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Abstract Markov decision processes (MDP) are useful to
model optimisation problems in concurrent systems. To ver-
ify MDPs with efficient Monte Carlo techniques requires
that their nondeterminism be resolved by a scheduler. Recent
work has introduced the elements of lightweight techniques
to sample directly from scheduler space, but finding optimal
schedulers by simple sampling may be inefficient. Here we
describe “smart” sampling algorithms that canmake substan-
tial improvements in performance.

Keywords Statistical model checking · Sampling ·
Nondeterminism

1 Introduction

Markov decision processes describe systems that interleave
nondeterministic actions and probabilistic transitions. This
model has proved useful in many real optimisation problems
[33–35] and may be used to represent concurrent proba-
bilistic programs (see, e.g. [1,3]). Such models comprise
probabilistic subsystems whose transitions depend on the
states of the other subsystems, while the order in which
concurrently enabled transitions execute is nondeterministic.
This ordermay radically affect the behaviour of a system, and
it is thus useful to calculate the upper and lower bounds of
quantitative aspects of performance.

As an example, consider the network of computational
nodes depicted in Fig. 1 (relating to the case study in Sect.
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6.4). Given that one of the nodes is infected by a virus, we
would like to calculate the probability that a target node
becomes infected. If we know the probability that the virus
will pass from one node to the next, we could model the sys-
tem as a discrete timeMarkov chain and analyse it to find the
probability that any particular node will become infected.
Such a model ignores the possibility that the virus might
actually choose which node to infect, e.g. to maximise its
probability of passing through the barrier layer. Under such
circumstances some nodes might be infected with near cer-
tainty or with only very low probability, but this would not be
adequately captured by the Markov chain. By modelling the
virus’s choice of node as a nondeterministic transition in an
MDP, the maximum and minimum probabilities of infection
can be considered.

Figure 2 shows a typical fragment of an MDP. In a given
state (s0), an action (a1, a2, . . . ) is chosen nondetermin-
istically to select a distribution of probabilistic transitions
(p1, p2, . . . or p3, p4, etc.). A probabilistic choice is then
made to select the next state (s1, s2, s3, s4, . . . ). In this work,
we use the term scheduler to refer to a particular way the
nondeterminism in an MDP is resolved. We consider memo-
ryless schedulers, whose choices depend only on the current
state, and history-dependent schedulers whose choices may
also depend on previous states.

Classic analysis of MDPs is concerned with finding the
expected maximum or minimum reward for an execution of
the system, given individual rewards assigned to each of the
actions [2,31].Rewardsmayalso be assigned to states or tran-
sitions between states [21]. Here we focus on MDPs in the
context of model checking concurrent probabilistic systems,
to find schedulers that maximise or minimise the probabil-
ity of a property. Model checking is an automatic technique
to verify that a system satisfies a property specified in tem-
poral logic [7]. Probabilistic model checking quantifies the
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Fig. 2 Fragment of a Markov decision process

probability that a probabilistic system will satisfy a property
[13]. Numerical model checking algorithms to solve purely
probabilistic systems are costly in time and space. Finding
extremal probabilities in MDPs is generally more so, but is
nevertheless a polynomial function of the explicit description
of the MDP [3].

Statistical model checking (SMC) describes a collection
of Monte Carlo sampling techniques that make probabilistic
model checking more tractable by returning approximative
results with statistical confidence [37]. SMC algorithms gen-
erally avoid constructing an explicit representation of the
state space of a system, employing a compact executable
model to generate states on the fly during simulation. SMC
is therefore efficient for large, possibly infinite state, sys-
tems. Moreover, since the simulations are required to be
statistically independent, SMCmay be efficiently divided on
parallel computing architectures. Recent approaches to apply
SMC to MDPs are memory-intensive [4,6,14,15,26] or do
not find schedulers that optimise probabilities [4,14,26].
Classic sampling approaches for MDPs, such as the Kearns
algorithm [19], are memory-efficient but address a different
problem related to discounted MDPs.

This work extends [27]. In [27], the authors provide sam-
pling techniques that can form the basis of memory-efficient
(“lightweight”) verification of MDPs. The principal con-
tributions of [27] are (i) specifying the infinite behaviour
of schedulers using O(1) memory, (ii) sampling directly
and uniformly from scheduler space, and (iii) quantifying
the statistical confidence of multiple estimates or multiple
hypothesis tests. As in the case of standard SMC, sampling
makes the verification problem independent of the size of
the space of samples, with a convergence to the correct result
almost surely guaranteed with an infinite number of samples.

The use of lightweight techniques opens up the possibility
to efficiently distribute the problem on high-performance
massively parallel architectures, such as general purpose
computing on graphics processing units (GPGPU).

Sampling schedulers make a significant advance over
mere enumeration. For example, suppose half of all sched-
ulers for a given MDP and property are “near optimal”, i.e.
have a probability of satisfying the property that is deemed
adequately close to the true optimum. If all such near optimal
schedulers lie in the second half of the enumeration, it will be
necessary to enumerate half of all schedulers before finding
one that is near optimal. In contrast, one would expect to see
a near optimal scheduler after just two random selections, i.e.
the expectation with two samples is one. This phenomenon
is not limited to the case when schedulers are pathologi-
cally distributed with respect to the enumeration. Since the
total number of schedulers increases exponentially with path
length, it is usually very large. Hence, even when near opti-
mal schedulers are more uniformly distributed with respect
to the enumeration, it is typically not tractable to use enu-
meration to find one. Note that sampling also works with
non-denumerable spaces. The cost of finding a near optimal
scheduler with sampling is simply proportional to the rela-
tive mass of near optimal schedulers in scheduler space. Our
experiments with standard case studies suggest that this cost
is often reasonable.

It was demonstrated in [27] that simple undirected sam-
pling may be adequate for some case studies. In this work,
we present “smart sampling” algorithms that make signifi-
cantly better use of a simulation budget. For a given number
of candidate schedulers, smart sampling can reduce the sim-
ulation cost of extremal probability estimation by more than
N/�2+log2 N�, where N is theminimumnumber of simula-
tions necessary to achieve the required statistical confidence,
as given by (3). The basic notions of smart sampling were
hinted at in [27]. Simply put, a small part of the budget is
used to perform an initial assessment of the problem and
to generate an optimal initial candidate set of schedulers.
The remaining budget is used to test and refine the candidate
set: sub-optimal schedulers are removed and their budget
is re-allocated to good ones. Here we give a full exposi-
tion of smart sampling and explain its limitations. We have
implemented the algorithms in our SMCplatform, Plasma,1

and demonstrate their successful application on a number
of case studies from the literature. We include some exam-
ples that are intractable to numerical techniques and compare
the performance of our techniques with an alternative sam-
pling approach [15]. We also give an example where smart
sampling is less effective, but show that the results may
nevertheless be useful in bounding the range of extremal
probabilities.

1 http://project.inria.fr/plasma-lab/.
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1.1 Structure of the paper

In Sect. 2, we briefly survey closely related work. In Sect.
3 we introduce some definitions and notation necessary for
the sequel. In Sects. 4, we recall the basis of our lightweight
verification techniques. In Sect. 5, we describe the notion of
smart sampling and present our smart estimation and smart
hypothesis testing algorithms. In Sect. 6, we give the results
of experiments with a number of case studies from the litera-
ture. In Sect. 7, we discuss the limitations of smart sampling,
and in Sect. 8, we summarise the challenges and prospects
for our approach.

