSA with urgent actions. This extension greatly increases the
modularization of the models, allowing to take better advantage on com-
positionality than its predecessor. However, this extension introduces
non-determinism even in closed models. We first show that confluent
models are weakly deterministic in the sense that, regardless the reso-
lution of the non-determinism, the stochastic behaviour is the same. In
addition, we provide sufficient conditions to ensure that a network of
interacting IOSAs is confluent without the need to analyse the larger
composed IOSA.

1 Introduction

The advantages of compositional modelling complex systems can hardly be
overestimated. On the one hand, compositional modelling facilitates systematic
design, allowing the designer to focus on the construction of small models for the
components whose operational behavior is mostly well understood, and on the
synchronization between the components, which are in general quite evident. On
the other hand, it facilitates the interchange of components in a model, enables
compositional analysis, and helps on attacking the state explosion problem.

In particular we focus on modelling of stochastic system for dependability
and performance analysis, and aim to general models that require more than the
usual negative exponential distribution. Indeed, phenomena such as timeouts in
communication protocols, hard deadlines in real-time systems, human response
times or the variability of the delay of sound and video frames (so-called jitter)
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in modern multi-media communication systems are typically described by non-
memoryless distributions such as uniform, log-normal, or Weibull distributions.

The analysis of this type of model quite often can only be performed through
discrete event simulation [22]. However, simulation requires that the model under
study is fully stochastic, that is, they should not contain non-deterministic
choices. Unfortunately, compositional modelling languages such as stochastic
process algebras with general distributions (see [5] and references therein) and
Modest [4,18,19], were designed so that the non-determinism arises naturally as
the result of composition.

Based on stochastic automata [10–12] and probabilistic I/O automata [26], we
introduced input/output stochastic automata (IOSA) [13]. IOSAs were designed
so that parallel composition works naturally and, moreover, the system becomes
fully stochastic –not containing non-determinism– when closed, i.e., when all
interactions are resolved and no input is left available in the model. IOSA splits
the set of actions into inputs and outputs and let them behave in a reactive and
generative manner respectively [17]. Thus, inputs are passive and their occur-
rence depends only on their interaction with outputs. Instead, occurrence of
outputs are governed by the expiration of a timer which is set according to a
given random variable. In addition, and not to block the occurrence of outputs,
IOSAs are required to be input enabled.

Fig. 1. A simple digital system.

We have used IOSA as input language of the
rare event simulation tool FIG [6,7] and have
experienced the limitations of the language, in
particular when transcribing models originally
given in terms of variants of dynamic fault trees
(DFT) with repairs [24]. To illustrate the prob-
lem, suppose the simple digital system of Fig. 1.
We would like to measure the average time that the output O is 1 given that
we know the distributions of the times in which the values on inputs A, B, and
C change from 0 to 1 and vice-versa. The natural modelling of such system is
to define 5 IOSA modules, three of them modelling the behaviour of the input
signals and the other two modelling the OR and AND gates. Then we compose
and synchronize the 5 modules properly. The main problem is that, while the
dynamic behaviour of the input signal modules are governed by stochastically
timed actions, the dynamic behavior of the gates are instantaneous and thus,
for instance the output D of the OR gate, may change immediately after the
arrival of signals A or B. Similar situations arise when modeling the behaviour
of DFT under complex gates like priority AND, Spares or Repair boxes. As a
consequence, we observe that the introduction of urgent actions will allow for
a direct and simple compositional modelling of situations like the one recently
described. Also, it is worth to notice that the need for instantaneous but causally
dependent synchronization have been observed in many other timed modelling
languages, notably, in Uppaal, with the introduction of committed locations,
urgent locations and urgent synchronization [2,3].
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Based on IMC [20] and, particularly, on I/O-IMC [9], in this article we
extended IOSA with urgent actions (Sect. 2). Urgent actions are also partitioned
in input and output actions and, though inputs behave reactively and passively
as before, urgent outputs are executed instantaneously as soon as the enabling
state is reached. We also give semantics to IOSA with urgent actions (from now
on, we simply call it IOSA) in terms of NLMP [14,25] (Sect. 3), and define its
parallel composition (Sect. 4).

The problem is that urgent actions on IOSA introduce non-determinism. For-
tunately, non-determinism is limited to urgent actions and, in many occasions,
it is introduced by confluent urgent output actions as a result of a parallel com-
position. Such non-determinism turns to be spurious in the sense that it does
not change the stochastic behaviour of the model. In this paper, we characterize
confluence on IOSAs (Sect. 5), define the concept of weak determinism, and show
that a confluent closed IOSA is weakly deterministic (Sect. 6). Notably, a weakly
deterministic IOSA is amenable to discrete event simulation. Milner [23] has pro-
vided a proof that confluence preserves weak determinism but it is confined to a
discrete non-probabilistic setting. A similar proof has been used by Crouzen [9]
on I/O-IMC but, though the model is stochastic, the proof is limited to discrete
non-probabilistic transitions. Contrarily, our proof has to deal with continuous
probabilities (since urgent action may sample on continuous random variables),
hence making use of the solid measure theoretical approach. In particular, we
address the complications of defining a particular form of weak transition on a
setting that is normally elusive.

Based on the work of Crouzen [9] for I/O-IMC, in Sect. 7, we provide suf-
ficient conditions to ensure that a closed IOSA is confluent and hence, weakly
deterministic. If the IOSA is the result of composing several smaller IOSAs, the
verification of the conditions is performed by inspecting the components rather
than the resulting composed IOSA.

2 Input/Output Stochastic Automata with Urgency

Stochastic automata [10,11] use continuous random variables (called clocks) to
observe the passage of time and control the occurrence of events. These variables
are set to a value according to their associated probability distribution, and, as
time evolves, they count down at the same rate. When a clock reaches zero,
it may trigger some action. This allows the modelling of systems where events
occur at random continuous time steps.

Following ideas from [26], IOSAs restrict Stochastic Automata by splitting
actions into input and output actions which will act in a reactive and generative
way respectively [17]. This splitting reflects the fact that input actions are con-
sidered to be controlled externally, while output actions are locally controlled.

Therefore, we consider the system to be input enabled. Moreover, output
actions could be stochastically controlled or instantaneous. In the first case,
output actions are controlled by the expiration of a single clock while in the
second case the output actions take place as soon as the enabling state is reached.
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We called these instantaneous actions urgent. A set of restrictions over IOSA will
ensure that, almost surely, no two non-urgent outputs are enabled at the same
time.

Definition 1. An input/output stochastic automaton with urgency (IOSA) is
a structure (S,A, C,−→, C0, s0), where S is a (denumerable) set of states, A is a
(denumerable) set of labels partitioned into disjoint sets of input labels Ai and
output labels Ao, from which a subset Au ⊆ A is marked as urgent. We consider
the distinguished silent urgent action τ ∈ Au ∩ Ao which is not amenable to syn-
chronization. C is a (finite) set of clocks such that each x ∈ C has an associated
continuous probability measure μx on R s.t. μx(R>0) = 1, −→ ⊆ S ×C×A×C×S
is a transition function, C0 is the set of clocks that are initialized in the initial
state, and s0 ∈ S is the initial state.

