
Information and Computation 203 (2005) 39–74

www.elsevier.com/locate/ic

A theory of stochastic systems. Part II: Process algebra

Pedro R. D’Argenio a,b,1, Joost-Pieter Katoen b,c,∗
aUniversidad Nacional de Córdoba, Ciudad Universitaria, 5000 Córdoba, Argentina

bUniversity of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
cRWTH Aachen, Ahornstraße 55, D-52074 Aachen, Germany

Received 28 November 2003; revised 9 February 2005
Available online 26 September 2005

Abstract

This paper introduces (pronounce spades), a stochastic process algebra for discrete-event systems, that
extends traditional process algebra with timed actions whose delay is governed by general (a.o. continuous)
probability distributions. The operational semantics is defined in terms of stochastic automata, a model that
uses clocks—like in timed automata—to symbolically represent randomly timed systems, cf. the accompa-
nying paper [P.R. D’Argenio, J.-P. Katoen, A theory of stochastic systems. Part I: Stochastic automata. Inf.
Comput. (2005), to appear]. We show that stochastic automata and are equally expressive, and prove that
the operational semantics of a term up to �-conversion of clocks, is unique (modulo symbolic bisimulation).
(Open) probabilistic and structural bisimulation are proven to be congruences for , and are equipped with
an equational theory. The equational theory is shown to be complete for structural bisimulation and allows
to derive an expansion law.
© 2005 Elsevier Inc. All rights reserved.

Keywords: Axiomatisation; Bisimulation; Operational semantics; Stochastic automaton; Stochastic process algebra

∗ Corresponding author.
E-mail address: katoen@cs.rwth-aachen.de (J.-P. Katoen).

1 Partially supported by the NWO visiting Grant B-61-519 and by the ANPCyT project PICT 11-11738.

0890-5401/$ - see front matter © 2005 Elsevier Inc. All rights reserved.
doi:10.1016/j.ic.2005.07.002

40 P.R. D’Argenio, J.-P. Katoen / Information and Computation 203 (2005) 39–74

1. Introduction

1.1. Functionality and performance

Traditionally, models and methods for the analysis of the functional correctness of reactive sys-
tems and those for the analysis of their performance and dependability aspects have been studiedby
different research communities. This has resulted in the development of successful, but distinct
and largely unrelated modeling and analysis techniques for both domains. In many modern sys-
tems, however, the difference between their functional features and their performance properties
has become blurred, as relevant functionalities become inextricably linked to performance aspects.
The strong relationship between functionality and performance aspects would clearly benefit from a
paradigm for themodeling and analysis of systems in which qualitative and quantitative aspects are
studied from an integrated perspective. This would allow us to check how changes in functionality
affect performance issues, and vice versa. In addition, such a paradigm would yield a tight relation-
ship between the models that are used for qualitative and those used for quantitative analysis, thus
avoiding the use of different, mutually incompatible models.

1.2. Stochastic process algebra

During the last decade, the need for an integrated perspective has motivated an increased inter-
est in combining insights and results from process algebra [9,42,46,5,28]—traditionally focussed on
functionality—with techniques for performance modeling and analysis. Process algebra provides
a formal apparatus for reasoning about structure and behaviour of systems in a compositional
way. Abstraction mechanisms provide means to treat system components as black boxes, mak-
ing their internal structure invisible. Their algebraic nature allows to reason about specifications
in an equational way, thus allowing transformation and verification. Stochastic process algebras
[37,40,8,7,16,35] are aimed to overcome the lack of hierarchical, compositional facilities in perfor-
mancemodeling. In these process algebras, time andprobability are integrated by considering delays
of a continuous probabilistic nature. Typically, a non-negative real-valued rate r is associated to
an action a that probabilistically determines the delay prior to a; the term ar; p denotes that ac-
tion a is offered after a delay governed by a negative exponential distribution of rate r. A formal
semantics maps terms onto labelled transition systems where transitions are labelled with pairs of
actions and rates. By omitting the action labels—but keeping the rate information—one obtains a
(time-homogeneous) continuous-timeMarkov chain (CTMC) for which steady-state and transient
performance metrics can be obtained using traditional techniques [54]. These Markovian process
algebras thus provide a compositional, integrated specification formalism for describing CTMCs;
recent surveys can be found in [14,36,41].