2 Related work

The classic algorithms to solve MDPs are ‘policy iteration’
and ‘value iteration’ [31]. Model checking algorithms for
MDPs may use value iteration applied to probabilities [1,
Ch. 10] or solve the same problem using linear programming
[3]. The principal challenge of finding optimal schedulers
is what has been described as the ‘curse of dimensionality’
[2] and the ‘state explosion problem’ [7]. In essence, these
two terms refer to the fact that the number of states of a
system increases exponentially with respect to the number
of interacting components and state variables. This phe-
nomenon has motivated the design of lightweight sampling
algorithms that find ‘near optimal’ schedulers to optimise
rewards in discounted MDPs [19], but the standard model
checking problem of finding extremal probabilities in non-
discounted MDPs is significantly more challenging. Since
nondeterministic and probabilistic choices are interleaved in
an MDP, schedulers are typically of the same order of com-
plexity as the system as a whole and may be infinite. As a
result, previous SMC algorithms for MDPs have considered
only memoryless schedulers or have other limitations.

The Kearns algorithm [19] is the classic ‘sparse sampling
algorithm’ for large, infinite horizon, discounted MDPs.
It constructs a ‘near optimal’ scheduler by approximat-
ing the best action from a current state, using a stochastic
depth-first search. Importantly, optimality is with respect
to discounted rewards, not probability. The algorithm can
work with large, potentially infinite state MDPs because it
explores a probabilistically bounded search space. This, how-
ever, is exponential in the discount. To find the action with
the greatest expected reward in the current state of a trace,
the algorithm recursively estimates the rewards of succes-
sor states, up to some maximum depth implicitly defined
by the discount and an error threshold. Actions are enumer-
ated, while probabilistic choices are explored by sampling,
with the number of samples set as a parameter. The discount
guarantees that the algorithm eventually converges. The stop-
ping criterion is when successive estimates differ by less

than the error threshold. Since the actions of a state are re-
evaluated every time the state is visited (because actions are
history-dependent), the performance of the Kearns algorithm
is critically dependent on its parameters.

There have been several recent attempts to apply SMC to
nondeterministic models [4,6,14,15,26,27].

In [4,14], the authors present on-the-fly algorithms to
remove ‘spurious’ nondeterminism, so that standard SMC
may be used. This approach is limited to the class of models
whose nondeterminismdoes not affect the resulting probabil-
ity of a property. The algorithms therefore do not attempt to
address the standard MDP model checking problems related
to finding optimal schedulers.

In [26], the authors first find a memoryless scheduler that
is near optimal with respect to a discounted reward scheme,
using an adaptation of the Kearns algorithm. This induces a
Markov chainwhose propertiesmaybeverifiedwith standard
SMC. By storing and re-using the choices in visited states,
the algorithm improves on the performance of the Kearns
algorithm, but is thus limited to tractable memoryless sched-
ulers. The near optimality of the induced Markov chain is
with respect to discounted rewards, not probability, hence
[26] does not address the standard model checking problems
of MDPs.

In [15], the authors present an SMC algorithm to decide
whether there exists a memoryless scheduler for a given
MDP, such that the probability of a property is above a speci-
fied threshold. The algorithm has an inner loop that generates
candidate schedulers by iteratively improving a probabilis-
tic scheduler, according to sample traces that satisfy the
property. The algorithm is limited to memoryless schedulers
because the improvement process learns by counting state-
action pairs. The outer loop tests the candidate scheduler
against the hypothesis using SMC and is iterated until an
example is found or sufficient attempts have been made. The
inner loop does not in general converge to the true maxi-
mum (the number of state-actions does not actually indicate
scheduler probability), but is sometimes successful because
the outer loop randomly explores local maxima. This makes
the number of samples used by the inner loop critical: too
many may reduce the randomness of the outer loop’s explo-
ration and thus significantly reduce the probability of finding
examples. A further problem is that the repeated hypothe-
sis tests of the outer loop will eventually produce erroneous
results.

In [6], the authors present learning algorithms to bound
themaximumprobability of reachability properties ofMDPs.
The algorithms work by refining upper and lower bounds
associated to individual state-actions, which are initially all
set to the most conservative values. Like the approaches of
[15,26], the algorithms are limited tomemoryless schedulers
of tractable size. Unlike the approach of [15], however, the
algorithms do not learn by counting the occurrence of state-
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actions. When a state that satisfies the property is reached
during simulation, the bounds of all the state-actions along
the path that reached it are updated according to the true
(or estimated) probabilities along the path. This ensures that
the bounds remain correct with respect to the true optima,
although convergence is very slow. Actions are initially cho-
sen uniformly at random (as in [15]), such that the initial
successful simulations will favour the “most popular” state-
actions, rather than those thatmaximise the probability. Since
the algorithms resolve nondeterminism by choosing uni-
formly at random, an action that maximises the probability
according to the current state-action bounds, the initial sim-
ulations may prevent the algorithms from providing tight
bounds.

The present work builds on the elements of lightweight
verification for MDPs introduced in [27]. In [27], the authors
use an incremental hash function and a pseudo-random num-
ber generator (PRNG) todefinehistory-dependent schedulers
using only O(1) memory. This allows the schedulers to be
selected at random and tested individually, thus facilitating
Monte Carlo algorithms that are indifferent to the size of
the sample space. The full details of these techniques are
described in Sect. 4.

3 Preliminaries

In this work, we make use of the following definitions.
An MDP comprises a possibly infinite set of states S, a

finite set of actions A, a finite set of probabilities Q and a
relation T : S × A × S × Q, such that ∀s ∈ S and ∀a ∈ A,∑

∀s′∈S T (s, a, s′) = r , where r ∈ {0, 1}. The execution of
an MDP produces a sequence of transitions between states
that induces a set of traces � = S+. Given an MDP in state
s, an action a is chosen nondeterministically from the set
{a′ ∈ A : ∑

∀s′∈S T (s, a′, s′) = 1}. A new state d ∈ S is
then chosen at random with probability T (s, a, d).

To make nondeterministic choices, we assume the exis-
tence of a scheduler. A (deterministic) history-dependent
scheduler is a functionS : � → A. A (deterministic) memo-
ryless scheduler is a functionM : S → A. Intuitively, at each
state in the course of an execution, a history-dependent sched-
uler chooses an action based on the sequence of previous
states, and a memoryless scheduler chooses an action based
only on the current state. We later mention in passing the
notionof a probabilistic scheduler,which is definedby a func-
tionP : S× A → Q, such that ∀s ∈ S,

∑
∀a∈A P(s, a) = r ,

with r ∈ {0, 1}. Intuitively, in any state of an execution,
an action is chosen probabilistically. In what follows we
use the general term ‘scheduler’ to mean history-dependent
schedulers (which include memoryless schedulers) unless
specifically qualified by the terms ‘memoryless’ or ‘prob-
abilistic’.

The application of a scheduler to an MDP resolves the
nondeterminism and thus induces a discrete time Markov
chain over which the probabilistic measure of temporal
logic properties may be defined. In this work, we describe
sampling algorithms to find deterministic schedulers that
approximately maximise or minimise the probability of such
properties.