In addition, an IOSA with urgency should satisfy the following constraints:

(a) If s
C,a,C′
−−−−→ s′ and a ∈ Ai ∪ Au, then C = ∅.

(b) If s
C,a,C′
−−−−→ s′ and a ∈ Ao \ Au, then C is a singleton set.

(c) If s
{x},a1,C1−−−−−−→ s1 and s

{x},a2,C2−−−−−−→ s2 then a1 = a2, C1 = C2 and s1 = s2.

(d) For every a ∈ Ai and state s, there exists a transition s
∅,a,C−−−−→ s′.

(e) For every a ∈ Ai, if s
∅,a,C′

1−−−−→ s1 and s
∅,a,C′

2−−−−→ s2, C ′
1 = C ′

2 and s1 = s2.
(f) There exists a function active : S → 2C such that: (i) active(s0) ⊆ C0, (ii)

enabling(s) ⊆ active(s), (iii) if s is stable, active(s) = enabling(s), and (iv)

if t
C,a,C′
−−−−→ s then active(s) ⊆ (active(t) \ C) ∪ C ′.

where enabling(s) = {y | s
{y}, ,−−−−→ }, and s is stable, denoted st(s), if there is

no a ∈ Au ∩ Ao such that s
∅,a,−−−→ . ( indicates the existential quantification of

a parameter.)

The occurrence of an output transition is controlled by the expiration of

clocks. If a ∈ Ao, s
C,a,C′
−−−−→ s′ indicates that there is a transition from state s

to state s′ that can be taken only when all clocks in C have expired and, when
taken, it triggers action a and sets all clocks in C ′ to a value sampled from
their associated probability distribution. Notice that if C = ∅ (which means

a ∈ Ao∩Au) s
C,a,C′
−−−−→ s′ is immediately triggered. Instead, if a ∈ Ai, s

∅,a,C′
−−−−→ s′

is only intended to take place if an external output synchronizes with it, which
means, in terms of an open system semantics, that it may take place at any
possible time.

Restrictions (a) to (e) ensure that any closed IOSA without urgent actions
is deterministic [13]. An IOSA is closed if all its synchronizations have been
resolved, that is, the IOSA resulting from a composition does not have input
actions (Ai = ∅). Restriction (a) is two-folded: on the one hand, it specifies
that output actions must occur as soon as the enabling state is reached, on the
other hand, since input actions are reactive and their time occurrence can only
depend on the interaction with an output, no clock can control their enabling.
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Restriction (b) specifies that the occurrence of a non-urgent output is locally con-
trolled by a single clock. Restriction (c) ensures that two different non-urgent
output actions leaving the same state are always controlled by different clocks
(otherwise it would introduce non-determinism). Restriction (d) ensures input
enabling. Restriction (e) determines that IOSAs are input deterministic. There-
fore, the same input action in the same state can not jump to different states,
nor set different clocks. Finally, (f) guarantees that clocks enabling some output
transition have not expired before, that is, they have not been used before by
another output transition (without being reset in between) nor inadvertently
reached zero. This is done by ensuring the existence of a function “active” that,
at each state, collects clocks that are required to be active (i.e. that have been
set but not yet expired). Notice that enabling clocks are required to be active
(conditions (f)(ii) and (f)(iii)). Also note that every clock that is active in a
state is allowed to remain active in a successor state as long as it has not been
used, and clocks that have just been set may become active in the successor
state (condition (f)(iv)).

Note that since clocks are set by sampling from a continuous random variable,
the probability that the values of two different clocks are equal is 0. This fact
along with restriction (c) and (f) guarantee that almost never two different non-
urgent output transitions are enabled at the same time.

Example 1. Figure 2 depicts three simple examples
of IOSAs. Although IOSAs are input enabled, we
have omitted self loops of input enabling transitions
for the sake of readability. In the figure, we represent
output actions suffixed by ‘!’ and by ‘!!’ when they
are urgent, and input actions suffixed by ‘?’ and by
‘??’ when they are urgent.

3 Semantics of IOSA

s0 s1 s2

I1
{x}, a!, ∅ ∅, c!!, ∅

s3 s4 s5

I2
{y}, b!, ∅ ∅, d!!, ∅

s6

s7

s8

s9

I3

∅
, c??

,∅

∅, d??,∅

∅, d??, {z}

{z},
e!,∅

Fig. 2. Examples of IOSAs.

The semantics of IOSA is defined in terms
of non-deterministic labeled Markov processes
(NLMP) [14,25] which extends LMP [15] with inter-
nal non-determinism.

The foundations of NLMP is strongly rooted in measure theory, hence we
recall first some basic definitions. Given a set S and a collection Σ of subsets
of S, we call Σ a σ-algebra iff S ∈ Σ and Σ is closed under complement and
denumerable union. We call the pair (S,Σ) a measurable space. Let B(S) denote
the Borel σ-algebra on the topology S. A function μ : Σ → [0, 1] is a probability
measure if (i) μ(

⋃
i∈N

Qi) =
∑

i∈N
μ(Qi) for all countable family of pairwise

disjoint measurable sets {Qi}i∈N ⊆ Σ, and (ii) μ(S) = 1. In particular, for
s ∈ S, δs denotes the Dirac measure so that δs({s}) = 1. Let Δ(S) denote the
set of all probability measures over (S,Σ). Let (S1, Σ1) and (S2, Σ2) be two
measurable spaces. A function f : S1 → S2 is said to be measurable if for all
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Q2 ∈ Σ2, f−1(Q2) ∈ Σ1. There is a standard construction to endow Δ(S) with
a σ-algebra [16] as follows: Δ(Σ) is defined as the smallest σ-algebra containing
the sets Δq(Q) .= {μ | μ(Q) ≥ q}, with Q ∈ Σ and q ∈ [0, 1]. Finally, we
define the hit σ-algebra H(Δ(Σ)) as the minimal σ-algebra containing all sets
Hξ = {ζ ∈ Δ(Σ) | ζ ∩ ξ �= ∅} with ξ ∈ Δ(Σ).

A non-deterministic labeled Markov process (NLMP for short) is a structure
(S, Σ, {Ta | a ∈ L}) where Σ is a σ-algebra on the set of states S, and for each
label a ∈ L we have that Ta : S → Δ(Σ) is measurable from Σ to H(Δ(Σ)).

The formal semantics of an IOSA is defined by a NLMP with two classes of
transitions: one that encodes the discrete steps and contains all the probabilistic
information introduced by the sampling of clocks, and another describing the
time steps, that only records the passage of time synchronously decreasing the
value of all clocks. For simplicity, we assume that the set of clocks has a total
order and their current values follow the same order in a vector.

