
Lightweight Statistical Model Checking
in Nondeterministic Continuous Time

Pedro R. D’Argenio1,2,3 , Arnd Hartmanns4(B) , and Sean Sedwards5

1 Universidad Nacional de Córdoba, Córdoba, Argentina
dargenio@famaf.unc.edu.ar

2 CONICET, Córdoba, Argentina
3 Saarland University, Saarbrücken, Germany

4 University of Twente, Enschede, The Netherlands
a.hartmanns@utwente.nl

5 University of Waterloo, Waterloo, Canada
sean.sedwards@uwaterloo.ca

Abstract. Lightweight scheduler sampling brings statistical model
checking to nondeterministic formalisms with undiscounted properties,
in constant memory. Its direct application to continuous-time models is
rendered ineffective by their dense concrete state spaces and the need to
consider continuous input for optimal decisions. In this paper we describe
the challenges and state of the art in applying lightweight scheduler sam-
pling to three continuous-time formalisms: After a review of recent work
on exploiting discrete abstractions for probabilistic timed automata, we
discuss scheduler sampling for Markov automata and apply it on two case
studies. We provide further insights into the tradeoffs between scheduler
classes for stochastic automata. Throughout, we present extended exper-
iments and new visualisations of the distribution of schedulers.

1 Introduction

Statistical model checking (SMC [24,33]) is a formal verification technique for
stochastic systems based on Monte Carlo simulation. It naturally works with
non-Markovian behaviour and complex continuous dynamics that make the exact
model checking problem intractable. As a simulation-based approach, however,
SMC is incompatible with nondeterminism. Yet (continuous and discrete) nonde-
terministic choices are desirable in formal modelling, for abstraction and to rep-
resent concurrency as well as the absence of knowledge. Nondeterminism occurs
in many popular formalisms, notably in Markov decision processes (MDP). In
the presence of nondeterminism, quantities of interest are defined w.r.t. optimal
schedulers (also called policies, adversaries or strategies) resolving all nondeter-
ministic choices: the verification result is the maximum or minimum probability

This work is supported by the 3TU project “Big Software on the Run”, by ERC grant
695614 (POWVER), by the JST ERATO HASUO Metamathematics for Systems Design
project (JPMJER1603), and by SeCyT-UNC projects 05/BP12, 05/B497.

c© Springer Nature Switzerland AG 2018
T. Margaria and B. Steffen (Eds.): ISoLA 2018, LNCS 11245, pp. 336–353, 2018.
https://doi.org/10.1007/978-3-030-03421-4_22

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-03421-4_22&domain=pdf
http://orcid.org/0000-0002-8528-9215
http://orcid.org/0000-0003-3268-8674
http://orcid.org/0000-0002-2903-0823
https://doi.org/10.1007/978-3-030-03421-4_22

Lightweight SMC in Nondeterministic Continuous Time 337

or expected value ranging over all schedulers. Many SMC tools appear to sup-
port nondeterministic models, e.g. Prism [28] and Uppaal smc [13], but use
a single implicit probabilistic scheduler that makes all choices randomly. Their
results thus lie somewhere between the minimum and maximum. Such implicit
resolutions are known to affect the trustworthiness of simulation studies [3,27].

Sound SMC in the presence of nondeterminism is a hard problem. For MDP,
Brázdil et al. [4] proposed a sound machine learning technique, while Uppaal

Stratego [12] explicitly synthesises a “good” scheduler before using it for a
standard SMC analysis. Both approaches suffer from worst-case memory usage
linear in the number of states. Classic memory-efficient sampling approaches
(e.g. [25]) address discounted models only. In contrast, the modes tool [6], part of
theModestToolset [20], extends the lightweight scheduler sampling (LSS) app-
roach for MDP first implemented in Plasma [30]. LSS is the only technique that
applies to undiscounted properties, as typically considered in formal verification,
that also keeps memory usage effectively constant in the number of states.

The effectiveness of LSS depends on the probability of sampling near-optimal
schedulers. It works well for discrete-time discrete-state models like MDP, where
memoryless schedulers achieve optimal probabilities on a discrete state space.
Yet the concrete state spaces of continuous-time models may be uncountably
infinite, and optimal schedulers may need real-valued input based on model
time. This renders naive applications of scheduler sampling ineffective. However,
the use of suitable discrete abstractions makes the approach both feasible and
useful for some continuous-time formalisms.

This paper summarises, connects and extends previous work on LSS for
continuous-time models. After an introduction to the concept of LSS on MDP
in Sect. 2, we summarise recent extensions to probabilistic timed automata
(PTA [29]) using regions [22] and zones [9] in Sect. 3. We report extended experi-
mental results, sampling more schedulers and reducing the statistical error com-
pared to our previous work. In Sect. 4 we investigate the challenges in extending
LSS to Markov automata (MA [14]), a compositional nondeterministic exten-
sion of continuous-time Markov chains. We introduce two new case studies to
experiment with modes’ support for LSS on MA. In Sect. 5 we turn to stochastic
automata (SA [10]), which include general continuous probability distributions.
We have recently shown that no simple class of schedulers achieves optimal
probabilities on SA [8]. We summarise these results and their effect on LSS, and
provide more detailed experimental results to investigate the tradeoffs between
restricted classes and discrete abstractions of the state space.

All methods described in this paper are implemented in the modes statistical
model checker [6], which was used to perform all the experiments. To investigate
the distribution of schedulers, we extended modes to create histograms that
visualise the distribution of schedulers w.r.t. the probabilities they induce. We
present histograms for all our experiments, providing deeper insights into the
character of the nondeterminism in the models and the behaviour of LSS.

338 P. R. D’Argenio et al.

2 Lightweight Statistical Model Checking

We summarise the lightweight scheduler sampling approach for Markov decision
processes [30], which is the foundation of our techniques for timed systems.

Definition 1. A (discrete) probability distribution over a set Ω is a function
μ ∈ Ω → [0, 1] such that support(μ) def= {ω ∈ Ω | μ(ω) > 0 } is countable and∑

ω∈support(μ) μ(ω) = 1. Dist(Ω) is the set of all probability distributions over Ω.

Definition 2. A pseudo-random number generator (PRNG) U can be initialised
with a seed i ∈ N (U := PRNG(i)) and then iterated (U()) to produce a new
value pseudo-uniformly distributed in [0, 1) and pseudo-statistically independent
of previous iterates. For a given i, the sequence of iterates is always the same.
We denote by U(μ) the pseudo-random selection of a value from support(μ)
according to a value sampled from U and the probabilities in μ ∈ Dist(Ω).

Markov decision processes combine nondeterminism and probabilistic
choices. To move from one state to another, first a transition is chosen nondeter-
ministically. Every transition leads into a probability distribution over successor
states.