In the context of SMC, we consider finite traces generated
by simulation, which are verified on the fly by an automa-
ton that encodes the property. The mechanisms, merits and
limitations of checking temporal properties on finite traces
are discussed at length in the literature, e.g. in [9–12,28].
In the sequel, we simply assume that there exists a function
to decide whether a trace satisfies a property, that traces are
of bounded length for a given property and that S and M

are therefore of finite domain. For concreteness, we define
bounded linear time logical properties using the following
syntax:

φ = φ ∨ φ|φ ∧ φ|¬φ|Xφ|Fkφ|Gkφ|φUkφ|α. (1)

The symbol α denotes an atomic property that is either true
or false in a state. Given a trace ω ∈ �, comprising states
s0s1 . . . , ω(i) denotes the trace suffix si si+1 . . . The satisfac-
tion relation |
 over (1) is constructed inductively as follows:

ω(i) |
 true

ω(i) |
α ⇐⇒ α evaluates true in state ωi

ω(i) |
¬ϕ ⇐⇒ ω(i) |
 ϕ 
∈ |

ω(i) |
ϕ1 ∨ ϕ2 ⇐⇒ ω(i) |
 ϕ1 or ω(i) |
 ϕ2

ω(i) |
Xkϕ ⇐⇒ ω(k+i) |
 ϕ

ω(i) |
ϕ1Ukϕ2 ⇐⇒
∃ j ∈ {i, . . . , i + k} : ω( j) |
 ϕ2

∧ ( j = i ∨ ∀l ∈ {i, . . . , j − 1} : ω(l) |
 ϕ1). (2)

Other elements of the relation are constructed using the
equivalences false ≡ ¬true, φ ∧ φ ≡ ¬(¬φ ∨ ¬φ),
Fkφ ≡ trueUkφ, Gkφ ≡ ¬(trueUk¬φ).

Figure 3 illustrates a simple MDP for which memoryless
and history-dependent schedulers give different optima for
the bounded temporal logic property X(ψ ∧XGt¬ψ) when
p1 
= p2 and t > 0. Intuitively, the property states that on the
next step,ψ will be true and, on the step after that,¬ψ will be

Fig. 3 MDP with different
optima for general and
memoryless schedulers
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remain true for t further time steps. The property is satisfied
by the sequence of states s0s1s0s0 . . . If p1 > p2, the max-
imum probability for s0s1 is achieved with action a2, while
the maximum probability for s0s0 is achieved with action a1.
Given that both transitions start in the same state, a memo-
ryless scheduler will not achieve the maximum probability
achievable with a history-dependent scheduler.

3.1 Statistical model checking with PLASMA

The algorithms we present here are implemented in our
SMC platform platform for learning and advanced statistical
model checking algorithms (Plasma [5]). Plasma is modu-
lar, allowing newmodelling languages, logics and algorithms
to be plugged in and take advantage of its graphical user inter-
face, its integrated development environment and its ability to
correctly divide simulations on parallel computational archi-
tectures. We introduce here the basic notions of SMC with
Plasma applied to Markov chains.

Plasma implicitly implements an indicator function
1(ω |
 ϕ) ∈ {0, 1} that returns 1 iff the trace ω ∈ � satisfies
property ϕ, where ϕ is specified according to (1) and (2). This
function is used to estimate with probabilistic confidence the
probability of the property or to decide an hypothesis about
the probability.

Typically, the probability of property ϕ is estimated by
the proportion of traces that individually satisfy it, i.e. p̂ =
1
N

∑N
i=1 1(ωi |
 ϕ), where p̂ denotes the estimated probabil-

ity of true probability p andω1, . . . , ωN are N independently
generated simulation traces. To bound the error of the esti-
mate, the user specifies an absolute error ε and a probability
δ. Plasma then calculates a priori the required minimum
number of simulations according to a Chernoff bound [30],
to ensure P(| p̂− p| ≥ ε) ≤ δ. Parameters ε and δ are related
to the number of simulations N by δ ≤ 2e−2Nε2 [30], giving

N ≥
⌈
(ln 2 − ln δ)/(2ε2)

⌉
. (3)

To test hypotheses of the form P(ω |
 ϕ) �� θ , where
��∈ {≤,≥} and θ is a user-specified probability threshold,
Plasma adopts the sequential probability ratio test (SPRT) of
Wald [32]. The number of simulations required to decide the
test is typically fewer than (3) but is dependent on howclose θ

is to the true probability. The number is therefore not known
in advance. To evaluate P(ω |
 ϕ) �� θ , the SPRT constructs
hypotheses H0 : P(ω |
 ϕ) ≥ p0 and H1 : P(ω |
 ϕ) ≤
p1, where p0 = θ + ε and p1 = θ − ε for some user-
defined interval specified by ε [32]. The SPRT also requires
parameters α and β to specify, respectively, the maximum
acceptable probabilities of incorrectly rejecting a true H0

and incorrectly accepting a false H0. To choose between H0

and H1, the SPRT defines the probability ratio

ratio =
n∏

i=1

(p1)1(ωi |
ϕ)(1 − p1)1(ωi |
¬ϕ)

(p0)1(ωi |
ϕ)(1 − p0)1(ωi |
¬ϕ)
,

where n is the number of simulation tracesωi , i ∈ {1, . . . , n},
generated so far. The test proceeds by performing a simu-
lation and calculating ratio until one of two conditions is
satisfied: H1 is accepted if ratio ≥ (1 − β)/α and H0 is
accepted if ratio ≤ β/(1 − α).

Parallelisation of SMC is conceptually simple with light-
weight algorithms, but balancing the simulation load on
unreliable or heterogeneous computing devices must be
achieved without introducing a “selection bias”. The prob-
lem arises because simulation traces that satisfy a property
will, in general, take a different time to generate than those
which do not. If the SMC task is divided among a number
of clients of different speed or reliability, a naive balancing
approach will be biased in favour of results that are generated
quickly. To overcome this phenomenon, Plasma adopts the
load balancing algorithm proposed in [36]. Plasma’s GUI
facilitates easy parallelisation on ad hoc networked comput-
ers or on dedicated grids and clusters. The server application
(an instance of Plasma) starts the job and waits to be con-
tacted by available clients (instances of Plasma Service).
Our estimation experiments in Sect. 6 were distributed on
the Igrida computing grid.2

4 Lightweight verification of MDPs

In this section, we recall the elemental sampling techniques
of [27].

Storing schedulers as explicit mappings do not scale,
so we represent schedulers using uniform PRNGs that
are initialised with a seed value and iterated to generate
the next pseudo-random number. In general, such PRNGs
aim to ensure that arbitrary subsets of sequences of iter-
ates are uniformly distributed and that consecutive iterates
are statistically independent. PRNGs are commonly used
to implement the uniform probabilistic scheduler, which
chooses actions uniformly at random and can thus explore
all possible combinations of nondeterministic choices. Exe-
cuting such an implementation twice with the same seed will
produce identical traces. Executing the implementation with
a different seedwill produce an unrelated set of choices. Indi-
vidual deterministic schedulers cannot be identified, so it is
not possible to estimate the probability of a property under a
specific memoryless or history-dependent scheduler.

We use a PRNG to resolve nondeterministic choices, but
not tomake those choices probabilistically.We use it to range
over all the possible choices in such a way that repeated

2 http://igrida.gforge.inria.fr.
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scheduler samplings will eventually consider all possible
combinations of sequences of actions. We make use of the
fact that the seed of a PRNG uniquely defines the sequence
of pseudo-random values to ensure that the actions taken by
a scheduler are consistent between simulations. We can thus
identify individual schedulers.

An apparently plausible solution is to use indepen-
dent PRNGs to resolve nondeterministic and probabilistic
choices. It is then possible to generate multiple probabilis-
tic simulation traces per scheduler by keeping the seed of
the PRNG for nondeterministic choices fixed while choosing
random seeds for a separate PRNG for probabilistic choices.
Unfortunately, the schedulers generated by this approach do
not span the full range of general or even memoryless sched-
ulers. Since the sequence of iterates from the PRNG used
for nondeterministic choices will be the same for all instan-
tiations of the PRNG used for probabilistic choices, the i th
iterate of the PRNG for nondeterministic choices will always
be the same, regardless of the state arrived at by the previous
probabilistic choices. The i th chosen action can be neither
state nor trace dependent, as required by our definitions of
memoryless and history-dependent schedulers, respectively.