Definition 2. Given an IOSA I = (S,A, C,−→, C0, s0) with C = {x1, . . . , xN},
its semantics is defined by the NLMP P(I) = (S,B(S), {Ta | a ∈ L}) where

– S = (S ∪ {init}) × R
N , L = A ∪ R>0 ∪ {init}, with init /∈ S ∪ A ∪ R>0

– Tinit(init, 	v) = {δs0 ×
∏N

i=1 μxi
},

– Ta(s,	v) = {μ�v
C′,s′ | s

C,a,C′
−−−−→ s′,

∧
xi∈C 	v(i) ≤ 0}, for all a ∈ A, where μ�v

C′,s′ =
δs′ ×

∏N
i=1 μxi

with μxi
= μxi

if xi ∈ C ′ and μxi
= δ�v(i) otherwise, and

– Td(s,	v) = {δs ×
∏N

i=1 δ�v(i)−d} if there is no urgent b ∈ Ao ∩ Au for which

s
,b,−−→ and 0 < d ≤ min{	v(i) | ∃a∈Ao, C ′⊆C, s′∈S : s

{xi},a,C′
−−−−−−→ s′}, and

Td(s,	v) = ∅ otherwise, for all d ∈ R≥0.

The state space is the product space of the states of the IOSA with all
possible clock valuations. A distinguished initial state init is added to encode the
random initialization of all clocks (it would be sufficient to initialize clocks in
C0 but we decided for this simplification). Such encoding is done by transition
Tinit. The state space is structured with the usual Borel σ-algebra. The discrete
step is encoded by Ta , with a ∈ A. Notice that, at state (s,	v), the transition

s
C,a,C′
−−−−→ s′ will only take place if

∧
xi∈C 	v(i) ≤ 0, that is, if the current values

of all clocks in C are not positive. For the particular case of the input or urgent
actions this will always be true. The next actual state would be determined
randomly as follows: the symbolic state will be s′ (this corresponds to δs′ in
μ�v

C′,s′ = δs′ ×
∏N

i=1 μxi
), any clock not in C ′ preserves the current value (hence

μxi
= δ�v(i) if xi /∈ C ′), and any clock in C ′ is set randomly according to its

respective associated distribution (hence μxi
= μxi

if xi ∈ C ′). The time step
is encoded by Td(s,	v) with d ∈ R≥0. It can only take place at d units of time
if there is no output transition enabled at the current state within the next d
time units (this is verified by condition 0 < d ≤ min{	v(i) | ∃a∈Ao, C ′⊆C, s′∈S :

s
{xi},a,C′
−−−−−−→ s′}). In this case, the system remains in the same symbolic state

(this corresponds to δs in δ−d
(s,�v) = δs ×

∏N
i=1 δ�v(i)−d), and all clock values are
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Table 1. Parallel composition on IOSA

s1
C,a,C′
−−−−→1 s′

1

s1||s2 C,a,C′−−−−→ s′
1||s2

a∈(A1\A2)∪{τ} (R1)
s2

C,a,C′
−−−−→2 s′

2

s1||s2 C,a,C′−−−−→ s1||s′
2

a∈(A2\A1)∪{τ} (R2)

s1
C1,a,C

′
1−−−−−→1 s′

1 s2
C2,a,C

′
2−−−−−→2 s′

2

s1||s2 C1∪C2,a,C
′
1∪C′

2−−−−−−−−−−−→ s′
1||s′

2

a∈(A1∩A2)\{τ} (R3)

decreased by d units of time (represented by δ�v(i)−d in the same formula). Note
the difference from the timed transitions semantics of pure IOSA [13]. This is due
to the maximal progress assumption, which forces to take urgent transition as
soon as they get enabled. We encode this by not allowing to make time transitions
in presence of urgent actions, i.e. we check that there is no urgent b ∈ Ao ∩ Au

for which s
,b,−−→ . (Notice that b may be τ .) Otherwise, Td(s,	v) = ∅. Instead,

notice the patient nature of a state (s,	v) that has no output enabled. That is,
Td(s,	v) = {δs ×

∏N
i=1 δ�v(i)−d} for all d > 0 whenever there is no output action

b ∈ Ao such that s
,b,−−→ .

In a similar way to [13], it is possible to show that P(I) is indeed a NLMP,
i.e. that Ta maps into measurable sets in Δ(B(S)), and that Ta is a measurable
function for every a ∈ L.

4 Parallel Composition

In this section, we define parallel composition of IOSAs. Since outputs are
intended to be autonomous (or locally controlled), we do not allow synchro-
nization between them. Besides, we need to avoid name clashes on the clocks,
so that the intended behavior of each component is preserved and moreover, to
ensure that the resulting composed automaton is indeed an IOSA. Furthermore,
synchronizing IOSAs should agree on urgent actions in order to ensure their
immediate occurrence. Thus we require to compose only compatible IOSAs.

Definition 3. Two IOSAs I1 and I2 are compatible if they do not share syn-
chronizable output actions nor clocks, i.e. Ao

1 ∩ Ao
2 ⊆ {τ} and C1 ∩ C2 = ∅ and,

moreover, they agree on urgent actions, i.e. A1 ∩ Au
2 = A2 ∩ Au

1.

Definition 4. Given two compatible IOSAs I1 and I2, the parallel composition
I1||I2 is a new IOSA (S1 × S2,A, C,−→, C0, s

1
0||s20) where (i) Ao = Ao

1 ∪ Ao
2 (ii)

Ai = (Ai
1 ∪ Ai

2) \ Ao (iii) Au = Au
1 ∪ Au

2 (iv) C = C1 ∪ C2 (v) C0 = C1
0 ∪ C2

0 and
−→ is defined by rules in Table 1 where we write s||t instead of (s, t).

Definition 4 does not ensure a priori that the resulting structure satisfies
conditions (a)–(f) in Definition 1. This is only guaranteed by the following
proposition.
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s0||s3||s6 s1||s3||s6 s2||s3||s7

s0||s4||s6 s1||s4||s6 s2||s4||s7

s0||s5||s9 s1||s5||s9 s2||s5||s9 s2||s5||s8

{x}, a!, ∅

{y}, b!, ∅

∅, c!!, ∅

{y}, b!, ∅
{y}, b!, ∅

{x}, a!, ∅

∅, d!!, ∅

∅, c!!, ∅

∅, d!!, ∅ ∅, d!!, ∅
{x}, a!, ∅ ∅, c!!, ∅ {x}, e!, ∅

Fig. 3. IOSA resulting from the composition I1||I2||I3 of IOSAs in Fig. 2.

Proposition 1. Let I1 and I2 be two compatible IOSAs. Then I1||I2 is indeed
an IOSA.