Definition 3. A Markov decision process (MDP) is a triple M = 〈S, T, sinit 〉
where S is a countable set of states, T ∈ S → 2Dist(S) is the transition function
with T (s) countable for all s ∈ S, and sinit ∈ S is the initial state. If |T (s)| ≤ 1
for all s ∈ S, then M is a discrete-time Markov chain (DTMC).

A transition is a pair 〈s, μ〉 s.t. μ ∈ T (s). A path in an MDP is an infinite sequence
〈s0, μ0〉 〈s1, μ1〉 . . . of transitions with s0 = sinit . When the current state is si,
the nondeterministic choice of the next transition is made by a scheduler:

Definition 4. A (memoryless deterministic) scheduler for an MDP is a func-
tion s ∈ S → Dist(S) s.t. s(s) ∈ T (s) for all s ∈ S. S is the set of all schedulers.

Once a transition 〈si, μi〉 is chosen, the next state si+1 is selected randomly
according to μi. Restricting to the choices made by s induces a DTMC, and s
defines the probability measure Ps over paths [16]. Transient properties φ are
queries for the optimal probabilities opts∈SPs(¬avoid U target) where opt ∈
{ sup, inf } (for maximum and minimum probabilities, denoted pmax and pmin),
avoid , target ⊆ S, and ¬avoid U target is the set of paths with at least one state
in target such that no state in avoid has been visited earlier. For these prop-
erties, the restriction to memoryless deterministic schedulers preserves optimal
probabilities. For a finite trace ω, i.e. a path prefix projected to its states, let
φ(ω) be undecided if ω does not contain a state in ¬avoid ∪ target , true if φ is
satisfied on all paths that have a prefix projecting to ω, and false otherwise.

Using MDP to directly model complex systems is cumbersome. Instead,
higher-level formalisms like Modest [18] are used. They provide parallel compo-
sition and finite-domain variables. This allows to compactly describe very large
MDP. Modest in fact supports all of the formalisms introduced in this paper.

Lightweight SMC in Nondeterministic Continuous Time 339

Input: MDP M = 〈S, T, sinit〉, transient property φ, scheduler identifier σ ∈ Z32

Output: Sampled trace ω

1 s := sinit , ω := sinit
2 while φ(ω) = undecided ∧ T (s) �= ∅ do // run until φ decided or deadlock
3 Und := PRNG(H(σ.s)) // seed Und with hash of σ and s
4 μ := �Und() · |T (s)|�-th element of T (s) // use Und to select a transition
5 s := Upr(μ), ω := ω.s // use Upr to select next state, append to ω

6 return ω
Algorithm 1. Lightweight simulation for an MDP and a scheduler identifier

Statistical model checking (SMC) [24,33] is, in essence, Monte Carlo integra-
tion of formal models. It generates a large number n of simulation runs according
to the probability distributions in the model and uses them to statistically esti-
mate the probability for a given property. For transient property φ on a DTMC,
the runs are traces ω1, . . . , ωn such that φ(ωi) 	= undecided , and the estimate
is p̂n = 1

n

∑n
i=0 φ(ωi) when identifying true with 1 and false with 0. p̂n is an

unbiased estimator of the actual probability p. The choice of n depends on the
desired statistical properties of p̂, e.g. that a confidence interval around p̂ with
confidence δ has half-width w. For a detailed description of statistical methods
and especially hypothesis tests for SMC, we refer the reader to [32].

Lightweight scheduler sampling (LSS) extends SMC to the nondeterminis-
tic model of MDP by approximating optimal schedulers, i.e. those that realise
pmin or pmax, in constant memory relative to the size of the state space [30].
A scheduler is identified by a single (32-bit) integer. LSS randomly selects
m schedulers (i.e. integers), performs standard SMC on the DTMC induced
by each, and reports the maximum and minimum estimates over all sampled
schedulers as approximations of the actual respective probabilities. We show the
core of LSS—performing a simulation run for a given scheduler identifier σ—as
Algorithm 1. It uses two PRNGs: Upr is initialised globally once and used to
simulate the probabilistic choices of the MDP in line 5, while Und resolves the
nondeterministic choices in line 4. We want σ to represent a deterministic mem-
oryless scheduler. Therefore, within one simulation run as well as in different
runs for the same value of σ, Und must always make the same choice for the
same state s. To achieve this, Und is re-initialised with a seed based on σ and s
in every step (line 3).

The effectiveness of LSS depends on the probability of sampling a near-
optimal scheduler. Since we do not know a priori what makes a scheduler optimal,
we want to sample “uniformly” from the space of all schedulers. This at least
avoids actively biasing against “good” schedulers. More precisely, a uniformly
random choice of σ will result in a uniformly chosen (but fixed) resolution of all
nondeterministic choices. Algorithm 1 achieves this naturally for MDP.

Bounds and Error Accumulation. The results of LSS are lower bounds for maxi-
mum and upper bounds for minimum probabilities up to the specified statistical
error. They can thus be used to e.g. disprove safety or prove schedulability,

340 P. R. D’Argenio et al.

Fig. 1. Example PTA Mp

0

1

2

3

1 2 3

y

x

Fig. 2. Regions of Mp

0

1

2

1 2

y

x

Fig. 3. Representatives

but not the opposite. The accumulation of statistical error introduced by the
repeated simulation experiments over m schedulers must also be accounted for,
using e.g. Šidák correction or the modified tests described in [11].

Two-phase and Smart Sampling. If, for fixed statistical parameters, SMC needs
n runs on a DTMC, LSS needs significantly more than m · n runs on an MDP
to avoid error accumulation. The two-phase and smart sampling approaches can
reduce this overhead. The former’s first phase consists of performing n simulation
runs for each of the m schedulers. The scheduler that resulted in the maximum
(or minimum) value is selected, and independently evaluated once more with
n runs to produce the final estimate. The first phase is a heuristic to find a
near-optimal scheduler before the second phase estimates the value under this
scheduler according to the required statistical parameters. Smart sampling [11]
generalises this principle to multiple phases, dropping the “worst” half of the
schedulers in every round. It tends to find better schedulers faster, while the
two-phase approach has predictable performance: it always needs (m + 1) · n
runs. We use the two-phase approach for all experiments reported in this paper.

3 Probabilistic Timed Automata

Probabilistic timed automata (PTA [29]) combine MDP and timed automata [1].
We show an example PTA Mp in Fig. 1. It has two clocks x and y: variables over
[0,∞) that advance synchronously with rate 1 as time passes. As PTA are a
symbolic model, we speak of locations (in Loc) and edges instead of states and
transitions. Mp has locations �0 through �3. Every location is associated with a
time progress condition: x ≤ 2 in �0, y ≤ 1 in �1, and true elsewhere. These are
clock constraints: expressions of the form CC:: = true | false | CC ∧ CC | c ∼ n |
c1 − c2 ∼ n where ∼ ∈ {>,≥, <,≤ }, c, c1, c2 are clocks, and n ∈ N. Every edge
is annotated with a guard clock constraint and sets of clocks to reset to zero. Mp

has one edge out of �0 with guard x > 0 that goes back to �0 with probability
0.9, resetting x, and otherwise to �1, resetting y. There are two edges out of �1.
The one with guard x − y > 1 goes to �3 with probability 1 and no resets.