1.3. The need for non-exponential distributions

Although exponential distributions yield analytically tractable models (i.e., CTMCs), and are
useful for many applications, they are not realistic for modeling many phenomena in an adequate
way. System parameters such as sizes of data files stored on web servers, job service times in general-
purpose computing environments, and node degrees of certain graph structures (such as hyperlinks

P.R. D’Argenio, J.-P. Katoen / Information and Computation 203 (2005) 39–74 41

of web-pages), exhibit heavy-tail distributions, i.e., distributions with a very high variance [18]. If
one observes heavy-tailed inter-arrivals, then the longer one has waited, the longer we should expect
to wait—the expectation paradox. Instead, for exponential distributions the waiting time does not
play any role, due to the memoryless property. In addition, phenomena such as timeouts in com-
munication protocols, hard deadlines in real-time systems, human response times or the variability
of the delay of sound and video frames (so-called jitter) in modern multi-media communication
systems are typically described by non-memoryless distributions such as deterministic (for timeouts
and deadlines), log-normal (for human behaviour), or normal (for jitter) distributions. Finally, in
many cases the distribution is only partially known, and appropriate approximations—those with
“maximal indeterminacy”—are needed.2 The exponential distribution is such approximation only
in cases where only the mean is known (of a positive random variable). For other cases, normal
distributions (if mean and variance are known) or uniform distributions (if only minimum and
maximum are known) are appropriate.

1.4. Process algebra with general distributions

This paper presents a stochastic process algebra in which the delays of actions are determined
by a continuous or discrete probability distribution of general nature. The incorporation of general
distributions in a process algebraic framework is non-trivial, primarily because a mapping onto
(an extension of) labelled transition systems is not straightforward. In traditional process algebras,
parallel composition can be rewritten into the primitive operations choice and prefix. This principle,
in full generality known as the expansion law [46], has been widely accepted and is essential to
process algebraic verification purposes [5]. Changing the role of prefix into aF ; p where F is a
general distribution determining the delay prior to the offering of action a—like in Markovian
process algebra—yields a setting in which the expansion law does no longer hold in general, e.g.,

aF ; p ||∅ bG; q /= aF ; (p ||∅ bG; q)+ bG; (aF ; p ||∅ q)

for arbitrary distributions F and G. After the delay imposed by F in the left-hand process, the
residual delay has to be taken into account to correctly determine the remaining delay before
process q becomes enabled. Due to the memoryless property of negative exponential distributions,
Markovian process algebras do not suffer from this problem.

1.5. Our approach

To overcome these problems we syntactically distinguish:

• the start of a probabilistic delay,
• the completion of a probabilistic delay, and
• the occurrence of immediate actions.

2 In information-theoretic terminology, such approximations maximise entropy [53].

42 P.R. D’Argenio, J.-P. Katoen / Information and Computation 203 (2005) 39–74

This idea has first been brought up in [23], and has been extended and refined later in [19,24].
To keep track of delays, clock variables are used. A clock is initialised by sampling a probability
distribution function, and starts counting down once initialised. All clocks count down at the same
pace. For C a finite set of clocks, C �→p denotes the process that after the expiration of all clocks
in C behaves like p , and {|C|} p denotes the process that behaves like p after any clock x in C has
been initialised. The prefix aF ; p is thus written as {|x|} ({x}�→a; p), where clock x is initialised by
sampling from distribution F . Parallel composition is treated using the principle of interleaving,
e.g., for p ′ = {x}�→a; p and q′ = {y}�→b; q we have:

{|x|} p ′ ||∅ {|y|} q′ = {|x, y|}
({x}�→a; (p ||∅ q′)+ {y}�→b; (p ′ ||∅ q)

)
.