Example 2. The result of composing I1||I2||I3 from Example 1 is depicted in
Fig. 3.

Larsen and Skou’s probabilistic bisimulation [21] has been extended to
NLMPs in [14]. It can be shown that the bisimulation equivalence is a con-
gruence for parallel composition of IOSA. In fact, this has already been shown
for IOSA without urgency in [13] and since the characteristics of urgency do
not play any role in the proof over there, the result immediately extends to our
setting. So we report the theorem and invite the reader to read the proof in [13].

Theorem 1. Let ∼ denote the bisimulation equivalence relation on NLMPs [14]
properly lifted to IOSA [13], and let I1, I ′

1, I2, I ′
2 be IOSAs such that I1 ∼ I ′

1

I2 ∼ I ′
2. Then, I1||I2 ∼ I ′

1||I ′
2.

5 Confluence

∀

∃

s s1

s2 s3

∅, a, C1

∅
, b

,C
2

∅
,b

, C
2

∅, a, C1

Fig. 4. Confluence in
IOSA.

Confluence, as studied by Milner [23], is related to a
form of weak determinism: two silent transitions tak-
ing place on an interleaving manner do not alter the
behaviour of the process regardless of which happens
first. In particular, we will eventually assume that
urgent actions in a closed IOSA are silent as they
do not delay the execution. Thus we focus on conflu-
ence of urgent actions only. The notion of confluence is
depicted in Fig. 4 and formally defined as follows.

Definition 5. An IOSA I is confluent with respect to actions a, b ∈ Au if, for
every state s ∈ S and transitions s

∅,a,C1−−−−→ s1 and s
∅,b,C2−−−−→ s2, there exists a

state s3 ∈ S such that s1
∅,b,C2−−−−→ s3 and s2

∅,a,C1−−−−→ s3. I is confluent if it is
confluent with respect to every pair of urgent actions.
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Note that we are asking that the two actions converge in a single state, which
is stronger than Milner’s strong confluence, where convergence takes place on
bisimilar but potentially different states.

Confluence is preserved by parallel composition:

Proposition 2. If both I1 and I2 are confluent w.r.t. actions a, b ∈ Au, then
so is I1||I2. Therefore, if I1 and I2 are confluent, I1||I2 is also confluent.

However, parallel composition may turn non-confluent components into a
confluent composed system.

By looking at the IOSA in Fig. 5, one can notice that the non-determinism
introduced by confluent urgent output actions is spurious in the sense that it
does not change the stochastic behaviour of the model after the output urgent
actions have been abstracted. Indeed, since time does not progress, it is the same
to sample first clock x and then clock y passing through state s1, or first y and
then x passing through s2, or even sampling both clocks simultaneously through

a transition s1
∅,τ,{x,y}−−−−−−→ s3. In any of the cases, the stochastic resolution of the

execution of a or b in the stable state s3 is the same. This could be generalized
to any number of confluent transitions.

s0

s1 s2

s3

s4 s5

∅, τ, {x} ∅, τ, {y}

∅, τ, {y} ∅, τ, {x}

{x}, a!, ∅ {y}, b!, ∅

Fig. 5. Confluence is
weakly deterministic

Thus, it will be convenient to use term rewrit-
ing techniques to collect all clocks that are active in
the convergent stable state and have been activated
through a path of urgent actions. Therefore, we recall
some basic notions of rewriting systems. An abstract
reduction system [1] is a pair (E,�), where the reduc-
tion � is a binary relation over the set E, i.e. � ⊆
E × E. We write a � b for (a, b) ∈ �. We also write
a

∗� b to denote that there is a path a0 � a1 . . . � an

with n ≥ 0, a0 = a and an = b. An element a ∈ E is
in normal form if there is no b such that a � b. We
say that b is a normal form of a if a

∗� b and b is in
normal form. A reduction system (E,�) is confluent if
for all a, b, c ∈ E a

∗� c
∗� b implies a

∗� d
∗� b for some d ∈ E. This notion of

confluence is implied by the following statement: for all a, b, c ∈ E, a � c � b
implies that either a � d � b for some d ∈ E, or a = b. A reduction system is
normalizing if every element has a normal form, and it is terminating if there
is no infinite chain a0 � a1 � · · · . A terminating reduction system is also nor-
malizing. In a confluent reduction system every element has at most one normal
form. If in addition it is also normalizing, then the normal form is unique.

We now define the abstract reduction system introduced by the urgent tran-
sitions of an IOSA.

Definition 6. Given an IOSA I = (S,A, C,−→I , C0, s0), define the abstract
reduction system UI as (S × P(C) × N0,�) where (s, C, n) � (s′, C ∪ C ′, n + 1)

if and only if there exists a ∈ Au such that s
∅,a,C′
−−−−→ s′.
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An IOSA is non-Zeno if there is no loop of urgent actions. The following
result can be straightforwardly proven.

Proposition 3. Let the IOSA I be closed and confluent. Then UI is confluent,
and hence every element has at most one normal form. Moreover, an element
(s, C, n) is in normal form iff s is stable in I. If in addition I is non-Zeno, UI
is also terminating and hence every element has a unique normal form.

6 Weak Determinism

As already shown in Fig. 5, the non-determinism introduced by confluence is
spurious. In this section, we show that closed confluent IOSAs behave determin-
istically in the sense that the stochastic behaviour of the model is the same,
regardless the way in which non-determinism is resolved. Thus, we say that a
closed IOSA is weakly deterministic if (i) almost surely at most one discrete non-
urgent transition is enabled at every time point, (ii) the election over enabled
urgent transitions does not affect the non urgent-behavior of the model, and (iii)
no non-urgent output and urgent output are enabled simultaneously. To avoid
referring explicitly to time in (i), we say instead that a closed IOSA is weakly
deterministic if it almost never reaches a state in which two different non-urgent
discrete transitions are enabled. Moreover, to ensure (ii), we define the following
weak transition.

For this definition and the rest of the section we will assume that the IOSA
is closed and all its urgent actions have been abstracted, that is, all actions in
Au have been renamed to τ .

Definition 7. For a non stable state s, and v ∈ R
N , we define (s,	v) C=⇒n μ

inductively by the following rules:

(T1)

s
∅,τ,C−−−−→ s′

st(s′)

(s,	v) C=⇒1 μ�v
C,s′

(T2)

s
∅,τ,C′
−−−−→ s′

∀	v′ ∈ R
N : ∃C ′′, μ′ : (s′, 	v′) C′′

==⇒n μ′

(s,	v) C′∪C′′
=====⇒n+1 μ̂

where μ�v
C,s is defined as in Definition 2 and μ̂ =

∫
S×RN fC′′

n dμ�v
C′,s′ , with

fC′′
n (t, 	w) = ν, if (t, 	w) C′′

==⇒n ν, and fC′′
n (t, 	w) = 0 otherwise. We define the

weak transition (s,	v) =⇒ μ if (s,	v) C=⇒n μ for some n ≥ 1 and C ⊆ C.