Lightweight SMC in Nondeterministic Continuous Time 341

Intuitively, the semantics of a PTA is an uncountably infinite MDP: Its states
are pairs 〈�, v〉 of the current location � and valuation v for all clocks. In �,
time can pass (i.e. the values in v increase) as long as the time progress con-
dition remains satisfied. An edge can be taken if its guard evaluates to true
at the current point in time. Then a target is chosen randomly, the speci-
fied clocks are reset to zero, and we move to the target location. Writing val-
uations as tuples 〈v(x), v(y)〉, one concrete trace in the semantics of Mp is
〈�0, 〈0, 0〉〉 〈�0, 〈0.8, 0.8〉〉 〈�0, 〈0, 0.8〉〉 〈�0, 〈1.1, 1.9〉〉 〈�1, 〈1.1, 0〉〉 〈�3, 〈1.1, 0〉〉.

The time spent in �0 and �1 is nondeterministic, as is the choice of edge in �1.
The transient properties defined for MDP in Sect. 2 apply analogously to

PTA. In addition, time-bounded properties—where target must be reached in
≤ d ∈ N time units—can be encoded as unbounded ones by adding a new clock cd

that is never reset and replacing target by { 〈�, v〉 | � ∈ Loc∧v(cd) ≤ d }∩ target .
In Mp, the minimum probability to reach l3 is 0.2. The maximum is 1; it is only
achieved by always waiting in l0 until x > 1 before taking the edge.

A naive extension of lightweight SMC to PTA is to use Algorithm 1 to
generate concrete traces like the one given for Mp above. The input to Und is then
a hash of σ and the current state 〈�, v〉. Und selects a delay in [0,∞) permitted by
the time progress condition, followed by an enabled edge, if available. However,
this can make (near-)optimal schedulers infeasibly rare. Consider Mp and the
maximum probability to reach �3. An optimal scheduler must always select a
delay >1 in �0. Yet, for a fixed σ, we get to make a new decision every time we
come back to �0 because v(y) most likely is a different real number in [0, 2] every
time. The probability of choosing a σ that always makes the same decision is
zero, and even near-optimal schedulers are rare. The problem is that the number
of critical decisions is infinite, such that optimal schedulers have measure zero.
To be effective, LSS needs the number of critical decisions to be finite.

3.1 Lightweight SMC with Discrete Abstractions

To model-check transient properties, it suffices to consider the finite region graph
of a PTA [29], a concept first introduced for timed automata [1]. Since it is too
large to be useful in practice, timed automata verification tools instead use zones.

Definition 5. Let kc ∈ N be the maximum constant appearing in comparisons
with clock c. A zone is a non-empty set of valuations that can be described by
a clock constraint in which all comparisons have the form c1 − c2 ∼ nc1c2 for
nc1c2 ∈ { 0, . . . ,max{ kc1 , kc2 } } or c ∼ nc for nc ∈ { 0, . . . , kc }. A region r is
a minimal zone; its successor is the unique first other region encountered when
delaying from any valuation in r.

In Mp we have kx = 2 and ky = 1. The regions of Mp are visualised in Fig. 2:
Every gray point, line segment and area is a region. To find a region’s successor,
follow a 45-degree line from any point within the region up to the next region.

342 P. R. D’Argenio et al.

We could use Algorithm 1 on the region graph. However, if the only available
operations on regions are to (1) reset a clock and (2) obtain the successor,
then performing a long delay needs many simulation steps to sequentially move
through several successors. This causes significant performance problems and
prevents uniform scheduler sampling: As long as the time progress condition is
satisfied, the only reasonable way to implement the scheduler is to let Und choose
uniformly between delaying to the successor or taking an edge. The total delay
thus follows a geometric distribution, biasing towards taking edges early.

A zone-based approach [9] using the standard difference-bound matrix
(DBM) data structure solves these two problems. We can easily obtain and
represent an entire sequence of regions as a single zone, determine the edges
enabled throughout that zone, and use Und to uniformly (but deterministically
for fixed σ) select one. The resulting algorithm (shown as Algorithm 2 in [9]) is
not a simple extension of Algorithm 1 for several reasons that we explore in that
paper. In particular, when taking an edge, it needs to select a single region from
within the target zone. This is to avoid over-/underapproximating probabilities,
since it performs a forwards exploration [29]. The drawback of zone-based LSS
is performance: The runtime of most DBM operations, such as intersecting two
zones or resetting clocks, is cubic in the number of clocks [2], and selecting a
region uniformly at random is exponential [9]. We use a faster quasi-uniform
algorithm in our experiments.

Efficient simulation with regions became possible with our new efficient
data structure for regions that supports long delays without enumerating suc-
cessor regions [22]. It implements all operations with worst-case runtime linear
in the number of clocks. The problem of efficient data structures for regions had
received scant attention as the region graph is too large for exact model checking.

A straightforward symbolic representation of regions consists of a mapping
from each clock to the integer part of its value, plus a total order of the fractional
parts. Our data structure additionally provides a concrete representative value
in Q for every clock, and a function that, given a delay based on a representative
valuation, performs that entire delay in one go. The concrete choice of represen-
tatives is the main insight. For every clock, the representative value is a multiple
of 1/(2 · nd), where nd is the number of different fractional values among all
clocks. We show the representatives of regions of Mp as black dots in Fig. 3: the
one of region x = y = 0 (which has nd = 1), the one of 0 < x < y ∧ y = 0 (with
nd = 2), their successors, and so on. This choice of representatives is the only one
where representatives are equally spaced, allowing an efficient implementation
of the delay function. The resulting LSS core is shown as Algorithm 3 in [22].