In the right-hand expression, initially both clocks x and y are initialised simultaneously and start
counting down. If clock x expires first, action a happens, and a state is reached in which clock y

records the remaining time until action b is enabled. A symmetric scenario appears when clock
y expires first. This principle can be applied to parallel composition with synchronisation, thus
yielding an expansion law in its full generality. In addition, the aforementioned separation yields
an orthogonal extension of traditional process algebra, results in a framework in which stochastic
choice (resolved by the race policy) and non-deterministic choice both exist, and provides a natural
stochastic interpretation to synchronisation of two random delays. Synchronisation algebraically
amounts to

({|x|} {x}�→a; p) ||a ({|y|} {y}�→a; q) = {|x, y|} {x, y}�→a; (p ||a q).

That is, synchronisation takes place as soon as all partners are ready to participate, i.e., once both
clocks x and y have expired.3 This type of synchronisation is known as patient communication
[39].

1.6. Contributions of this paper

This paper presents the syntax, formal semantics and algebraic theory of our formalism, named
stochastic process algebra for discrete-event simulation and symbolised by . The semantics of
is given by a structured operational semantics that maps terms onto stochastic automata. Finite
semantic objects are thus obtained in a comparable way to regular processes in traditional process
algebra. Stochastic automata have been extensively treated in the accompanying article [22] and
are strongly based on timed automata [3]. As generalised semi-Markov processes (GSMPs) [29,57]
are a proper subset of stochastic automata (see [22]), the process algebra can be considered as
high-level specification formalism for GSMPs. We discuss the congruence properties of the equiv-
alence relations—all variants of strong bisimulation [46]—on stochastic automata as introduced
in [22]. We show that stochastic automata with denumerable branching and are equally expres-
sive up to structural bisimulation, the finest equivalence relation. The semantics of a term up to
�-conversion, i.e., renaming of clocks, is shown to be unique (modulo symbolic bisimulation). This

3 The random variable that determines the delay prior to the synchronised action equals the maximum of the random
variables in the individual processes.

P.R. D’Argenio, J.-P. Katoen / Information and Computation 203 (2005) 39–74 43

result entails that the simple and intuitive operational semantics also apply to terms with (clock)
name clashes. Axiomatisations are presented for the congruence relations, and for structural bisim-
ulation it is shown that this equation system is complete. As a major result of this axiomatisation,
an expansion law is obtained, a result that, with the sole exception of [10], has been limited to
Markovian process algebras.

1.7. Organisation of the paper

Section 2 summarises the main concepts introduced in [22]. Section 3 introduces the syntax and
semantics of and discusses some congruence relations. Section 4 provides several axiom systems,
discusses soundness and completeness, and studies several derived properties. Section 5 discusses
related work and Section 6 concludes the paper. This paper is based on the extended abstract [24]
and the dissertation [19].

2. Preliminaries

This section briefly recalls probabilistic transition systems and stochastic automata as fully de-
scribed in [22].

2.1. Probabilistic transition systems

Let Prob(H) be the set of probability spaces (�,F , P) such that� ⊆ H . A probabilistic transition
system (PTS, for short) is a structure PTS = (�,�′,L, T ,−→) where:

1.� is the set of probabilistic states.
2.�′ is the set of non-deterministic states such that � ∩ �′ = ∅.
3.L is a set of labels.
4.T : � → Prob(�′) is a (total) function, called probabilistic transition relation.
5.−→⊆ �′ × L×� is the labelled (or non-deterministic) transition relation.

The pair (PTS, �0) with initial probabilistic state �0 ∈ � is called a rooted PTS. We use the

shorthand notations �′ �−→ � for 〈�′, �, �〉 ∈−→ , �′ �−→ for ∃�. �′ �−→ �, and �′ �−→/ for¬(�′ �−→).

2.1.1. Probabilistic bisimulation
Let � : �×℘(�′) → [0, 1] be defined by

�(�, S)
def=
{

P(S ∩�) if S ∩� ∈ F ,
0 otherwise

provided that T(�) = (�,F , P). Let R ⊆ (�×�) ∪ (�′ ×�′) be an equivalence, and �′/R be the
set of equivalence classes in �′ induced by R. R is a probabilistic bisimulation if for any 〈�1, �2〉 ∈
R ∩ (�×�):

� (�1,∪S) = � (�2,∪S) for all S ⊆ �′/R

44 P.R. D’Argenio, J.-P. Katoen / Information and Computation 203 (2005) 39–74

and for any 〈�1, �2〉 ∈ R ∩ (�′ ×�′):

for all � ∈ L, �1
�−→ �′1 implies �2

�−→ �′2 and 〈�′1, �′2〉 ∈ R for some �′2 ∈ �.