As given above, there is no guarantee that C=⇒n is well defined. In particu-
lar, there is no guarantee that fC′′

n is a well defined measurable function. We
postpone this to Lemma 1 below.

With this definition, we can introduce the concept of weak determinism:

Definition 8. A closed IOSA I is weakly deterministic if =⇒ is well defined in
I and, in P (I), any state (s, v) ∈ S that satisfies one of the following con-
ditions is almost never reached from any (init, v0) ∈ S: (a) s is stable and
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∪a∈A∪{init}Ta(s, v) contains at least two different probability measures, (b) s
is not stable, (s, v) =⇒ μ, (s, v) =⇒ μ′ and μ �= μ′, or (c) s is not stable and
(s, v) a−→ μ for some a ∈ Ao \ Au.

By “almost never” we mean that the measure of the set of all paths leading
to any measurable set in B(S) containing only states satisfying (a), (b), or (c) is
zero. Thus, Definition 8 states that, in a weakly deterministic IOSA, a situation
in which a non urgent output action is enabled with another output action,
being it urgent (case (c)) or non urgent (case (a)), or in which sequences of
urgent transitions lead to different stable situations (case (b)), is almost never
reached.

For the previous definition to make sense we need that P(I) satisfies time
additivity, time determinism, and maximal progress [27]. This is stated in the
following theorem whose proof follows as in [13, Theorem 16].

Theorem 2. Let I be an IOSA I. Its semantics P(I) satisfies, for all (s,	v) ∈ S,
a ∈ Ao and d, d′ ∈ R>0, (i) Ta(s,	v) �= ∅ ⇒ Td(s,	v) = ∅ (maximal progress),
(ii) μ, μ′ ∈ Td(s,	v) ⇒ μ = μ′ (time determinism), and (iii) δ−d

(s,�v)∈Td(s,	v) ∧
δ−d′
(s,�v−d)∈Td′(s,	v − d) ⇐⇒ δ

−(d+d′)
(s,�v) ∈Td+d′(s,	v) (time additivity).

The next lemma states that, under the hypothesis that the IOSA is closed
and confluent, C=⇒n is well defined. Simultaneously, we prove that C=⇒n is deter-
ministic.

Lemma 1. Let I be a closed and confluent IOSA. Then, for all n ≥ 1, the
following holds:

1. If (s,	v) C=⇒n μ then there is a stable state s′ such that (i) μ = μ�v
C,s′ ,

(ii) (s, C ′,m)
∗� (s′, C ′∪C,m+n) for all C ′ ⊆ C and m ≥ 0, and (iii) if

(s,	v′) C′
==⇒n μ′ then C ′ = C and moreover, if 	v′ = 	v, also μ′ = μ; and

2. fC
n is a measurable function.

The proof of the preceding lemma uses induction on n to prove item 1 and
2 simultaneously. It makes use of the previous results on rewriting systems in
conjunction with measure theoretical tools such as Fubini’s theorem to deal with
Lebesgue integrals on product spaces. All these tools make the proof that con-
fluence preserves weak determinism radically different from those of Milner [23]
and Crouzen [9].

The following corollary follows by items 1.(ii) and 1.(iii) of Lemma 1.

Corollary 1. Let I be a closed and confluent IOSA. Then, for all (s,	v), if
(s,	v) =⇒ μ1 and (s,	v) =⇒ μ2, μ1 = μ2.

This corollary already shows that closed and confluent IOSAs satisfy part
(b) of Definition 8. In general, we can state:

Theorem 3. Every closed confluent IOSA is weakly deterministic.
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The rest of the section is devoted to discuss the proof of this theorem. From
now on, we work with the closed confluent IOSA I = (S, C,A,−→, s0, C0), with
|C| = N , and its semantics P(I) = (S,B(S), {Ta | a ∈ L}).

The idea of the proof of Theorem3 is to show that the property that all active
clocks have non-negative values and they are different from each other is almost
surely an invariant of I, and that at most one non-urgent transition is enabled
in every state satisfying such invariant. Furthermore, we want to show that, for
unstable states, active clocks have strictly positive values, which implies that
non-urgent transitions are never enabled in these states. Formally, the invariant
is the set

Inv = {(s,	v) | st(s) and ∀xi, xj ∈ active(s) : i �= j ⇒ 	v(i) �= 	v(j) ∧ 	v(i) ≥ 0}
∪ {(s,	v) | ¬st(s) and ∀xi, xj ∈ active(s) : i �= j ⇒ 	v(i) �= 	v(j)	v(i) > 0}
∪ ({init} × R

N ) (1)

with active as in Definition 1. Note that its complement is:

Invc = {(s,	v) | ∃xi, xj ∈ active(s) : i �= j ∧ 	v(i) = 	v(j)}
∪ {(s,	v) | st(s) and ∃xi ∈ active(s) : 	v(i) < 0}
∪ {(s,	v) | ¬st(s) and ∃xi ∈ active(s) : 	v(i) ≤ 0} (2)

It is not difficult to show that Invc is measurable and, in consequence, so is
Inv. The following lemma states that Invc is almost never reached in one step
from a state satisfying the invariant.

Lemma 2. If (s,	v) ∈ Inv, a ∈ L, and μ ∈ Ta(s,	v), then μ(Invc) = 0.

From this lemma we have the following corollary.

Corollary 2. The set Invc is almost never reachable in P(I).

The proof of the corollary requires the definitions related to schedulers and
measures on paths in NLMPs (see [25, Chap. 7] for a formal definition of sched-
uler and probability measures on paths in NLMPs.) We omit the proof of the
corollary since it eventually boils down to an inductive application of Lemma2.

The next lemma states that any stable state in the invariant Inv has at most
one discrete transition enabled. Its proof is the same as that of [13, Lemma 20].

Lemma 3. For all (s,	v) ∈ Inv with s stable or s = init, the set
⋃

a∈A∪{init}
Ta(s,	v) is either a singleton set or the empty set.

The next lemma states that any unstable state in the invariant Inv can only
produce urgent actions.

Lemma 4. For every state (s,	v) ∈ Inv, if ¬st(s) and (s,	v) a−→ μ, then a ∈ Au.
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Proof. First recall that I is closed; hence Ai = ∅. If (s,	v) ∈ Inv and ¬st(s)
then 	vi > 0 for all xi ∈ enabling(s) ⊆ active(s). Therefore, by Definition 2,
Ta(s,	v) = ∅ if a ∈ Ao \ Au. Furthermore, for any d ∈ R>0, Td(s,	v) = ∅ since s

is not stable and hence s
,b,−−→ for some b ∈ Ao ∩ Au. �

Finally, Theorem 3 is a consequence of Lemma 3, Lemma 4, Corollary 2, and
Corollary 1.