3.2 Experiments

In [22] we compared the zone- and region-based approaches on PTA models of
communication protocols from the literature. We estimated the probabilities of

Lightweight SMC in Nondeterministic Continuous Time 343

Table 1. Performance and results for PTA

Model Clocks Model checking Ad-hoc schedulers LSS with regions LSS with zones

pmin pmax ALAP Uniform ASAP Time p̂min p̂max Time p̂min p̂max

firewire 1+1 0.781 1.000 0.95 0.98 1.00 20 s 0.79 1.00 27 s 0.79 1.00

wlan 2 0.063 0.05 0.05 0.05 2 744 s 0.04 0.06 3 903 s 0.04 0.06

csmacd2 4+1 0.729 0.872 0.73 0.75 0.87 108 s 0.73 0.85 398 s 0.73 0.87

csmacd3 5+1 0.663 0.892 0.71 0.81 0.89 312 s 0.78 0.85 1 185 s 0.77 0.87

csmacd4 6+1 0.68 0.83 0.90 656 s 0.80 0.85 2 555 s 0.80 0.86

Fig. 4. Histogram for firewire (regions) Fig. 5. Histogram for wlan (regions)

– termination in 4000 ns in IEEE 1394 FireWire root contention (firewire),
– either of two stations’ backoff counters reaching value 2 within one transmis-

sion in IEEE 802.11 wireless LAN (wlan) using the original timing parameters
from the standard (e.g. a maximum transmission time of 15717µs), and

– all stations correctly delivering their packets within Dn µs on a shared
medium via the exponential backoff procedure in IEEE 802.3 CSMA/CD
with n ∈ { 2, 3, 4 } stations (csmacdn), using D2 = 1800, D3 = 2700 and
D4 = 3600.

In Table 1 we report the results of a new set of experiments on these models
and properties. We have modified the zone-based approach to greedily try to
enter/avoid the target and avoid sets for maximum probabilities (and vice-versa
for minimum probabilities) after identifying the set of delays allowed by the time
progress condition but before selecting an edge. We also improved the fast quasi-
uniform region selection algorithm. Furthermore, we sample more schedulers
(m = 1000) and have reduced the statistical error: We use n = 372221 runs per
scheduler for wlan and 14889 for the other models. Via the Okamoto bound [31]
(as used in the “APMC method” [24]), which relates n to values ε and δ s.t.
P(|p̂ − p| > ε) < δ for estimate p̂ and actual probability p, this guarantees
ε = 0.001 for wlan and ε = 0.005 for the other models with confidence δ = 0.95.
We also compare with the probabilities induced by three ad-hoc schedulers:

– Uniform selects uniformly at random among the time points where ≥1 edge
is enabled before uniformly selecting one edge enabled after that chosen delay;

– ASAP instead selects the first time point where any edge is enabled; and
– ALAP always picks the last time point where at least one edge is enabled.

These are randomised schedulers: they may make a different choice every time
the same state is visited. They also require the intersections of guards and time

344 P. R. D’Argenio et al.

progress conditions to be bounded, which is the case for all three models. The
Uniform scheduler is similar to the implicit one of Uppaal smc [13]. All experi-
ments were performed on a cluster of 10 Intel Xeon E5520 nodes (2.26–2.53 GHz)
with 64-bit Ubuntu Linux, providing 40 simulation threads in total (4 per node).
Every experiment was performed three times and we report the averages.

Discussion. As expected and previously shown in [22], the region-based approach
significantly outperforms the zone-based one as the number of clocks grows. On
the larger csmacd models, however, the latter finds better schedulers. Comparing
with the ad-hoc schedulers reveals that long (short) delays lead to worse (better)
performance of the protocol, with the results of the ALAP and ASAP schedulers
being closer to the actual optimal probabilities (which we could exactly model-
check for the smaller models) than any scheduler found via LSS. So if always
scheduling fast or slow indeed is optimal, then near-optimal schedulers are rare:
they must always pick the min. or max. delay, with the delay choices increasing
as the number of stations grows. On firewire, ad-hoc schedulers only lead to
probabilities near the maximum, while LSS also finds near-minimal schedulers.

Scheduler Histograms. We extended modes to also return the probabilities esti-
mated for all m sampled schedulers. This allows us to create histograms that
visualise the distribution of schedulers w.r.t. the probabilities they induce. The
histograms for firewire and wlan using regions are shown in Figs. 4 and 5, respec-
tively, with the ones for zones being nearly identical. We see the reasons for the
success of LSS as well as the failure of the ad-hoc schedulers reflected in these his-
tograms: For firewire, maximal schedulers are very likely while minimal ones are
rarer, but still show decent probabilities. For wlan, every deterministic scheduler
sampled by LSS is either near-minimal or near-maximal; the randomised ad-hoc
schedulers however only realise an average of these two behavioural modes.

Fig. 6. Histograms for csmacd2 Fig. 7. Histograms for csmacd3

Lightweight SMC in Nondeterministic Continuous Time 345

For csmacd, the distributions of schedulers found with regions and zones are
clearly different. With two stations (Fig. 6), there are distinct clusters of sim-
ilar schedulers, however the region-based approach does not find good ones in
the near-maximal cluster. As the number of stations and thus of nondetermin-
istic decisions increases, the average sampled scheduler leads to more average
behaviour (Fig. 7), yet the variance among zone-based schedulers is still wider.

4 Markov Automata

Markov automata (MA, [14]) are a compositional model that combines the dis-
crete probabilistic branching of MDP with the exponentially distributed delays of
continuous-time Markov chains (CTMC). We show an example MA with states
s0 through s3 in Fig. 8. It has two types of transitions: Markovian ones (as in
CTMC) labelled with a rate in (0,∞) connect s0 to s1 and s2, while probabilistic
transitions (as in MDP) connect s1 to s3 and back to s0. The exit rate of s0 is
1 + 3 = 4. Probabilistic transitions are taken immediately when available, with
the choice between multiple transitions (like a and b in s1) being nondetermin-
istic. Markovian transitions become enabled after an amount of time has passed
that is exponentially distributed according to the rate of the transition. The
choice between multiple of them is resolved by a race between the distributions.

In terms of properties, we are interested in unbounded and time-bounded
transient properties, as for PTA. However, due to the absence of clocks, time-
bounded properties cannot be encoded as unbounded ones. They instead need to
be supported by dedicated analysis methods. We also use expected-time prop-
erties to calculate the minimum and maximum expected times tmin and tmax

until a set of target states is reached for the first time. We require probability 1
for true U target . For transient property true U { s3 } in Mm, we have pmin = 0.6
(always schedule a) and pmax = 0.75 (always schedule b). For the expected time
to reach { s2, s3 }, we have tmax = 0.4 and tmin = 0.25 with the same schedulers.

4.1 Lightweight SMC Possibilities and Challenges

The application of LSS to MA with unbounded transient and expected-time
properties is a straightforward adaption to MA of Algorithm1, since memoryless
deterministic schedulers are sufficient to obtain optimal results [17,23].