4.1 General schedulers using hash functions

We therefore construct a per-step PRNG seed that is a hash
of the integer identifying a specific scheduler concatenated
with an integer representing the sequence of states up to the
present.

We assume that a state of anMDP is an assignment of val-
ues to a vector of system variables vi , i ∈ {1, . . . , n}. Each vi
is represented by a number of bits bi , typically correspond-
ing to a primitive data type (int, float, double, etc.). The state
can thus be represented by the concatenation of the bits of
the system variables, such that a sequence of states may be
represented by the concatenation of the bits of all the states.
Without loss of generality, we interpret such a sequence of
states as an integer of

∑n
i=1 bi bits, denoted s, and refer to

this in general as the trace vector. A scheduler is denoted by
an integer σ , which is concatenated to s (denoted σ : s) to
uniquely identify a trace and a scheduler. Our approach is to
generate a hash code h = H(σ : s) and to use h as the seed
of a PRNG that resolves the next nondeterministic choice.

The hash function H thus maps σ : s to a seed that is
deterministically dependent on the trace and the scheduler.
The PRNG maps the seed to a value that is uniformly dis-
tributed but nevertheless deterministically dependent on the
trace and the scheduler. In this way, we approximate the
deterministic functions S and M described in Sect. 3. The
(potential) approximation arises because there may be more
possible schedulers than can be uniquely identified by the bits
of σ . Importantly, the standard properties of hash functions
and PRNGs serve to ensure that there is no systematic bias.

The hash function is expected to map a large set of integers
to a smaller set of integers such that sequential or other-
wise related input values have low probability of collision.
Sequential iterates of the PRNG are expected to be (pseudo)
statistically independent and (pseudo) uniformly distributed.
Hence, if σ is chosen uniformly at random, the probability of
taking a particular action in a state (or following a sequence
of states) will be (pseudo) uniformly distributed among the
enabled actions.

Algorithm 1 is the basic simulation function used by our
algorithms.

Algorithm 1: Simulate
Input:
M: an MDP with initial state s0
ϕ: a property
σ : an integer identifying a scheduler

Output:
ω: a simulation trace

1 Let Uprob,Unondet be uniform PRNGs with respective samples
rpr, rnd

2 Let H be a hash function
3 Let s denote a state, initialised s ← s0
4 Let ω denote a trace, initialised ω ← s
5 Let s be the trace vector, initially empty
6 Set seed of Uprob randomly
7 while ω |
 ϕ is not decided do
8 s ← s : s
9 Set seed of Unondet to H(σ : s)

10 Iterate Unondet to generate rnd and use to resolve
nondeterministic choice

11 Iterate Uprob to generate rpr and use to resolve probabilistic
choice

12 Set s to the next state
13 ω ← ω : s

4.2 An efficient iterative hash function

To implement our approach, we use an efficient hash function
that constructs seeds incrementally. The function is based on
modular division [20, Ch. 6], such that h = (σ : s) mod m,
where m is a suitably large prime.

Since s is a concatenation of states, it is usually very much
larger than the maximum size of integers supported as primi-
tive data types. Hence, to generate h, we useHorner’smethod
[17] and [20, Ch. 4]: we set h0 = σ and find h ≡ hn (n as in
Sect. 4.1) by iterating the recurrence relation

hi = (hi−12
bi + vi ) mod m. (4)

The size of m defines the maximum number of different
hash codes. The precise value of m controls how the hash
codes are distributed. To avoid collisions, a simple heuristic
is that m should be a large prime not close to a power of
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2 [8, Ch. 11]. The number of schedulers is typically much
larger than the number of possible hash codes, hence col-
lisions are theoretically inevitable. This means that not all
possible schedulers are realisable with a given hash function
and PRNG. We suppose, however, that there is no scheduler
that cannot be realised with some hash function and PRNG.
The problem of collisions can thus be conceivably addressed
by also choosing the hash function and PRNG at random. A
scheduler would then be defined by its label, its hash func-
tion and its PRNG. We do not implement this idea here to
avoid unnecessary complication and because collisions are
not the principal limitation. There are typically many orders
of magnitudemore seeds than we can test, hence the problem
of finding the best available scheduler supersedes the prob-
lem that the best available scheduler may not be optimal.
We anticipate that our proposed solutions to accelerate con-
vergence (property-focused scheduler space and composite
schedulers) will effectively bypass the collision problem.

In practical implementations, it is an advantage to perform
calculations using primitive data types that are native to the
computational platform, so the sum in (4) should always be
less than or equal to the maximum permissible value. To
achieve this, given x, y,m ∈ N, we note the following con-
gruences:

(x + y) mod m ≡ (x mod m + y mod m) mod m (5)

(xy) mod m ≡ ((x mod m)(y mod m)) mod m. (6)

The addition in (4) can thus be re-written in the form of (5),
such that each term has a maximum value of m − 1:

hi = ((hi−12
bi ) mod m + (vi ) mod m) mod m. (7)

To prevent overflow, m must be no greater than half the
maximum possible integer. Re-writing the first term of (7) in
the form of (6), we see that before taking the modulus it will
have a maximum value of (m − 1)2, which will exceed the
maximum possible integer. To avoid this, we take advantage
of the fact that hi−1 is multiplied by a power of 2 and that m
has been chosen to prevent overflow with addition. We thus
apply the following recurrence relation:

(hi−12
j ) mod m = (hi−12

j−1) mod m

+(hi−12
j−1) mod m. (8)

Equation (8) allows our hash function to be implemented
using efficient native arithmetic. Moreover, we infer from (4)
that to find the hash code corresponding to the current state
in a trace, we need only know the current state and the hash
code from the previous step. When considering memoryless
schedulers, we need only know the current state.

4.3 Hypothesis testing multiple schedulers

Weapply the SPRT tomultiple (randomly chosen) schedulers
to test hypotheses of the form there exists a scheduler such
that P(ω |
 ϕ) �� p. To test hypotheses of the form there is
no scheduler such that P(ω |
 ϕ) �� p, our algorithm sim-
ply searches for a scheduler that disproves the hypothesis.
Since the probability of error with the SPRT applied to mul-
tiple hypotheses is cumulative, we consider the probability of
no errors in any of M tests. Hence, in order to ensure overall
error probabilities α and β, we adopt αM = 1− M

√
1 − α and

βM = 1− M
√
1 − β in our stopping conditions. H1 is accepted

if ratio ≥ (1 − βM )/αM and H0 is accepted if ratio ≤
βM/(1 − αM ). Algorithm 2 demonstrates the sequential
hypothesis test for multiple schedulers. If the algorithm finds
an example, the hypothesis is true with at least the specified
confidence.

Algorithm 2: SPRT for multiple schedulers
Input:
M, ϕ: the MDP and property of interest
H ∈ {H0, H1}: the hypothesis with interval θ ± ε

α, β: the desired error probabilities of H
M : the maximum number of schedulers to test

Output: A scheduler that satisfies H or an inconclusive result

1 Let p0 = θ + ε and p1 = θ − ε be the bounds of H
2 Let αM = 1 − M

√
1 − α and βM = 1 − M

√
1 − β

3 Let A = (1 − βM )/αM and B = βM/(1 − αM )

4 Let Useed be a uniform PRNG and σ be its sample
5 for i ∈ {1, . . . , M} while H is not accepted do
6 Iterate Useed to generate σi
7 Let ratio = 1
8 while ratio > A ∧ ratio < B do
9 ω ← Simulate(M, ϕ, σi )

10 ratio ← (p1)1(ω|
ϕ)(1−p1)1(ω|
¬ϕ)

(p0)1(ω|
ϕ)(1−p0)1(ω|
¬ϕ) ratio

11 if ratio ≤ A ∧ H = H0 ∨ ratio ≥ B ∧ H = H1 then
12 accept H

4.4 Estimating multiple schedulers

We consider the strategy of sampling M schedulers to esti-
mate the maximum or minimum probabilities of satisfying a
property. We thus generate M estimates { p̂1, . . . , p̂M } cor-
responding to true values {p1, . . . , pM }, and take either the
maximum ( p̂max) or minimum ( p̂min), as required. To over-
come the cumulative probability of error with the standard
Chernoff bound, we specify that all estimates p̂i must be
within ε of their respective true values pi , ensuring that any
p̂min, p̂max ∈ { p̂1, . . . , p̂M } are within ε of their true value.
Given that all estimates p̂i are statistically independent, the
probability that they are all less than their upper bound is
expressed by
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P

(
M∧

i=1

p̂i − pi ≤ ε

)

≥ (1 − e−2Nε2)M .