7 Sufficient Conditions for Weak Determinism

Figure 3 shows an example in which the composed IOSA is weakly determinis-
tic despite that some of its components are not confluent. The potential non-
determinism introduced in state s1||s4||s6 is never reached since urgent actions
at states s0||s4||s6 and s1||s3||s6 prevent the execution of non urgent actions
leading to such state. We say that state s1||s4||s6 is not potentially reachable.
The concept of potentially reachable can be defined as follows.

Definition 9. Given an IOSA I, a state s is potentially reachable if there is
a path s0

,a0,−−−→ s1 . . . , sn−1
,an−1,−−−−−→ sn = s from the initial state, with n ≥ 0,

such that for all 0 ≤ i < n, if si
,b,−−→ for some b ∈ Au ∩ Ao then ai ∈ Au. In

such case we call the path plausible.

Notice that none of the paths leading to s1||s4||s6 in Fig. 3 are plausible.
Also, notice that an IOSA is bisimilar to the same IOSA when its set of states
is restricted to only potentially reachable states.

Proposition 4. Let I be a closed IOSA with set of states S and let I
be the same IOSA as I restricted to the set of states S = {s ∈ S |
is potentially reachable in I}. Then I ∼ I.

Although we have not formally introduced bisimulation, it should be clear
that both semantics are bisimilar through the identity relation since a transition

s
{x},a,C−−−−−→ s′ with s unstable does not introduce any concrete transition. (Recall

the IOSA is closed so there is no input action on I.)
For a state in a composed IOSA to be potentially reachable, necessarily

each of the component states has to be potentially reachable in its respective
component IOSA.

Lemma 5. If a state s1|| · · · ||sn is potentially reachable in I1|| · · · ||In then si

is potentially reachable in Ii for all i = 1, . . . , N .

By Theorem 3, it suffices to check whether a closed IOSA is confluent to
ensure that it is weakly deterministic. In this section, and following ideas intro-
duced in [9], we build on a theory that allows us to ensure that a closed composed
IOSA is confluent in a compositional manner, even when its components may
not be confluent. Theorem 5 provides the sufficient conditions to guarantee that
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the composed IOSA is confluent. Because of Proposition 2, it suffices to check
whether two urgent actions that are not confluent in a single component are
potentially reached. Since potential reachability depends on the composition,
the idea is to overapproximate by inspecting the components. The rest of the
section builds on concepts that are essential to construct such overapproxima-
tion.

Let uen(s) = {a ∈ Au | s
,a,−−−→ } be the set of urgent actions enabled in a

state s. We say that a set B of output urgent actions is spontaneously enabled
by a non-urgent action b if b is potentially reached and it transitions to a state
enabling all actions in B.

Definition 10. A set B ⊆ Au ∩ Ao is spontaneously enabled by a ∈ A \ Au in
I, if either B = ∅ or there are potentially reachable states s and s′ such that s

is stable, s
,a,−−−→ s′, and B ⊆ uen(s′). B is maximal if for any B′ spontaneously

enabled by b in I such that B ⊆ B′, B = B′.

A set that is spontaneously enabled in a composed IOSA, can be constructed
as the union of spontaneously enabled sets in each of the components as stated by
the following proposition. Therefore, spontaneously enabled sets in a composed
IOSA can be overapproximated by unions of spontaneously enabled sets of its
components.

Proposition 5. Let B be spontaneously enabled by action a in I1|| . . . ||In.
Then, there are B1, . . . , Bn such that each Bi is spontaneously enabled by a
in Ii, and B =

⋃n
i=1 Bi. If in addition B is maximal, there are B1, . . . , Bn such

that each Bi is maximal spontaneously enabled by a in Ii, and B ⊆
⋃n

i=1 Bi.

Proof. We only prove it for I1||I2. The generalization to any n follows easily.
Let B̄i = B ∩ Ai for i = 1, 2 and note that B = B̄1 ∪ B̄2. We show that B̄1

is spontaneously enabled by a in I1. The case of B̄2 follows similarly. Since
B is spontaneously enabled by a in I1||I2, there exist potentially reachable
states s1||s2 and s′

1||s′
2, such that s1||s2 is stable, s1||s2

,a,−−−→ s′
1||s′

2, and B ⊆
uen(s′

1||s′
2). First notice that B̄1 ⊆ uen(s1). Also, suppose B̄1 �= ∅, otherwise

B̄1 is spontaneously enabled by a trivially. Consider first the case that a ∈
A2 \ A1. By (R2), s1 = s′

1, but, since there is some b ∈ B̄1, s1
,b,−−→ and hence

s1||s2
,b,−−→ rendering s1||s2 unstable, which is a contradiction. So a ∈ A1 and

s1
,a,−−−→ s′

1. By Lemma 5, s1 and s′
1 are potentially reachable and, necessarily,

s1 is stable (otherwise s1||s2 has to be unstable as shown before). Therefore
B̄1 is spontaneously enabled by a in I1. The second part of the proposition is
immediate from the first part. �

Spontaneously enabled sets refer to sets of urgent output actions that are
enabled after some steps of execution. Urgent output actions can also be enabled
at the initial state.

Definition 11. A set B ⊆ Au ∩Ao is initial in an IOSA I if B ⊆ uen(s0), with
s0 being the initial state of I. B is maximal if B = uen(s0) ∩ Ao.
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An initial set of a composed IOSA can be constructed as the union of initial
sets of its components. In particular the maximal initial set is the union of all the
maximal sets of its components. The proof follows directly from the definition
of parallel composition taking into consideration that IOSAs are input enabled.

Proposition 6. Let B be initial in I = (I1|| . . . ||In). Then, there are
B1, . . . , B2, with Bi initial of Ii, 1 ≤ i ≤ n and B =

⋃n
i=1 Bi. Moreover,

uen(s0) ∩ Ao
I =

⋃n
i=1 uen(s0i ) ∩ Ao

i .

We say that an urgent action triggers an urgent output action if the first one
enables the occurrence of the second one, which was not enabled before.

Definition 12. Let a ∈ Au and b ∈ Au ∩ Ao. a triggers b in an IOSA I if there
are potentially reachable states s1, s2, and s3 such that s1

,a,−−−→ s2
,b,−−→ s3 and,

if a �= b, b /∈ uen(s1).

Notice that, for the particular case in which a = b, b /∈ uen(s) is not required.
The following proposition states that if one action triggers another one in a
composed IOSA, then the same triggering occurs in a particular component.

Proposition 7. Let a ∈ Au and b ∈ Au∩Ao such that a triggers b in I1|| . . . ||In.
Then there is a component Ii such that b ∈ Ao

i and a triggers b in Ii.

Proof. We only prove it for I1||I2. The generalization to any n follows easily.
Because b ∈ Au ∩ Ao necessarily b ∈ Ao

1 or b ∈ Ao
2. W.l.o.g. suppose b ∈ Ao

1.