Fig. 8. Example MA Mm

Table 2. Performance and results for MA

Model m n |ω| Time v̂min v̂max

queues

Unif. 1 372 k 25 1 s 0.096

LSS
100 372 k 25 91 s 0.043 0.144

1 000 372 k 25 872 s 0.031 0.170

bitcoin

Unif. 1 433 8 k 2 s 26 701

LSS
1 000 456 14 k 332 s 6 926 249 323

10 000 433 13 k 2 900 s 6 561 233 745

346 P. R. D’Argenio et al.

For time-bounded properties, optimal schedulers need to take into account
the amount of time remaining until the time bound is reached. A naive extension
of LSS would thus face the same issues as with PTA. The current approaches
to perform exact model checking of a time-bounded property with bound d are
to use either digitisation [23] or uniformisation [7]. The former discretises the
MA by assuming that ≤1 Markovian transitions will fire within any small time
interval (0, δ], where δ > 0 is the digitisation constant such that ∃ kb ∈ N : d =
kb · δ. Every state of the digitised model is a pair of the original state in the MA
and the amount of time—a multiple of δ—remaining until d. That is, the model
is unfolded over the time bound. If the maximum exit rate λ in the MA is known,
then we also know that the max. probability computed on the digitised model is
at most kb· (λδ)2

2 below the actual one. As the digitised model is discrete, a variant
of Algorithm 1 could be applied to it directly. However, for the error to be small,
a fine digitisation is needed. For example, to achieve error ≤0.01 for d = 0.5 on
Mm requires δ = 0.0025 and kb = 200. That is, the model is unfolded 200 times,
so schedulers face the nondeterministic choice between a and b up to 200 times.
The probability of sampling an optimal scheduler (i.e. one that always makes the
optimal choice) is then 0.5200. Uniformisation, on the other hand, requires global
information—the maximum exit rate λ, or an overapproximation thereof—to be
applicable in the first place. Furthermore, it does not provide an a priori error
bound. When used for model checking, the error is bounded by simultaneously
computing an over- and underapproximation of the (max.) probability. However,
LSS intrinsically underapproximates and introduces a statistical error. Finally,
it is currently not clear how to efficiently apply the method of [7] in an on-the-fly
manner as required for simulation. Further research into methods for effective
LSS with time-bounded properties on MA is thus needed.

4.2 Experiments

We have implemented LSS for unbounded properties on MA in modes [6]. We
evaluate the implementation on two new case studies with properties based on
non-rare events (rather than the rare-event database model of [6]). We consider

– the queueing system with breakdowns (queues) of [26] where ten sources of
two types produce packets and fail at different rates. A single server processes
the packets and may also fail. We studied a deterministic version of this
model in [5]. To experiment with LSS, we now model a single repairman that
repairs one broken component at a time instead. If multiple components are
broken, the next one to repair is selected nondeterministically. We estimate
the probability for ¬ reset U buf = 8: starting from a single broken source,
what is the probability for server queue overflow before all components are
repaired?

– a Modest MA variant of the model of the Andresen attack on Bitcoin
presented in [15] where a malicious pool of miners attempts to fork the
blockchain to allow e.g. double spending. The malicious pool’s strategy is

Lightweight SMC in Nondeterministic Continuous Time 347

Fig. 9. Histogram for queues Fig. 10. Histogram for bitcoin

kept open as nondeterministic choices in our model (bitcoin), and we esti-
mate the expected time in minutes until the malicious pool succeeds at 20%
hash rate.

The experimental setup is as described in Sect. 3.2. All results are shown in
Table 2, again including the Uniform ad-hoc scheduler for comparison. v stands
for probabilities p for queues and for expected times t for bitcoin.

Discussion. To judge the rarity of near-optimal schedulers, we perform two
LSS runs where the second samples 10 times as many schedulers (column m).
For queues, sampling more schedulers improves the estimates: extremal sched-
ulers are neither frequent nor excessively rare. This is confirmed by the his-
togram shown in Fig. 9. The Uniform scheduler again only obtains some average
behaviour. When it comes to the bitcoin model, the histogram in Fig. 10 shows
that the most frequently sampled schedulers achieve low expected times, i.e. they
correspond to good strategies for the malicious pool. However, for the “default”
and “optimised” strategies of [15], the expected times are 5403 and 3582 min.
It is clear from the results in Table 2 that the sampled schedulers only come
somewhat close to the default strategy in absolute terms. Relative to the worst
schedulers found, however, they are still close to both good strategies. Once
more, the Uniform scheduler is mostly useless here. In terms of performance,
simulations for bitcoin take relatively long, which is due to the many simulation
steps per run (column |ω|) until the malicious pool wins with a bad strategy.

5 Stochastic Automata

Stochastic automata (SA, [10]) go beyond MA by (1) allowing delays to follow
arbitrary probability distributions and (2) lifting the MA restriction of nondeter-
minism to (immediate) probabilistic edges. We show an example SA M1 with six
locations in Fig. 11. It has stochastic clocks x and y. The expiration times e(x)
and e(y) follow the continuous uniform distribution over the interval [0, 1]. An
edge in an SA is guarded by a set of clocks: the edge becomes enabled and time
cannot pass further as soon as all clocks in the guard set are expired. Thus no
time can pass in �0 and �1. When taking an edge, clocks can be restarted : their
values are reset to zero and their expiration times are resampled. On entering

348 P. R. D’Argenio et al.

Fig. 11. SA M1 Fig. 12. Excerpt of the semantics of M1

�1, x is restarted: its value v(x) becomes zero and e(x) is set to a random value
selected from Uni(0, 1). The choice of going to either �2 or �3 from �1 is nonde-
terministic, since both outgoing edges become enabled simultaneously. Then y is
restarted. In �2, we have to wait until the first of the two clocks expires. If that is
x, we have to move to location ✓; if it is y, we have to move to ✗. The semantics
of an SA is an uncountably infinite MDP similar to the semantics of a PTA,
but additionally with continuous distributions. The states in the semantics of
M1 are tuples of the form 〈�, 〈v(x), v(y)〉, 〈e(x), e(y)〉〉: they comprise the current
location, the values of the clocks, and their expiration times. Nondeterministic
choices are finite since they are between edges only. We illustrate a part of the
semantics of M1 as intuitively explained above in Fig. 12.

5.1 The Power of Schedulers for SA

We consider unbounded transient properties only. On M1, the maximum proba-
bility for true U { ✓ } is 0.75. It is achieved by going from �1 to �2 iff e(x) ≤ 0.5:
although the scheduler does not know in �1 what the expiration time of y is
going to be after the restart of y, it is more likely to be higher than the (known)
expiration time of x if that is low. This example shows that, in order to schedule
optimally on SA, schedulers need to know the expiration times. We investi-
gated the power of various restricted classes of schedulers for SA [8] and found
that, aside from the history of previously visited states and delays, all compo-
nents of the states are relevant for optimal scheduling. Let us write Sa

�,b,c with
a ∈ { hist ,ml }, b ∈ { v, t, - } and c ∈ { e, o, - } to refer to a class of schedulers.
Class Shist

�,v,e is the most general one: it sees the entire history (hist), clock values
(v), and expiration times (e). We considered the following restrictions:

– memoryless schedulers that only see the current state (ml instead of hist),
– global-time schedulers that only see the total time elapsed since the initial

state instead of the values of all individual clocks (t instead of v),
– schedulers that see the relative expiration order, i.e. the order of e(z) − v(z)

over all clocks z, in place of the expiration times (o instead of e), and
– schedulers that do not see some of the information at all (indicated by -).