Hence, P(
∨M

i=1 p̂i − pi ≥ ε) ≤ 1− (1− e−2Nε2)M , giving

N ≥
⌈
− ln

(
1 − M

√
1 − δ

)
/(2ε2)

⌉
.

This ensures that P(pmin − p̂min ≥ ε) ≤ δ and P( p̂max −
pmax ≥ ε) ≤ δ. To ensure the usual stronger conditions that
P(|pmax − p̂max| ≥ ε) ≤ δ and P(|pmin − p̂min| ≥ ε) ≤ δ,
we have

N ≥
⌈(

ln 2 − ln
(
1 − M

√
1 − δ

))
/(2ε2)

⌉
. (9)

N scales logarithmically with M , making it tractable to
considermany schedulers.Note that in the case ofM = 1,Eq.
(9) degenerates to (3).Note also that the confidence expressed
by (9) is with respect to the sampled set, not with respect to
the true extrema.

Algorithm 3 is the resulting extremal probability esti-
mation algorithm for multiple schedulers. Note that the
algorithmdistinguishes pmin, pmax (the notional true extreme
probabilities), pmin, pmax (the true probabilities for the
schedulers chosen by the algorithm) and p̂min, p̂max (the esti-
mated probabilities using the chosen schedulers).

Algorithm 3: Estimation with multiple schedulers
Input:
M, ϕ: the MDP and property of interest
ε, δ: the required Chernoff bound
M : the number of schedulers to test

Output: p̂min ≈ pmin, p̂max ≈ pmax, where pmin ≥ pmin,
pmax ≤ pmax and P(|pmin − p̂min| ≥ ε) ≤ δ,
P(|pmax − p̂max| ≥ ε) ≤ δ

1 Let N = ⌈
ln(2/(1 − M

√
1 − δ ))/(2ε2)

⌉
be the no. of simulations

per scheduler
2 Let Useed be a uniform PRNG and σ its sample
3 Initialise p̂min ← 1 and p̂max ← 0
4 Set seed of Useed randomly
5 for i ∈ {1, . . . , M} do
6 Iterate Useed to generate σ i
7 Let truecount = 0 be the initial number of traces that satisfy ϕ

8 for j ∈ {1, . . . , N } do
9 ω j ← Simulate(M, ϕ, σi )

10 truecount ← truecount + 1(ω j |
 ϕ)

11 Let p̂i = truecount/N
12 if p̂max < p̂i then
13 p̂max = p̂i

14 if p̂i > 0 ∧ p̂min > p̂i then
15 p̂min = p̂i

16 if p̂max = 0 then
17 No schedulers were found to satisfy ϕ
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Fig. 4 Empirical cumulative distribution of estimates from Algorithm
3 applied to MDP of Fig. 3

Figure 4 shows the empirical cumulative distribution of
schedulers generated by Algorithm 3 applied to the MDP of
Fig. 3, using p1 = 0.9, p2 = 0.5, ϕ = X(ψ ∧ XG4¬ψ),
ε = 0.01, δ = 0.01 and M = 300. The vertical lines
mark the true probabilities of ϕ under each of the history-
dependent andmemoryless schedulers (indicated by arrows).
The shaded areas show the ±ε error bounds, relative to the
true probabilities. There are multiple estimates per sched-
uler, but all estimates are within their respective confidence
bounds.

5 Smart sampling

The simple sampling strategies used by Algorithms 2 and
3 have the disadvantage that they allocate equal simulation
budget to all schedulers, regardless of their merit. In general,
the problemweaddress has two independent components: the
rarity of near optimal schedulers and the probability of the
property under a near optimal scheduler. We should allocate
our simulation budget accordingly and not waste budget on
schedulers that are clearly not optimal.

Motivated by the above, our smart estimation algorithm
comprises three stages: (i) an initial undirected sampling
experiment to discover the nature of the problem, (ii) a tar-
geted sampling experiment to generate a candidate set of
schedulers with high probability of containing an optimal
scheduler and (iii) iterative refinement of the candidates to
estimate the probability of the best scheduler with specified
confidence. By excluding the schedulers with the worst esti-
mated probabilities and re-allocating their simulation budget
to the schedulers that remain, at each iterative step of stage
(iii), the number of schedulers reduces while the confidence
of their estimates increases. With a suitable choice of per-
iteration budget, the algorithm is guaranteed to terminate.
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In the following subsection, we develop the theoretical
basis of stage (ii).

5.1 Maximising the probability of seeing a good
scheduler

We assume the existence of an MDP and a bounded property
ϕ whose probability wewish tomaximise by choosing a suit-
able scheduler from the finite setS. Let P : S → [0, 1] be a
functionmapping schedulers to their probability of satisfying
ϕ and let pmax = maxσ∈S(P(σ )). For the sake of exposition,
we consider the problem of finding a scheduler that max-
imises the probability of satisfying ϕ and define a “good”
(near optimal) scheduler to be one in the set Sg = {σ ∈
S|P(σ ) ≥ pmax − ε} for some ε ∈ (0, pmax]. Intuitively,
a good scheduler is one whose probability of satisfying ϕ is
within ε of pmax, noting that we may similarly define a good
scheduler to be one within ε of pmin = minσ∈S(P(σ )), or to
be in any other subset ofS. In particular, to address reward-
basedMDP optimisations, a good scheduler could be defined
to be the subset of S that is near optimal with respect to a
reward scheme. The notion of a “best” scheduler follows
intuitively from the definition of a good scheduler.

Given that we sample uniformly from S, the probability
of finding a good scheduler is pg = |Sg|/|S|. The average
probability of a good scheduler is pg = ∑

σ∈Sg
P(σ )/|Sg|.

If we select M schedulers at random and verify each with
N simulations, the expected number of traces that satisfy ϕ

using a good scheduler is thus MpgNpg . The probability of
seeing a trace that satisfies ϕ using a good scheduler is the
cumulative probability

(1 − (1 − pg)
M )(1 − (1 − pg)

N ). (10)

Hence, for a given simulation budget Nmax = NM , to imple-
ment stage (ii), the idea is to choose N and M to maximise
(10) and keep any scheduler that produces at least one trace
that satisfies ϕ. Since, a priori, we are generally unaware of
even the magnitudes of pg and pg , stage (i) is necessarily
uninformed and we set N = M = �√Nmax�. The results of
stage (i) allow us to estimate pg and pg (see Fig. 9a) and thus
maximise (10). This may be done numerically, but we have
found the heuristic N = �1/pg� to be near optimal in all but
extreme cases.

5.2 Smart estimation

Algorithm 4 is our smart estimation algorithm to find sched-
ulers that maximise the probability of a property. The
algorithm to find minimising schedulers is similar. As with
Algorithms 3 and 4 distinguishes pmax (the notional true
maximum probability), pmax (the true probability using the

current best candidate scheduler) and p̂max (the estimated
probability using the best candidate scheduler).