Since a triggers b in I1||I1, s1||s2
,a,−−−→ s′

1||s′
2

,b,−−→ s′′
1 ||s′′

2 with s1||s2, s′
1||s′

2, and
s′′
1 ||s′′

2 being potentially reachable.
Suppose first that a �= b. Then b /∈ uen(s1||s2). Recall that, by Lemma 5, s1,

s′
1, and s′′

1 are potentially reachable in I1. Since b ∈ Ao
1, s′

1
,b,−−→ s′′

1 . Suppose
a ∈ A2\A1. Then, necessarily, s1 = s′

1 which gives b ∈ uen(s1)∩Ao ⊆ uen(s1||s2),
yielding a contradiction. Thus, necessarily a ∈ Au

1 and hence s1
,a,−−−→ s′

1, by the
definition of parallel composition. It remains to show that b /∈ uen(s1), but this is
immediate since uen(s1) ∩ Ao ⊆ uen(s1||s2) and b /∈ uen(s1||s2). Thus a triggers
b in I1 in this case. If instead a = b, by the definition of parallel composition we
immediately have that s1

,b,−−→ s′
1

,b,−−→ s′′
1 , proving thus the proposition. �

Proposition 7 tells us that the triggering relation of a composed IOSA can
be overapproximated by the union of the triggering relations of its components.
Thus we define:

Definition 13. The approximate triggering relation of I1|| . . . ||In is defined by
� =

⋃n
i=1{(a, b) | a triggers b in Ii}. Its reflexive transitive closure �∗ is called

approximate indirect triggering relation.

The next definition characterizes all sets of urgent output actions that are
simultaneously enabled in any potentially reachable state of a given IOSA.
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Definition 14. A set B ⊆ Au ∩ Ao is an enabled set in an IOSA I if there is
a potentially reachable state s such that B ⊆ uen(s). If a ∈ B, we say that a is
enabled in s. Let ESI be the set of all enabled sets in I.

If an urgent output action is enabled in a potentially reachable state of
a IOSA, then it is either initial, spontaneously enabled, or triggered by some
action.

Theorem 4. Let b ∈ Au ∩ Ao be enabled in some potentially reachable state of
the IOSA I. Then there is a set B with b ∈ B that is either initial or spon-
taneously enabled by some action a ∈ Au, or b is triggered by some action
a ∈ Ao \ Au.

Proof. Let s be potentially reachable in I such that b ∈ uen(s) ∩ Ao. We prove
the theorem for b by induction on the plausible path σ leading to s. If |σ| = 0,
then σ = s and s is the initial state. Then the set uen(s) ∩ Ao is initial and
we are done in this case. If |σ| > 0, then σ = σ′ · (s′ ,a,−−−→ s) for some s′, a,
and plausible σ′. If a ∈ A \ Au then s′ is stable (since σ is plausible) and thus
uen(s) ∩ Ao is spontaneously enabled by a. If instead a ∈ Au, two possibilities
arise. If b /∈ uen(s′), then b is triggered by a. If b ∈ uen(s′), the conditions are
satisfied by induction since |σ′| = |σ| − 1. �

The next definition is auxiliary to prove the main theorem of this section.
It constructs a graph from a closed and composed IOSA whose vertices are sets
of urgent output actions. It has the property that, if there is a path from one
vertex to another, all actions in the second vertex are approximately indirectly
triggered by actions in the first vertex (Lemma 7). This will allow to show that
any set of simultaneously enabled urgent output actions is approximately indi-
rectly triggered by initial actions or spontaneously enabled sets (Lemma 8).

Definition 15. Let I = (I1|| . . . ||In) be a closed IOSA. The enabled graph
of I is defined by the labelled graph EGI = (V,E), where V ⊆ 2Ao∩Au

and
E ⊆ V × (Au∩Ao) × V , with V =

⋃
k≥0 Vk and E =

⋃
k≥0 Ek, and, for all

k ∈ N, Vk and Ek are inductively defined by

V0 =
⋃

a∈A{
⋃n

i=1 Bi | ∀1 ≤ i ≤ n :
Bi is spontaneously enabled by a and maximal in Ii}

∪ {
⋃n

i=1 uen(s0i ) ∩ Ao
i | ∀1 ≤ i ≤ n : s0i is the initial state in Ii}

Ek = {(v, a, (v\{a}) ∪ {b | a�b}) | v ∈ Vk, a ∈ v}
Vk+1 = {v′ | v ∈ Vi, (v, v′) ∈ Ek, v′ /∈

⋃k
j=0 Vj}

Notice that V0 contains the maximal initial set of I and an overapproximation
of all its maximal spontaneously enabled sets. Notice also that, by construction,
there is a path from any vertex in V to some vertex in V0.

The set closure of V in EGI , defined by ESI = {B | B ⊆ v, v ∈ V }, turns
out to be an overapproximation of the actual set ESI of all enabled sets in I.
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Lemma 6. For any closed IOSA I = (I1|| · · · ||In), ESI ⊆ ESI .

Proof. Let B ∈ ESI . We proceed by induction on the length of the plausible
path σ that leads to the state s s.t. B ⊆ uen(s). If |σ| = 0 then s is the
initial state and thus B is initial in I. Thus, by Definition 11, Proposition 6,
and Definition 15, B ⊆ (uen(s0)∩Ao

I) = (
⋃n

i=1 uen(s0i )∩Ao
i ) ∈ V0 ⊆ ESI . As a

consequence B ∈ ESI .
If |σ| > 0 then σ = σ′·(s′ ,a,−−−→ s), for some s′, a, and plausible σ′. If a ∈ A\Au

then s′ is stable (since σ is plausible) and thus B is spontaneously enabled by
a. By Proposition 5, there are B1, . . . , Bn such that each Bi is spontaneously
enabled by a and maximal in Ii, and B ⊆

⋃n
i=1 Bi. Since

⋃n
i=1 Bi ∈ V0 ⊆ ESI ,

then B ∈ ESI . If instead a ∈ Au, let B′ = {a} ∪ (B ∩ uen(s′)). Notice that
B′ ⊆ uen(s′) ∩ Ao. Since s′ is the last state on σ′ and |σ′| = |σ| − 1, B′ ∈ ESI
by induction. Hence, there is a vertex v′ ∈ V in EGI such that B′ ⊆ v and,
by Definition 15, v′ ∈ Vk for some k ≥ 0. Let v = (v′\{a}) ∪ {b | a�b}, then
(v′, a, v) ∈ Ek and hence v ∈ Vk+1. We show that B ⊆ v. Let b ∈ B. If b = a, then
a ∈ uen(s)∩Ao and hence a triggers a in I. By Proposition 7, a � a which implies
a ∈ v. Suppose, instead, that b �= a. If b ∈ uen(s′), then b ∈ B′\{a} ⊆ v′\{a} ⊆ v.
If b /∈ uen(s′), then a triggers b in I, and by Proposition 7, a � b which implies
b ∈ v. This proves B ⊆ v ∈ ESI and hence B ∈ ESI . �

The next lemma states that if there is a path from a vertex of EGI to another
vertex, every action in the second vertex is approximately indirectly triggered
by some action in the first vertex.