Lightweight SMC in Nondeterministic Continuous Time 349

Our findings include that all history-dependent schedulers seeing e coincide with
class Sml

�,v,e, and that for memoryless schedulers, knowing the expiration order
o is incomparable to knowing e but not all of v. Where scheduler classes are
not equivalent, we provided small distinguishing SA similar to M1, which itself
distinguishes all pairs of classes that only differ in seeing either e or o. We refer
the interested reader to [8] (open-access) for a complete list of these six SA.

5.2 Lightweight SMC Possibilities and Challenges

Clearly, the naive extension of Algorithm1 to SA fails for the same reasons
as for PTA. However, as we explained above and in contrast to MA, not even
unbounded properties can be analysed via LSS by relying on a discrete class
of schedulers. At the same time, many of the considered classes of schedulers
are unrealistically powerful to consider as adversaries in a safety model checking
scenario, and need too much information to be useful for implementation as
strategies in a planning setup. For example, in many models the expiration times
represent information about future events, thus using e or o leads to prophetic
schedulers [21]. LSS based on some of the restricted classes of schedulers will
thus arguably be (more) useful. However, as long as continuous information is
involved (such as the values v), some form of discretisation of the state space
is needed. As we show below, there is ample room for the development of good
discretisations and exploitation of the tradeoffs between classes in LSS for SA.

5.3 Experiments

We have implemented a prototype of LSS for SA in modes. It performs simulation
on the exact concrete state space, but provides to schedulers a discretised view:
for each real-valued quantity, we identify all values in the same interval [i

q , i+1
q),

for integers i, q. We report experimental results on M1 (Fig. 11) and M2 through
M6 (see [8]) using LSS with m = 10000 and n = 14889 (so that ε = 0.005, cf.
Sect. 3.2) for each set of scheduler classes distinguished by the respective SA and
discretisation factors q ∈ { 1, 2, 4 }. All models have a structure similar to M1,
and in Table 3 we show the estimated lower bounds on the max. probabilities
p̂max of reaching ✓. We highlight the best result among the discretisation factors.

Discussion. Increasing the discretisation factor or increasing the scheduler power
generally also increases the number of decisions the schedulers can make. This
may also increase the number of critical decisions a scheduler must make to
achieve the max. probability. We clearly see this in the results. Some sched-
ulers achieve the best probability only with the finest discretisation, indicating
cases where fine discretisation is important for optimality and optimal sched-
ulers inside the class are not rare. We show the histograms for M3, Sml

�,v,-, and
q ∈ { 2, 4 } in Fig. 13. Indeed many extremal schedulers are found, and the vari-
ance appears to depend only on the discretisation. On the other hand, some
classes perform worse on some models as the discretisation gets finer, usually

350 P. R. D’Argenio et al.

Table 3. Results (p̂max) for SA

class q M1 M2 M3 M4 M5 M6

Shist
�,v,e

1 0.50

2 0.75

4 0.75

Shist
�,v,o

1 0.50

2 0.50

4 0.50

Shist
�,t,e

1 1.00

2 0.86

4 0.62

Shist
�,-,o

1 0.90

2 0.83

4 0.75

Shist
�,v,-

1 1.00

2 1.00

4 1.00

Shist
�,t,-

1 1.00

2 0.87

4 0.78

Sml
�,v,e

1 0.50 0.50

2 0.75 0.81

4 0.75 0.81

Sml
�,v,o

1 0.50 0.82

2 0.50 0.79

4 0.50 0.71

Sml
�,t,e

1 0.50 0.50 0.87

2 0.75 0.64 0.64

4 0.75 0.60 0.54

Sml
�,t,o

1 0.50 1.00 0.83

2 0.50 1.00 0.84

4 0.50 0.97 0.85

Sml
�,-,e

1 0.50 0.50 0.71

2 0.75 0.62 0.66

4 0.75 0.66 0.56

Sml
�,-,o

1 0.50 1.00 0.83

2 0.50 1.00 0.83

4 0.51 1.00 0.83

Sml
�,v,-

1 0.51 0.50

2 0.63 0.50

4 0.78 0.50

Sml
�,t,-

1 0.50 0.71

2 0.50 0.77

4 0.50 0.77

Sml
�,-,-

1 0.71

2 0.71

4 0.71

Fig. 13. Histograms for M3 and Sml
�,v,-

Fig. 14. Histograms for M2 and Sml
�,v,o

indicating that optimal schedulers are rare. Several other patterns exist, includ-
ing a case where q = 2 yields the best results, clearly exhibiting the tradeoff
between fine discretisation (i.e. a good scheduler is in the class) and rarity of
near-optimal schedulers (i.e. the good schedulers will very rarely be sampled).

Lightweight SMC in Nondeterministic Continuous Time 351

However, these intuitions do not always match; one interesting case is Sml
�,v,- for

M2. Its expiration times are drawn from a wide range, up to Uni(0, 8), compared
to the other SA that use at most Uni(0, 2). Thus q = 1 is already a relatively
finer discretisation. Looking at the histograms in Fig. 14, we see that the spread
of schedulers is good for q = 1, with schedulers on both ends of the spectrum
being rather likely, and results being near the actual maximum probability of
approx. 0.82. However, as the discretisation gets finer, the increase in the num-
ber of decisions dominates the potential to make better decisions, resulting in
schedulers almost normally distributed around the “random guess” behaviour
that leads to probability 0.5.

The experiments demonstrate that LSS can produce useful and informative
results with SA, but that there is a lot of potential for better discretisations.

6 Conclusion

We have taken a tour through the opportunities and challenges in LSS on three
continuous-time models. Thanks to discrete abstractions that fully preserve opti-
mal probabilities developed for exact model checking, efficient techniques for
PTA now exist. However, tackling time-bounded properties for MA, and any
kind of efficient LSS at all for SA, remain open challenges. Our preliminary
results for these two continuous-time and continuously stochastic models indi-
cate that LSS shows potential for MA (as evidenced by our case studies), and
offers a versatile tool to experiment with different restricted classes of sched-
ulers on SA. We plan to develop better discretisations for SA, and apply LSS
on larger case studies for both MA and SA. The ability to visualise the distri-
bution of schedulers provides valuable insights into the character of a model’s
nondeterminism.

Experiment Replication. We provide an artifact package [19] for independent
replication of our experiments. It contains modes, all model files, the raw results,
tabular views of those results (from which we derived Tables 1, 2 and 3 and the
histograms), and the Linux shell scripts that we used to perform the experiments.