Lines 1–5 implement stage (i): N and M are set equal,
simulation experiments are performed and the maximum
estimate p̂max is found. Lines 6–10 implement stage (ii):
the initial candidate set of schedulers is generated by set-
ting N = �1/ p̂max� and removing schedulers that produce
no traces that satisfy the property. Lines 11–23 implement
stage (iii). The inner loop (lines 16–19) requests simula-
tions and exits as soon as the number of simulations is
sufficient for the required confidence or when the maxi-
mum number for the iteration has been reached. Lines 20–23
calculate the estimates and select the upper quantile of sched-
ulers for the next iteration. The outer loop (line 12) quits
once the set of estimates are known with the required confi-
dence.

The per-iteration simulation budget Nmax must be greater
than or equal to the number needed by the standard Chernoff
bound (3), to ensure that there will be sufficient simulations
to guarantee the specified confidence if the algorithm refines
the candidate set to a single scheduler. Typically, the per-
iteration budget will be greater than the minimum, such that
the required confidence is reached before refining the set of
schedulers to a single element. Under these circumstances,
the confidence is judged according to the Chernoff bound for
multiple estimates (9).

Algorithm 4 may be further optimised by re-using the
simulation results from previous iterations of stage (iii). The
contribution is small, however, because confidence decreases
exponentially with the age (in terms of iterations) of the
results.

5.3 Smart hypothesis testing

We wish to test the hypothesis that there exists a scheduler
such that property ϕ has probability �� θ , where ��∈ {≥,≤}.
Two advantages of sequential hypothesis testing are that it
is not necessary to estimate the actual probability to know if
an hypothesis is satisfied, and the easier the hypothesis is to
satisfy, the quicker it is to get a result. Algorithm 5 maintains
these advantages and uses smart sampling to improve on the
performance of Algorithm 2. For the purposes of exposition,
Algorithm5 tests H0, as described in Sect. 3.1. The algorithm
to test H1 is similar.

A sub-optimal approach would be to simply use Algo-
rithm 4 to refine a set of schedulers until one is found whose
estimate satisfies the hypothesis with confidence according
to a Chernoff bound. We improve on this with sequential
hypothesis testing, using the results given in Sect. 4.3 and as
applied in Algorithm 2. Algorithm 5 refines a set of sched-
ulers according to their estimated probability in the same
manner as Algorithm 4, but also uses the simulation results
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Algorithm 4: Smart estimating
Input:
M: an MDP
ϕ: a property
ε, δ: the required Chernoff bound
Nmax ≥ ln(2/δ)/(2ε2): the per-iteration budget

Output: p̂max ≈ pmax, where pmax ≤ pmax and
P(|pmax − p̂max| ≥ ε) ≤ δ

1 N ← �√Nmax�; M ← �√Nmax�
2 S ← {M seeds chosen uniformly at random}
3 ∀σ ∈ S,∀i ∈ {1, . . . , N } : ωσ

i ← Simulate(M, ϕ, σ )

4 R : S → N maps scheduler seeds to number of traces satisfying
ϕ:
R ← {(σ, n)|σ ∈ S ∧ N � n = ∑N

i=1 1(ω
σ
i |
 ϕ)}

5 p̂max ← maxσ∈S(R(σ )/N )

6 N ← �1/ p̂max�, M ← �Nmax p̂max�
7 S ← {M seeds chosen uniformly at random}
8 ∀σ ∈ S,∀i ∈ {1, . . . , N } : ωσ

i ← Simulate(M, ϕ, σ )

9 R ← {(σ, n)|σ ∈ S ∧ N � n = ∑N
i=1 1(ω

σ
i |
 ϕ)}

10 S ← {σ ∈ S|R(σ ) > 0}
11 ∀σ ∈ S, R(σ ) ← 0; i ← 0; conf ← 1
12 while conf > δ ∧ S 
= ∅ do
13 i ← i + 1
14 Mi ← |S|
15 Ni ← 0
16 while conf > δ ∧ Ni < �Nmax/Mi� do
17 Ni ← Ni + 1

18 conf ← 1 − (1 − e−2ε2Ni )Mi

19 ∀σ ∈ S : ωσ
Ni

← Simulate(M, ϕ, σ )

20 R ← {(σ, n)|σ ∈ S ∧ N � n = ∑Ni
j=1 1(ω

σ
j |
 ϕ)}

21 p̂max ← maxσ∈S(R(σ )/Ni )

22 R′ : {1, . . . , |S|} → S is an injective function s.t.
∀(n, σ ), (n′, σ ′) ∈ R′, n > n′ 
⇒ R(σ ) ≥ R(σ ′)

23 S ← {σ ∈ S|σ = R′(n) ∧ n ∈ {�|S|/2�, . . . , |S|}}

to test each scheduler with respect to an hypothesis test for
multiple schedulers. This allows the algorithm to terminate
quickly when the hypothesis is easily satisfied.

We also include a further refinement. Smart sampling
implicitly exploits the fact that the average estimate at each
iteration is knownwith high confidence, i.e. confidence given
by the total simulation budget. This comes from the linear-
ity of expectation and the result of [16], where the bound is
specified for a sum of arbitrary random variables, not neces-
sarily with identical expectations. It follows that the SPRT
may also be applied to the sum of results produced during
the course of an iteration. This is because the distribution of
the total number of successes after a number of sequential
hypothesis tests is equivalent to the distribution of successes
obtained with the same total number of trials performed on
the weighted average probability of the individual unknown
probabilities (the weights being the number of trials on the
individual tests). By the convexity of the weighted average,
if the hypothesis is satisfied with respect to the total number
of trials, there exists a scheduler whose probability satisfies
the hypothesis with equal or better confidence.

In summary, if the “average scheduler” or an individual
scheduler ever satisfies the hypothesis (lines 23, 24), the algo-
rithm immediately terminates and reports that the hypothesis
is satisfied with the specified confidence. If all schedulers
falsify the hypothesis (line 27), the algorithm terminates and
reports that no scheduler in the candidate set satisfies the
hypothesis. Note that this outcome does not imply that no
scheduler exists that will satisfy the hypothesis, only that no
scheduler was found with the given budget. If neither of the
previous conditions apply, the algorithm terminates with an
inconclusive result: there exists a scheduler in the candidate
set that does not reject the hypothesis given the parameters.

We implement one further important optimisation.We use
the threshold probability θ to directly define the simulation
budget to generate the candidate set of schedulers, i.e. N =
�1/θ�, M = �θNmax� (line 3). This is justified because we
need only find schedulers whose probability of satisfying ϕ

is greater than θ . By setting N = �1/θ�, Eq. (10) ensures that
such schedulers, if they exist, have high probability of being
observed. The initial uninformed exploration [stage (i)] used
in Algorithm 4 is thus not necessary.

Algorithm 5 is our smart hypothesis testing algorithm.
Note thatwe do not set a preciseminimumper-iteration simu-
lation budget because we expect the hypothesis to be decided
with many fewer simulations than would be required to esti-
mate the probability. In practice, it is expedient to initially
set a low per-iteration budget (e.g. 1000) and repeat the algo-
rithm with an increased budget (e.g. increased by an order of
magnitude) if the previous test was inconclusive.