States �1 and �2 are probabilistically bisimilar, notation �1 ∼p �2, if there exists a probabilistic
bisimulation R with 〈�1, �2〉 ∈ R. (PTS1, �1) ∼p (PTS2, �2) if and only if �1 ∼p �2 in the (disjoint)
union of PTS1 and PTS2. ∼p can be shown to be the largest probabilistic bisimulation and to be an
equivalence.

2.2. Stochastic automata

A stochastic automaton is a structure SA = (S ,A, C, �, �) where:

• S is a set of locations.
• C is a set of (random) clocks; for each x ∈ C there is a distribution function Fx .
• A is a set of actions.
• � ⊆ S × (A×℘fin(C))× S is the set of edges.
• � : S → ℘fin(C) is the clock setting function.

A rooted stochastic automaton is a tuple (SA, s0) where s0 ∈ S is the initial location. Let s
a,C� s′

abbreviate (s, a,C , s′) ∈ � and s
a,C� be a shorthand for ∃s′. s

a,C� s′.

2.2.1. Semantics
Let V be the set of valuations v : C → IR. For valuation v and d ∈ IR, let valuation v− d be

defined as (v−d)(x)
def= v(x)− d . Assume the set C of clocks C can be ordered and let �C denote its

ordered set. For |C| = n and �d ∈ IRn, the valuation v[�C �→�d] is defined by:

v[�C �→�d](x)
def=
{ �d(i) if x = �C(i), for some i ∈ {1, . . . , n},

v(x) otherwise,

where �C(i) and �d(i) denote the ith element of �C and �d , respectively.
The closed behaviour of SA is defined by the probabilistic transition system

PTSc(SA)
def= ((S × V), [S × V],A× IR≥0, T ,−→), where T is defined by:

Prob
−→
�(s) = (x1, . . . , xn)

T (s, v) = Ds
v(R(Fx1 , . . . , Fxn))

.

Here, R(Fx1 , . . . , Fxn) is the probability space on the Borel algebra B(IRn) with the probability
measure uniquely defined by Fx1 , . . . , Fxn , and Ds

v : IRn → [{s} × V] is the decoration defined by
Ds

v(
�d)
def=
[
s, v[−→�(s)

�→�d]
]
for all �d ∈ IRn; and −→ is defined by the rule

P.R. D’Argenio, J.-P. Katoen / Information and Computation 203 (2005) 39–74 45

Closed
s

a,C� s′ expd (v,C) mprd (s, v)

[s, v]
a(d)−−−→ (

s′, (v− d)
) .

The predicate expd (v,C) is true if and only if all clocks in C have expired in v after d time units,
i.e., expd (v,C) is defined as

∀x ∈ C. (v− d)(x) ≤ 0

and the predicatemprd (s, v) is true if and only if there is no possibility to leave s before d time units,
i.e., mprd (s, v) is defined as:

∀d ′ ∈ IR≥0. d ′ < d ⇒
(
∀b,C.

(
s

b,C−→⇒ ∃y ∈ C.(v− d ′)(y) > 0
))

.

The open behaviour of SA is defined by the probabilistic transition system PTSo(SA)
def= ((S × V),

[S × V],A× IR≥0, T ,−→), where T is defined by rule Prob above, and −→ is defined by

Open
s

a,C� s′ expd (v,C)

[s, v]
a(d)−−−→ (

s′, (v− d)
) .

Theonlydifferencebetween theopenand closed semantics is that the constraint ofmaximal progress
is present in the inference rule Closedbut not in Open. In the open behaviour, non-deterministic
transitions with different time labels may leave the same state, whereas this is impossible in the
closed behaviour.