Acknowledgments. The authors thank Yuliya Butkova (Saarland University) for
clarifying discussions on uniformisation and the time-bounded analysis of MA.

References

1. Alur, R., Dill, D.L.: A theory of timed automata. Theor. Comput. Sci. 126(2),
183–235 (1994). https://doi.org/10.1016/0304-3975(94)90010-8

2. Bengtsson, J., Yi, W.: Timed automata: semantics, algorithms and tools. In: Desel,
J., Reisig, W., Rozenberg, G. (eds.) ACPN 2003. LNCS, vol. 3098, pp. 87–124.
Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-27755-2 3

3. Bohlender, D., Bruintjes, H., Junges, S., Katelaan, J., Nguyen, V.Y., Noll, T.: A
review of statistical model checking pitfalls on real-time stochastic models. In: Mar-
garia, T., Steffen, B. (eds.) ISoLA 2014. LNCS, vol. 8803, pp. 177–192. Springer,
Heidelberg (2014). https://doi.org/10.1007/978-3-662-45231-8 13

https://doi.org/10.1016/0304-3975(94)90010-8
https://doi.org/10.1007/978-3-540-27755-2_3
https://doi.org/10.1007/978-3-662-45231-8_13

352 P. R. D’Argenio et al.

4. Brázdil, T.: Verification of Markov decision processes using learning algorithms. In:
Cassez, F., Raskin, J.-F. (eds.) ATVA 2014. LNCS, vol. 8837, pp. 98–114. Springer,
Cham (2014). https://doi.org/10.1007/978-3-319-11936-6 8

5. Budde, C.E., D’Argenio, P.R., Hartmanns, A.: Better automated importance split-
ting for transient rare events. In: Larsen, K.G., Sokolsky, O., Wang, J. (eds.)
SETTA 2017. LNCS, vol. 10606, pp. 42–58. Springer, Cham (2017). https://doi.
org/10.1007/978-3-319-69483-2 3

6. Budde, C.E., DArgenio, P.R., Hartmanns, A., Sedwards, S.: A statistical model
checker for nondeterminism and rare events. In: Beyer, D., Huisman, M. (eds.)
TACAS 2018. LNCS, vol. 10806, pp. 340–358. Springer, Cham (2018). https://doi.
org/10.1007/978-3-319-89963-3 20

7. Butkova, Y., Hatefi, H., Hermanns, H., Krčál, J.: Optimal continuous time Markov
decisions. In: Finkbeiner, B., Pu, G., Zhang, L. (eds.) ATVA 2015. LNCS, vol. 9364,
pp. 166–182. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24953-
7 12

8. D’Argenio, P.R., Gerhold, M., Hartmanns, A., Sedwards, S.: A hierarchy of sched-
uler classes for stochastic automata. In: Baier, C., Dal Lago, U. (eds.) FoSSaCS
2018. LNCS, vol. 10803, pp. 384–402. Springer, Cham (2018). https://doi.org/10.
1007/978-3-319-89366-2 21

9. D’Argenio, P.R., Hartmanns, A., Legay, A., Sedwards, S.: Statistical approximation
of optimal schedulers for probabilistic timed automata. In: Ábrahám, E., Huisman,
M. (eds.) IFM 2016. LNCS, vol. 9681, pp. 99–114. Springer, Cham (2016). https://
doi.org/10.1007/978-3-319-33693-0 7

10. D’Argenio, P.R., Katoen, J.P.: A theory of stochastic systems part I: stochastic
automata. Inf. Comput. 203(1), 1–38 (2005). https://doi.org/10.1016/j.ic.2005.
07.001

11. D’Argenio, P.R., Legay, A., Sedwards, S., Traonouez, L.M.: Smart sampling for
lightweight verification of Markov decision processes. Softw. Tools Technol. Transf.
17(4), 469–484 (2015). https://doi.org/10.1007/s10009-015-0383-0

12. David, A., Jensen, P.G., Larsen, K.G., Mikučionis, M., Taankvist, J.H.: Uppaal
Stratego. In: Baier, C., Tinelli, C. (eds.) TACAS 2015. LNCS, vol. 9035, pp. 206–
211. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46681-0 16

13. David, A., Larsen, K.G., Legay, A., Mikučionis, M., Wang, Z.: Time for statistical
model checking of real-time systems. In: Gopalakrishnan, G., Qadeer, S. (eds.)
CAV 2011. LNCS, vol. 6806, pp. 349–355. Springer, Heidelberg (2011). https://
doi.org/10.1007/978-3-642-22110-1 27

14. Eisentraut, C., Hermanns, H., Zhang, L.: On probabilistic automata in continuous
time. In: LICS, pp. 342–351. IEEE Computer Society (2010). https://doi.org/10.
1109/LICS.2010.41

15. Fehnker, A., Chaudhary, K.: Twenty percent and a few days – optimising a Bitcoin
majority attack. In: Dutle, A., Muñoz, C., Narkawicz, A. (eds.) NFM 2018. LNCS,
vol. 10811, pp. 157–163. Springer, Cham (2018). https://doi.org/10.1007/978-3-
319-77935-5 11

16. Forejt, V., Kwiatkowska, M., Norman, G., Parker, D.: Automated verification tech-
niques for probabilistic systems. In: Bernardo, M., Issarny, V. (eds.) SFM 2011.
LNCS, vol. 6659, pp. 53–113. Springer, Heidelberg (2011). https://doi.org/10.1007/
978-3-642-21455-4 3

17. Guck, D., Hatefi, H., Hermanns, H., Katoen, J.-P., Timmer, M.: Modelling, reduc-
tion and analysis of Markov automata. In: Joshi, K., Siegle, M., Stoelinga, M.,
D’Argenio, P.R. (eds.) QEST 2013. LNCS, vol. 8054, pp. 55–71. Springer, Heidel-
berg (2013). https://doi.org/10.1007/978-3-642-40196-1 5

https://doi.org/10.1007/978-3-319-11936-6_8
https://doi.org/10.1007/978-3-319-69483-2_3
https://doi.org/10.1007/978-3-319-69483-2_3
https://doi.org/10.1007/978-3-319-89963-3_20
https://doi.org/10.1007/978-3-319-89963-3_20
https://doi.org/10.1007/978-3-319-24953-7_12
https://doi.org/10.1007/978-3-319-24953-7_12
https://doi.org/10.1007/978-3-319-89366-2_21
https://doi.org/10.1007/978-3-319-89366-2_21
https://doi.org/10.1007/978-3-319-33693-0_7
https://doi.org/10.1007/978-3-319-33693-0_7
https://doi.org/10.1016/j.ic.2005.07.001
https://doi.org/10.1016/j.ic.2005.07.001
https://doi.org/10.1007/s10009-015-0383-0
https://doi.org/10.1007/978-3-662-46681-0_16
https://doi.org/10.1007/978-3-642-22110-1_27
https://doi.org/10.1007/978-3-642-22110-1_27
https://doi.org/10.1109/LICS.2010.41
https://doi.org/10.1109/LICS.2010.41
https://doi.org/10.1007/978-3-319-77935-5_11
https://doi.org/10.1007/978-3-319-77935-5_11
https://doi.org/10.1007/978-3-642-21455-4_3
https://doi.org/10.1007/978-3-642-21455-4_3
https://doi.org/10.1007/978-3-642-40196-1_5