6 Case studies

To demonstrate the performance of smart sampling, we have
implemented Algorithms 4 and 5 in our SMC platform
Plasma [5]. We performed a number of experiments on
standard models taken from the numerical model checking
literature,most ofwhich canbe found illustratedon thePrism
website.3 We found that all of our estimation experiments
achieved their specifiedChernoff bounds (ε = δ = 0.01 in all
cases) with a relatively modest per-iteration simulation bud-
get of 105 simulations. The actual number of simulation cores
used for the estimation results was subject to availability and
varied between experiments. To facilitate comparisons, in
what follows, we normalise all timings to be with respect
to 64 cores. Typically, each data point was produced in a
few tens of seconds. Our hypothesis tests were performed
on a single machine, without distribution. Despite this, most
experiments completed in just a few seconds (some in frac-
tions of a second), demonstrating that our smart hypothesis

3 http://www.prismmodelchecker.org/casestudies/.
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Algorithm 5: Smart hypothesis testing
Input:
M: an MDP
ϕ: a property
H0 : P(ω |
 ϕ) ≥ θ ± ε is the hypothesis
α, β: the desired error probabilities of H0
Nmax: the per-iteration simulation budget

Output: A scheduler that satisfies H0 or an inconclusive result

1 Let p0 = θ + ε, p1 = θ − ε

2 Let A = (1 − β)/α, B = β/(1 − α)

3 N ← �1/θ�; M ← �θNmax�
4 S ← {M seeds chosen uniformly at random}
5 ∀σ ∈ S,∀i ∈ {1, . . . , N } : ωσ

i ← Simulate(M, ϕ, σ )

6 R ← {(σ, n)|σ ∈ S ∧ N � n = ∑N
i=1 1(ω

σ
i |
 ϕ)}

7 if (p1)
∑

R(σ )(1−p1)Nmax−∑
R(σ )

(p0)
∑

R(σ )(1−p0)Nmax−∑
R(σ )

≤ A then

8 Accept H0 and quit

9 S ← {σ ∈ S|R(σ ) > 0}, M ← |S| + 1
10 while M > 1 do
11 M ← |S|
12 Let αM = 1 − M

√
1 − α, βM = 1 − M

√
1 − β

13 Let AM = (1 − βM )/αM , BM = βM/(1 − αM )

14 Let ratio = 1
15 for σi ∈ S, i ∈ {1, . . . , M} do
16 Let ratioi = 1
17 for j ∈ {1, . . . , N } do
18 ω ← Simulate(M, ϕ, σi )

19 if ω |
 ϕ then
20 ratio ← p1

p0
ratio; ratioi ← p1

p0
ratioi

21 else
22 ratio ← 1−p1

1−p0
ratio; ratioi ← 1−p1

1−p0
ratioi

23 if ratio ≤ A ∨ ratioi ≤ AM then
24 Accept H0 and quit: a scheduler exists

25 if ratioi ≥ BM then
26 Reject H0 for σi and quit this loop

27 if All schedulers rejected H0 then
28 Quit: no scheduler in candidates satisfies H0

29 R′ : {1, . . . , |S|} → S is an injective function s.t.
∀(n, σ ), (n′, σ ′) ∈ R′, n > n′ 
⇒ R(σ ) ≥ R(σ ′)

30 S ← {σ ∈ S|σ = R′(n) ∧ n ∈ {�|S|/2�, . . . , |S|}}
31 A scheduler exists that does not reject H0 with the specified α, β

and ε

testing algorithm is able to take advantage of easy hypothe-
ses.

6.1 IEEE 802.11 wireless LAN protocol

We consider a reachability property of the IEEE 802.11
wireless LAN (WLAN) protocol, using the discrete time
(MDP) model of [25]. The protocol aims to avoid “colli-
sions” between devices sharing a communication channel,
by means of an exponential backoff procedure when a colli-
sion is detected. We therefore estimate the probability of the
second collision at various time steps, usingAlgorithm4with
per-iteration budget of 105 simulations. Figure 5 illustrates
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Fig. 5 Estimated maximum and minimum probabilities of second col-
lision in WLAN protocol (circles). Shaded regions denote true values
±0.01

Table 1 Hypothesis test results for CSMA/CD and WLAN protocols

CSMA 3 4 θ 0.5 0.8 0.85 0.86 0.9 0.95

Time 0.5 3.5 737 * 2.9 2.5

CSMA 3 6 θ 0.3 0.4 0.45 0.48 0.5 0.8

Time 1.3 5.2 79 * 39 2.6

CSMA 4 4 θ 0.5 0.7 0.8 0.9 0.93 0.95

Time 0.2 0.3 4.0 8.6 * 3.8

WLAN 5 θ 0.1 0.15 0.18 0.2 0.25 0.5

Time 0.8 2.6 * 2.9 2.9 1.3

WLAN 6 Time 1.3 2.2 * 6.5 1.3 1.3

θ is the threshold probability or the true probability (markedby asterisk).
Time is simulation time in seconds to achieve the correct result on a
single machine

the estimated maximum probabilities ( p̂max) and minimum
probabilities ( p̂min) for time steps k ∈ {0, 10, . . . , 100}. The
property is expressed as Fkcol = 2. The shaded areas indi-
cate the true probabilities±0.01, the specified absolute error
bound using Chernoff bound ε = δ = 0.01. Our results are
clearly very close to the true values. Table 1 gives the results
of hypothesis tests based on the same model using property
F100col = 2. See Sect. 6.2 for a description.

The results illustrated in Fig. 5 refer to the same property
and confidence as those shown in Fig. 4 of [27]. The total
simulation cost to generate a point in Fig. 5 is 1.2× 106 (12
iterations of 105 simulations using smart sampling), com-
pared to a cost of 2.7× 108 per point in Fig. 4 of [27] (4000
schedulers tested with 67,937 simulations using simple sam-
pling). This demonstrates amore than 200-fold improvement
in performance.
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6.2 IEEE 802.3 CSMA/CD protocol

The IEEE 802.3 CSMA/CD protocol is a wired network pro-
tocol that is similar in operation to that of IEEE 802.11, but
using collision detection instead of collision avoidance. In
Table 1, we give the results of applying Algorithm 5 to the
IEEE 802.3 CSMA/CD protocol model of [23]. The models
and parameters are chosen to compare with results given in
Table III in [15], hence we also give results for hypothesis
tests performed on the WLAN model used in Sect. 6.1. In
contrast to the results of [15], our results are produced on
a single machine, with no parallelisation. There are insuffi-
cient details given about the experimental conditions in [15]
to make a formal comparison (e.g. error probabilities of the
hypothesis tests and number of simulation cores), but it seems
that the performance of our algorithm is generally much bet-
ter. We set α = β = δ = 0.01, which constitute a fairly tight
bound, and note that, as expected, the simulation times tend
to increase as the threshold θ approaches the true probabil-
ity.

6.3 Choice coordination

To demonstrate the scalability of our approach, we consider
the choice coordination model of [29] and estimate the mini-
mum probability that a group of six tourists will meet within
T steps. The model has a parameter (BOUND) that limits
the state space. We set BOUND = 100, making the state
space of ≈5 × 1016 states intractable to numerical model
checking. Fortunately, it is possible to infer the correct prob-
abilities from tractable parametrisations. For T = 20 and
T = 25, the true minimum probabilities are, respectively,
0.5 and 0.75. Using smart sampling and a Chernoff bound of
ε = δ = 0.01, we correctly estimate the probabilities to be
0.496 and 0.745 in a few tens of seconds on 64 simulation
cores.