2.2.2. Equivalences
Locations s1 and s2 are closed p-bisimilar, notation s1 ∼c s2, if (s1, v) ∼p (s2, v) for every v ∈ V,

where (s1, v) and (s2, v) are probabilistic states in PTSc(SA). Similarly, s1 and s2 are open p-bisimilar,
notation s1 ∼o s2, if (s1, v) ∼p (s2, v) for every v ∈ V, where (s1, v) and (s2, v) are probabilistic states
in PTSo(SA). Symmetric relation R ⊆ S × S is a structural bisimulation if for any acti on a and set
C of clocks, whenever 〈s1, s2〉 ∈ R we have �(s1) = �(s2) and

s1
a,C� s′1 implies ∃s′2 ∈ S. (s2

a,C� s′2 and 〈s′1, s′2〉 ∈ R).

Locations s1 and s2 are structurally bisimilar, notation s1 ∼s s2, if there exists a structural bisim-
ulation R such that 〈s1, s2〉 ∈ R. SA = (S ,A, C, �, �) and SA′ = (S ′,A, C, �

�, �′) are isomorphic,
notation SA∼=SA′, if there is a bijection I : S → S ′, such that s

a,C� s′ ⇐⇒ I(s)
a,C�

� I(s′),
and �(s) = �′(I(s)). In [22] we also defined the notion of symbolic bisimulation and denote with
s1 ∼& s2 if two locations s1 and s2 are symbolically bisimilar. Since the definition of symbolic bisimu-
lation is quite involved, we omit it here and refer the reader to [22,19]. For the understanding of this
article, it is only important to know that it is a coarser relation than structural bisimilarity and finer
than open p-bisimilarity. In fact, the following (strict) inclusions hold: ∼= ⊂ ∼s ⊂ ∼& ⊂ ∼o ⊂ ∼c.

46 P.R. D’Argenio, J.-P. Katoen / Information and Computation 203 (2005) 39–74

Table 1
Syntax of

0 Nil or stop p ||A p Parallel composition

a; p Action prefix p || A p Left merge

C �→p Triggering condition p |A p Communication merge

{|C′|} p Clock setting p[f] Renaming

p + p Choice X Process instantiation

3. –Stochastic process algebra for discrete event systems

This section defines the syntax of and its structured operational semantics using stochastic
automata as underlying model. The semantics is defined for terms that do not have name clashes
of clocks and it is proven that any term with a name clash can be expressed by an equivalent
name-clash-free term. Finally, congruence relations for are reported.

3.1. Syntax

Terms in are constructed using the operators of traditional process algebras like CCS, CSP, or
ACP plus two new constructs. LetC be a set of clocks. ProcessC �→p behaves like process p once all
clocks in C have expired, i.e., once they all have a non-positive value. Process {|C|} p sets all clocks
in C randomly according to their respective distribution function. {|x1, . . . , xn|} p is a shorthand for
{|{x1, . . . , xn}|} p .
Definition 1.LetA be a set of actions and C a countable set of random clocks. The syntax of p ∈ is
defined according to the grammar in Table 1 where a ∈ A is an action name, C ∈ ℘fin(C) is a trigger
set of random clocks, C ′ ∈ ℘fin(C) is a clock setting set, A ⊆ A is a synchronisation set, f : A → A
is a renaming function, and X is a process variable belonging to the set V of process variables.
Process variables are defined by recursive equations of the form X = p where p is a term. A set
E of recursive equations defines a recursive specification. We occasionally consider a distinguished
process variable in the recursive specification E called root.

The operators a; _, C �→_, {|C|} _, and _[f] have precedence over any other operator, and + is the
operation with lowest precedence. As the precedence is not always defined, some terms without
parentheses, e.g., a; {x}�→X [f] or a; 0 ||A X || B {|x|} Y are ambiguous. The shorthand a(x); p stands
for {|x|} {x}�→a; p .
Definition 2. An occurrence of process variable X is guarded in term p if it occurs in q where a; q
is a subterm of p . Term p is guarded if all occurrences of process variables in p are guarded. The
recursive specification E is guarded if either X = p ∈ E implies p is guarded, or E can be rewritten
into such a form by unfolding.4

4 That is, whenever X = p ∈ E and Y occurs unguarded in p , X = p is replaced by X = p[Y/q] provided Y = q ∈ E.

P.R. D’Argenio, J.-P. Katoen / Information and Computation 203 (2005) 39–74 47

Definition 3. A recursive specification E is regular5 if it is finite, guarded, and for any X = p ∈ E,
the operators ||A , || A , |A , and _[f] do not occur in p .