Lightweight SMC in Nondeterministic Continuous Time 353

18. Hahn, E.M., Hartmanns, A., Hermanns, H., Katoen, J.P.: A compositional mod-
elling and analysis framework for stochastic hybrid systems. Form. Methods Syst.
Des. 43(2), 191–232 (2013). https://doi.org/10.1007/s10703-012-0167-z

19. Hartmanns, A.: Lightweight statistical model checking in nondeterministic con-
tinuous time (artifact). 4TU.Centre for Research Data (2018). https://doi.org/10.
4121/uuid:1453a13b-10ae-418f-a1ae-4acf96028118

20. Hartmanns, A., Hermanns, H.: The Modest Toolset: an integrated environment
for quantitative modelling and verification. In: Ábrahám, E., Havelund, K. (eds.)
TACAS 2014. LNCS, vol. 8413, pp. 593–598. Springer, Heidelberg (2014). https://
doi.org/10.1007/978-3-642-54862-8 51

21. Hartmanns, A., Hermanns, H., Krčál, J.: Schedulers are no Prophets. In: Probst,
C.W., Hankin, C., Hansen, R.R. (eds.) Semantics, Logics, and Calculi. LNCS,
vol. 9560, pp. 214–235. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-
27810-0 11

22. Hartmanns, A., Sedwards, S., D’Argenio, P.R.: Efficient simulation-based verifi-
cation of probabilistic timed automata. In: Winter Simulation Conference, pp.
1419–1430. IEEE (2017). https://doi.org/10.1109/WSC.2017.8247885

23. Hatefi, H., Hermanns, H.: Model checking algorithms for Markov automata. Elec-
tron. Commun. EASST 53 (2012) . https://doi.org/10.14279/tuj.eceasst.53.783

24. Hérault, T., Lassaigne, R., Magniette, F., Peyronnet, S.: Approximate probabilistic
model checking. In: Steffen, B., Levi, G. (eds.) VMCAI 2004. LNCS, vol. 2937, pp.
73–84. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24622-0 8

25. Kearns, M.J., Mansour, Y., Ng, A.Y.: A sparse sampling algorithm for near-optimal
planning in large Markov decision processes. Mach. Learn. 49(2–3), 193–208 (2002).
https://doi.org/10.1023/A:1017932429737

26. Kroese, D.P., Nicola, V.F.: Efficient estimation of overflow probabilities in queues
with breakdowns. Perform. Eval. 36, 471–484 (1999)

27. Kurkowski, S., Camp, T., Colagrosso, M.: MANET simulation studies: the incred-
ibles. Mob. Comput. Commun. Rev. 9(4), 50–61 (2005). https://doi.org/10.1145/
1096166.1096174

28. Kwiatkowska, M., Norman, G., Parker, D.: PRISM 4.0: verification of probabilistic
real-time systems. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS,
vol. 6806, pp. 585–591. Springer, Heidelberg (2011). https://doi.org/10.1007/978-
3-642-22110-1 47

29. Kwiatkowska, M.Z., Norman, G., Segala, R., Sproston, J.: Automatic verification
of real-time systems with discrete probability distributions. Theor. Comput. Sci.
282(1), 101–150 (2002). https://doi.org/10.1016/S0304-3975(01)00046-9

30. Legay, A., Sedwards, S., Traonouez, L.-M.: Scalable verification of Markov decision
processes. In: Canal, C., Idani, A. (eds.) SEFM 2014. LNCS, vol. 8938, pp. 350–362.
Springer, Cham (2015). https://doi.org/10.1007/978-3-319-15201-1 23

31. Okamoto, M.: Some inequalities relating to the partial sum of binomial probabili-
ties. Ann. Inst. Stat. Math. 10(1), 29–35 (1959)

32. Reijsbergen, D., de Boer, P., Scheinhardt, W.R.W., Haverkort, B.R.: On hypothesis
testing for statistical model checking. Softw. Tools Technol. Transf. 17(4), 377–395
(2015). https://doi.org/10.1007/s10009-014-0350-1

33. Younes, H.L.S., Simmons, R.G.: Probabilistic verification of discrete event systems
using acceptance sampling. In: Brinksma, E., Larsen, K.G. (eds.) CAV 2002. LNCS,
vol. 2404, pp. 223–235. Springer, Heidelberg (2002). https://doi.org/10.1007/3-
540-45657-0 17

https://doi.org/10.1007/s10703-012-0167-z
https://doi.org/10.4121/uuid:1453a13b-10ae-418f-a1ae-4acf96028118
https://doi.org/10.4121/uuid:1453a13b-10ae-418f-a1ae-4acf96028118
https://doi.org/10.1007/978-3-642-54862-8_51
https://doi.org/10.1007/978-3-642-54862-8_51
https://doi.org/10.1007/978-3-319-27810-0_11
https://doi.org/10.1007/978-3-319-27810-0_11
https://doi.org/10.1109/WSC.2017.8247885
https://doi.org/10.14279/tuj.eceasst.53.783
https://doi.org/10.1007/978-3-540-24622-0_8
https://doi.org/10.1023/A:1017932429737
https://doi.org/10.1145/1096166.1096174
https://doi.org/10.1145/1096166.1096174
https://doi.org/10.1007/978-3-642-22110-1_47
https://doi.org/10.1007/978-3-642-22110-1_47
https://doi.org/10.1016/S0304-3975(01)00046-9
https://doi.org/10.1007/978-3-319-15201-1_23
https://doi.org/10.1007/s10009-014-0350-1
https://doi.org/10.1007/3-540-45657-0_17
https://doi.org/10.1007/3-540-45657-0_17

	Lightweight Statistical Model Checking in Nondeterministic Continuous Time
	1 Introduction
	2 Lightweight Statistical Model Checking
	3 Probabilistic Timed Automata
	3.1 Lightweight SMC with Discrete Abstractions
	3.2 Experiments

	4 Markov Automata
	4.1 Lightweight SMC Possibilities and Challenges
	4.2 Experiments

	5 Stochastic Automata
	5.1 The Power of Schedulers for SA
	5.2 Lightweight SMC Possibilities and Challenges
	5.3 Experiments

	6 Conclusion
	References