6.4 Network virus infection

Network virus infection is a subject of increasing relevance.
Hence, using a per-iteration budget of 105 simulations, we
demonstrate the performance of Algorithm 4 on the Prism
virus infection case study based on [24]. The network is illus-
trated in Fig. 1 and comprises three sets of linked nodes:
a set of nodes containing one infected by a virus, a set of
nodes with no infected nodes and a set of barrier nodes
which divides the first two sets. A virus chooses which
node to infect nondeterministically. A node detects a virus
probabilistically and we vary this probability as a parameter
for barrier nodes. We consider time as a second parame-
ter. Figures 6 and 7 illustrate the estimated probabilities that
the target node in the uninfected set will be infected. We
observe in Figs. 6b and 7b that the estimated minimums are
within [−0.0070,+0.00012] and the estimated maximums
are within [−0.00012,+0.0083] of their true values. The
respective negative and positive biases to these error ranges
reflect the fact that Algorithm 4 converges from, respectively,
below and above (as illustrated in Fig. 9b). The average time
to generate a point in Fig. 6 was approximately 100 seconds
using 64 simulation cores. Points in Fig. 7 took on average
∼70 s.

6.5 Gossip protocol

Gossip protocols are an important class of network algo-
rithms that rely on local connectivity to propagate informa-
tion globally. Using the gossip protocol model of [22], we
used Algorithm 4 with per-simulation budget of 105 simula-
tions to estimate the maximum ( p̂max) and minimum ( p̂min)
probabilities that the maximum path length between any
two nodes is <4 after T time steps. This is expressed by
property FTmax_path_len < 4. The results are illustrated
in Fig. 8. Estimates of maximum probabilities are within
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Fig. 8 Estimated probabilities that maximum path length is<4 in gos-
sip protocol model. Shaded regions denote ±0.01 of true values

[−0,+0.0095] of the true values. Estimates of minimum
probabilities arewithin [−0.007,+0] of the true values. Each
point in the figure took on average ∼60 s to generate using
64 simulation cores.

7 Convergence and counterexamples

The techniques described in the preceding sections open
up the possibility of efficient lightweight verification of
MDPs, with the consequent possibility to take full advantage
of parallel computational architectures, such as multi-core
processors, clusters, grids, clouds and GPGPU. These archi-
tectures may potentially divide the problem by the number
of available computational devices (i.e. linearly); however,
this must be considered in the context of scheduler space
increasing exponentially with path length. Although Monte

Carlo techniques are essentially impervious to the size of the
state space (they also work with non-denumerable space), it
is easy to construct verification problems for which there is a
unique optimal scheduler. Such examples do not necessarily
invalidate the approach, however, because it may not be nec-
essary to find the possibly unique optimal scheduler to return
a result with a level of statistical confidence. The nature of
the distribution of schedulers nevertheless affects efficiency,
so in this section, we explore the convergence properties of
smart sampling and give an example from the literature that
does not converge as well as the case studies in Sect. 6.

Essentially, the problem is that of exponentially distrib-
uted schedulers, i.e. distributions having a very low mass of
near optimal schedulers. Figure 10 illustrates the difference
between exponentially decreasing and linearly decreasing
distributions with the same overall mass. In both cases,
pmax ≈ 0.2 (the density at 0.2 is zero), but the figure shows
that there is more probability mass near 0.2 in the case of the
linear distribution.

Figure 9 illustrates the convergence of Algorithm 4, using
a per-iteration budget of 106 applied to schedulers whose
probability of success (i.e. of satisfying a hypothetical prop-
erty) is distributed according to the exponential distribution
of Fig. 10. Figure 9a shows how the initial undirected sam-
pling (dots) can identify a crude approximation of pmax. This
approximation is then used to generate the candidate set of
schedulers (distribution indicated with an arrow). The other
lines illustrate five iterations of refinement, resulting in a
shift of the distribution towards pmax. Figure 9b illustrates
the same shift in terms of the convergence of probability esti-
mates. Iteration 0 corresponds to the uninformed sampling.
Iteration 1 corresponds to the generation of the candidate set
of schedulers. Note that for these first two iterations, p̂mean

includes schedulers that have zero probability of success.
The expected value of p̂mean is therefore equal to the total
mass of non-zero probabilities in the distribution (≈0.0144),
the expected probability of estimates produced by the uni-
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Fig. 10 Theoretical linear and exponential scheduler densities with
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form probabilistic scheduler. This fact can be used to verify
that the hash function and PRNG described in Sect. 4 sam-
ple uniformly. In subsequent iterations, the candidates all
have non-zero probability of success. Importantly, the fig-
ure demonstrates that there is a significant increase in the
maximum probability of scheduler success (σmax) between
iteration 0 and iteration 1, and that this maximum is main-
tained throughout the subsequent refinements. Despite the
apparently very low density of schedulers near pmax, Algo-
rithm 4 is able to make a good approximation.

The theoretical performance demonstrated in Fig. 9
explains why we are able to achieve good results in Sect.
6. It is nevertheless possible to find examples for which
accurate results are difficult to achieve. Figure 11 illustrates
the results of applying Algorithm 4 to instances of the self-
stabilising algorithm of [18], using a per-iteration budget of
105. Although the estimates (dots) do not lie within our sta-
tistical confidence bounds of the true values (shaded areas),
we nevertheless make the claim that the results are useful. In
general, given a Chernoff bound specified according to (9),
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Fig. 11 Performance of smart sampling (dots) applied to self-
stabilising models of [18]. Shaded areas denote true values ±0.01

our approach is able to provide extremal probability estimates
for intractable MDPs, which are guaranteed not to be greater
than the true maximum nor less than the true minimum by
more than ε with probability δ.

To improve the performance of smart sampling, it is pos-
sible to make an even better allocation of simulation budget.
For example, if good schedulers are very rare it may be ben-
eficial to increase the per-iteration budget (thus increasing
the possibility of seeing a good scheduler in the initial can-
didate set) but increase the proportion of schedulers rejected
after each iteration (thus reducing the overall number of iter-
ations and maintaining a fixed total number of simulations).
To avoid rejecting good schedulers under such a regime, it
may be necessary to reject fewer schedulers in the early iter-
ations when confidence is low.

8 Prospects and challenges

The use of sampling facilitates algorithms that scale indepen-
dently of the sample space, hence we anticipate that it will be
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possible to apply our techniques to nondeterministic models
with non-denumerable schedulers. We believe it is immedi-
ately possible to apply smart sampling to reward-basedMDP
optimisation problems.

The success of sampling depends on the relative abun-
dance of near optimal schedulers in scheduler space, and
our experiments suggest that these are not rare in standard
case studies. While it is possible to construct pathological
examples, where near optimal schedulers cannot easily be
found by sampling, it is perhaps even simpler to confound
numerical techniqueswith state explosion (three independent
counters ranging over 0–1000 are typically sufficient with
current hardware).Hence, aswith numericalmodel checking,
our ongoing challenge is essentially to increase performance
and increase the number of models and problems that may be
efficiently addressed. Smart sampling has made significant
improvements over simple sampling, but we recognise that
it will be necessary to develop other techniques to accelerate
convergence. We anticipate that the most fruitful approaches
will be (i) to reduce the sampled scheduler space to only
those that satisfy the property and (ii) to construct composite
schedulers. Such techniques will also reduce the potential of
hash function collisions.

An important remaining challenge is to quantify the con-
fidence of our estimates and hypothesis tests with respect
to optimality. In the case of hypothesis tests that satisfy the
hypothesis, the statistical confidence of the result is sufficient.
If an hypothesis is not satisfied, however, the statistical con-
fidence does not relate to whether there exists a scheduler to
satisfy it. Likewise, the statistical confidence bounds of prob-
ability estimates imply nothing about how close they are to
the true optima. We nevertheless know that our estimates of
the extrema must lie within the true extrema or exceed them
with the specified statistical confidence. This is already use-
ful and a significant improvement over the results produced
using the uniform probabilistic scheduler. In addition, given
the number of simulations performed, we may at least quan-
tify confidence with respect to the product pg pg (the rarity
of near optimal schedulers times the average probability of
the property with near optimal schedulers).
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