Example 4. Consider an automatic switch that controls a light as it can be found in a staircase or
corridor in a hotel. People can arrive at any time and press the on button to turn on the light or
to reset the timer that controls it. The interarrival time is a Poisson process occurring at a rate of
one arrival each 30 min. Hence, the time difference between two persons turning on the light is a

random variable with (negative) exponential distribution Fe,30(t) = 1− e−
t
30 . Besides, suppose the

light turns automatically off after 2 min. Therefore, this timing is governed by the deterministic
distribution D2(t) = if(t < 2)then0 else 1.
This system can be described in as follows. The arrival of persons is controlled by clock x with

distribution Fx = Fe,30. The arrival process is defined as:

Arrival = on(x);Arrival

The switch can be turned on at any moment, however it turns itself off after idling exactly 2 min.
Therefore, a clock y with distribution function Fy = D2 controls the “off ” event. The switch is
specified by:

SwitchOff = on;SwitchOn

SwitchOn = on;SwitchOn + off(y);SwitchOff

Notice that the timing of the action on is governed externally. It only depends on the context in
which Switch is placed and thus it is not delayed by the Switch itself. This is reasonable since people
in different hotels may arrive at different rates, or even according to different distributions. The
complete system is described by:

System = Arrival ||
on

SwitchOff

Example 5. Consider a simple queuing system in which jobs arrive and wait until they are exe-
cuted by a single server. Assume that the queue has infinite capacity. Jobs arrive with an inter-
arrival time that is determined by some distribution Fa, and the execution time of a job by the
server is determined by distribution function Fc. This system is known as a G/G/1/∞ queue
where the G’s stand for general distributed arrival and service time, respectively, 1 indicates
that there is only one server, and ∞ indicates that the queue has infinite capacity. (The curi-
ous reader is referred to, e.g., [43,32,17] for more details). We use to obtain a hierarchical
representation.

5 This notion can be relaxed by allowing the occurrence of the listed static operators, but this would complicate the
definition without extending the expressiveness.

48 P.R. D’Argenio, J.-P. Katoen / Information and Computation 203 (2005) 39–74

Table 2
Free clock variables in terms

fv(0) =∅ fv(C �→p) = C ∪ fv(p) fv({|C|} p) = fv(p)− C

fv(op(p)) = fv(p) (op ∈ {a; _, _[f]})
fv(p ⊕ q) = fv(p) ∪ fv(q) (⊕ ∈ {+, ||A , || A , |A })
fv(X) = fv(p) (provided X = p)

The queue can be described by the following recursive specification:

Queue0 = in;Queue1
Queuen+1 = in;Queuen+2 + out;Queuen (n � 0)

The subindex n in the process variable Queuen indicates the number of jobs in the queue. The
process that determines the arrival of jobs is similar to the one used in the switch example above.
The interarrival time is controlled by clock x with Fx = Fa:

Arrival = in(x);Arrival

The server takes a job out of the queue and processes it. The completion time is controlled by clock
y with distribution Fy = Fc:

Server = out; done(y);Server

The complete system is described by the process

QSystem = (Arrival ||∅ Server) ||Q Queue0

where Q = {in, out}. Notice that process Arrival synchronises with Queue on the action in, while the
Server does so on action out.

The setting of clocks binds clocks in a term. For x ∈ C , any free occurrence of x in p is bound
in {|C|} p . Intuitively, clock x is free in p if p has a subterm (C ∪ {x})�→q which does not appear
in a context {|. . . x . . .|} The set fv(p) of free (clock) variables in p is defined as the smallest set
satisfying the equations in Table 2. For instance, for p ≡ ({|x|} {x, y}�→a; 0)+ {x}�→b; 0 we have
fv(p) = {x, y}; note that x also appears as a bound variable.