Lemma 7. Let I be a closed IOSA, let v, v′ ∈ V be vertices of EGI and let ρ be
a path following E from v to v′. Then for every b ∈ v′ there is an action a ∈ v
such that a �∗ b.

Proof. We proceed by induction in the length of ρ. If |ρ| = 0 then v = v′ and
the lemma holds since �∗ is reflexive. If |ρ| > 0, there is a path ρ′, v′′ ∈ V ,
and c ∈ Au ∩ Ao such that ρ = ρ′ · (v′′, c, v′). By induction, for every action
d ∈ v′′ there is some a ∈ v such that a �∗ d. Because of the definition of E
in Definition 15, either b ∈ v′′ or c � b and c ∈ v′′. The first case follows by
induction. In the second case, also by induction, a �∗ c for some a ∈ v and
hence a �∗ b. �

The next lemma states that every enabled set B in a composed IOSA is
either approximately triggered by a set of initial actions of the components of
the IOSA or by a subset of the union of spontaneously enabled sets in each
component where such sets are spontaneously enabled by the same event.

Lemma 8. Let I = (I1|| . . . ||In) be a closed IOSA and let {b1, . . . , bm} ⊆ Au ∩
Ao be enabled in I. Then, there are (not necessarily different) a1, . . . , am such
that aj �∗ bj, for all 1 ≤ j ≤ m, and either (i) {a1, . . . , am} ⊆

⋃n
i=1 uen(s0i ) ∩

Ao
i , or (ii) there exists e ∈ A and (possibly empty) sets B1, . . . , Bn spontaneously

enabled by e in I1, . . . , In respectively, such that {a1, . . . , am} ⊆
⋃n

i=1 Bi.



Input/Output Stochastic Automata with Urgency 149

Proof. Because of Lemma 6 there is a vertex v of EGI such that {b1, . . . , bn} ⊆ v.
Because of the inductive construction of E and V , there is a path from some
v′ ∈ V0 to v in EGI . From Lemma 7, for each 1 ≤ j ≤ m, there is an aj ∈ v′ such
that aj �∗ bj . Because v′ ∈ V0, then either v′ =

⋃n
i=1 uen(s0i ) ∩ Ao

i or there is
some e ∈ A such that v′ =

⋃n
i=1 Bi with Bi spontaneously enabled by e in Ii �

The following theorem is the main result of this section and provides sufficient
conditions to guarantee that a closed composed IOSA is confluent or, as stated
in the theorem, necessary conditions for the IOSA to be non-confluent.

Theorem 5. Let I = (I1|| · · · ||In) be a closed IOSA. If I potentially reaches a
non-confluent state then there are actions a, b ∈ Au ∩ Ao such that some Ii is
not confluent w.r.t. a and b, and there are c and d such that c �∗ a, d �∗ b,
and, either (i) c and d are initial actions in any component, or (ii) there is
some e ∈ A and (possibly empty) sets B1, . . . , Bn spontaneously enabled by e in
I1, . . . , In respectively, such that c, d ∈

⋃n
i=1 Bi.

Proof. Suppose I potentially reaches a non confluent state s. Then there are
necessarily a, b ∈ uen(s) that show it and hence I is not confluent w.r.t. a and b.
By Proposition 2, there is necessarily a component Ii that is not confluent w.r.t.
a and b. Since {a, b} is an enabled set in I, the rest of the theorem follows by
Lemma 8. �

Because of Proposition 4 and Theorem 3, if all potentially reachable states in
a closed IOSA I are confluent, then I is weakly deterministic. Thus, if no pair
of actions satisfying conditions in Theorem5 are found in I, then I is weakly
deterministic.

Notice that the IOSA I = I1||I2||I3 of Example 2 (see also Figs. 2 and 3) is an
example that does not meet the conditions of Theorem 5, and hence detected as
confluent. c and d are the only potential non-confluent actions, which is noticed
in state s6 of I3. The approximate indirect triggering relation can be calculated
to �∗= {(c, c), (d, d)}. Also, {c} is spontaneously enabled by a in I1 and {d} is
spontaneously enabled by b in I2. Since both sets are spontaneously enabled by
different actions and c and d are not initial, the set {c, d} does not appear in V0

of EGI which would be required to meet the conditions of the theorem.

I1

I2

I3

a? b!!

a? c!!

b??

c??

c??

b??

a!

Fig. 6. I1||I2||I3 meets conditions
in Theorem 5

Conditions in Theorem5 are not suffi-
cient and confluent IOSAs may satisfy them.
Consider the IOSAs in Fig. 6. I1||I2||I3 is
a closed IOSA with a single state and no
outgoing transition. Hence, it is confluent.
However, I3 is not confluent w.r.t. b and
c, �∗= {(b, b), (c, c)}, B1 = {b} is sponta-
neously enabled by a in I1, and B2 = {c}
is spontaneously enabled by a in I2. Hence
b, c ∈

⋃n
i=1 Bi, thus meeting the conditions of

Theorem 5.
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8 Concluding Remarks

In this article, we have extended IOSA as introduced in [13] with urgent actions.
Though such extension introduces non-determinism even if the IOSA is closed,
it does so in a limited manner. We were able to characterize when a IOSA is
weakly deterministic, which is an important concept since weakly determinis-
tic IOSAs are amenable to discrete event simulation. In particular, we showed
that closed and confluent IOSAs are weakly deterministic and provided condi-
tions to check compositionally if a closed IOSA is confluent. Open IOSAs are
naturally non-deterministic due to input enabledness: at any moment of time
either two different inputs may be enabled or an input is enabled jointly with a
possible passage of time. Thus, the property of non-determinism can only be pos-
sible in closed IOSAs. However, Theorem 5 relates open IOSAs to the concept
of weak determinism by providing sufficient properties on open IOSAs whose
composition leads to a closed weakly deterministic IOSA. In addition, we notice
that languages like Modest [4,18,19], that have been designed for compositional
modelling of complex timed and stochastic systems, embrace the concept of non-
determinism as a fundamental property. Thus, ensuring weak determinism on
Modest models using compositional tools like Theorem 5 will require significant
limitations that may easily boil down to reduce it to IOSA. Notwithstanding
this observation, we remark that some translation between IOSA and Modest is
possible through Jani [8].

Finally, we remark that, though not discussed in this paper, the conditions
provided by Theorem5, can be verified in polynomial time respect to the size of
the components and the number of actions.
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