3.2. Structured operational semantics

The semantics of is defined in terms of stochastic automata by using structured operational
semantics [47]. To define the semantics of the parallel composition, the auxiliary function noset is
considered. Given a process p , noset(p) denotes a process that behaves like p except that no clock is

P.R. D’Argenio, J.-P. Katoen / Information and Computation 203 (2005) 39–74 49

Table 3
Auxiliary clock removal operation

noset(0) = 0 noset(a; p) = a; p noset({|C|} p) = noset(p)

noset(op(p)) = op(noset(p)) (op ∈ {C �→_, _[f]})
noset(p ⊕ q) = noset(p)⊕ noset(q) (⊕ ∈ {+, ||A , || A , |A })
noset(X) = Xnoset (provided X = p and Xnoset = noset(p))

Table 4
Clock setting

�(0) = �(a; p) =∅ �({|C|} p) = C ∪ �(p)

�(op(p)) = �(p) (op ∈ {C �→_, _[f]})
�(p ⊕ q) = �(p) ∪ �(q) (⊕ ∈ {+, ||A , || A , |A })
�(X) = �(p) (provided X = p)

set before the first action, cf. the rules in Table 3. Note that noset(X) defines a new process variable
and that for any p we have noset(noset(p)) = noset(p).
The components of the stochastic automaton which is associated to a term are defined in the

following. The function � and the relation � are defined as the least relations satisfying the rules
in Tables 4 and 5, respectively. Note that

�(noset(p)) = ∅ and
p

a,C� p ′

noset(p)
a,C� p ′

. (1)

Besides, fv(p) ⊆ fv(noset(p)) ⊆ fv(p) ∪ �(p) for any p .
Let us explain the inference rules. There is no rule for the process 0 as it cannot perform any

action. The process a; p can immediately perform an a while evolving into p . Since a is performed
immediately, there is no need to wait for the expiration of a clock. Process C �→p can perform any
action that p can perform, with the restriction that it has to wait until all clocks in the set C have
expired. So, if p has to wait for the expiration of all clocks in C ′ to perform action a, then process
C �→p has to wait for all clocks in C ∪ C ′. Process {|C|} p mimics p ; their difference with p is solely
in the clock setting function, cf. Table 4. p + q behaves like either p or q. p[f] behaves like p except
that all actions are renamed according to f . Process X behaves like p , provided it is defined as
X = p . For parallel composition two situations are distinguished:

• In case a synchronisation takes place, i.e., some action a ∈ A is performed, both involved processes
must be ready to perform a. So, all clocks needed to perform a in both processes have to be
expired.

50 P.R. D’Argenio, J.-P. Katoen / Information and Computation 203 (2005) 39–74

Table 5
Inference rules

a; p a,∅� p
p

a,C ′� p ′

C �→p
a,C∪C ′� p ′

p
a,C ′� p ′

{|C|} p a,C ′� p ′

p
a,C� p ′

p + q
a,C� p ′

p
a,C� p ′

q+ p
a,C� p ′

p
a,C� p ′

p ||A q
a,C� p ′ ||A noset(q)

a /∈ A
p

a,C� p ′

q ||A p
a,C� noset(q) ||A p ′

a /∈ A

p
a,C� p ′ q

a,C ′� q′

p ||A q
a,C∪C ′� p ′ ||A q′

a ∈ A

p
a,C� p ′

p || A q
a,C� p ′ ||A noset(q)

a /∈ A
p

a,C� p ′ q
a,C ′� q′

p |A q
a,C∪C ′� p ′ ||A q′

a ∈ A

p
a,C� p ′

p[f] f(a),C� p ′[f]
p

a,C� p ′

X
a,C� p ′

provided X = p

• If a process carries out an action not in A, it does so autonomously. Naively, this yields the
following traditional operational rule:

p
a,C� p ′

p ||A q
a,C� p ′ ||A q

for a $∈ A. This would, however, lead to a situation in which all clocks in p ′ and q are reset in
the resulting location. This is incorrect for the clocks in q; by doing so, the elapse of time since
the clocks of q were set (when reaching p ||A q) is neglected. To solve this problem, the state
p ′ ||A noset(q) is reached instead where the use of noset(q) avoids the setting of the clocks in q,
i.e., �(noset(q)) = ∅, cf. Table 4.

The semantics of is not yetwell defined.Due to the binding nature of the clock setting operation,
suffers from the capture of clock variables. Consequently, clocks may be wrongly bound in the

derived stochastic automaton. Consider, e.g.,

(2)

P.R. D’Argenio, J.-P. Katoen / Information and Computation 203 (2005) 39–74 51

where the second occurrence of x is intended to be bound to the outermost clock setting (as indicated
by the grey arrow). The rules in Table 5, however, yield:

in which x is captured by the innermost clock setting (as indicated by the black arrow in Eq. (2)).
Clocks that are set at different places are considered to be different (and hence, independent), even
when they have the same name. Capture may also occur in summation. A free clock in one of
the summands may be wrongly bound to a clock setting in the other summand as shown by the
following process:

(3)

A naive interpretation of process p2 would yield the following automaton:

which corresponds to process p3 ≡ {|x, y|} ({x, y}�→a; 0 + {x, y}�→b; 0). Notice that, in addition, an-
other unexpected phenomenon occurs. Clock y in the left summand of p2 has been “unified” with
clock y in its right summand. Clocks are independent random variables that can take different
values, even when they have the same distribution. While in process p2 actions a and b will usually
become enabled at different times—and this happens with probability 1 if x and y are continuously
distributed—in process p3 they are always enabled at the same time. Similar problems arise when
replacing + in (3) by || .
We also point out the following technical issue. The stochastic automaton is defined such that,

for every location s, �(s) is finite. Some unguarded (infinite) recursive specifications, however, may
induce infinite sets, e.g.,

{Xn = Xn+1 + {|xn|} {xn}�→an; 0 | n ∈ IN}.

Given these complications, we characterise the set of processes whose semantics is definable, i.e.,
the processes that do not cause such problems. We first syntactically characterise the processes
that are in conflict and then generalise this towards a semantic notion. Process p suffers from local
conflict of (clock) variables if lcv(p) holds, where lcv is the predicate defined by the rules in Table 6.
Otherwise, p is locally free of conflict. For the example processes before, lcv(p2) and ¬lcv(p1). p is
locally definable, denoted ldef(p), if and only if ¬lcv(p) and �(p) is finite. Locally definability does

52 P.R. D’Argenio, J.-P. Katoen / Information and Computation 203 (2005) 39–74

Table 6
Conflict of clock variables in

C ∩ �(p) /= ∅

lcv(C �→p)

lcv(p) X = p

lcv(X)

lcv(p) op ∈ {C �→_, {|C|} _, _[f]}
lcv(op(p))

�(p) ∩ fv(q) /= ∅ ⊕ ∈ {+, ||A , || A , |A }
lcv(p ⊕ q) lcv(q⊕ p)

lcv(p) ⊕ ∈ {+, ||A , || A , |A }
lcv(p ⊕ q) lcv(q⊕ p)

�(p) ∩ �(q) /= ∅ ⊕ ∈ {+, ||A , || A , |A }
lcv(p ⊕ q) lcv(q⊕ p)

Fig. 1. Stochastic automaton defined by process System in Example 4.

not characterise all problems mentioned before (e.g., process p1). To obtain a full characterisation,
all possible derivaties are considered.

Definition 6. p ∈ is definable, denoted def(p), if for every derivation sequence p ≡ p0
a1,C1�

p1 · · · pn−1 an,Cn� pn we have ldef(pi) for all 0 ≤ i ≤ n.
To check whether process p is (globally) definable, every term in any derivative of p needs to be

locally free of conflict and have a finite clock setting. For instance, process p1 is not definable as a
process with local conflict is reached after a single step. Let def = {p ∈ | def(p)}, that is, the set
of all definable processes.

Definition 7. The semantics of p ∈ def is defined by the rooted stochastic automaton (SA(def), p)

where SA(def) = (def,A, C, �, �) withA the set of actions, C the set of clocks, and � and � the
least relations satisfying the rules in Tables 4 and 5, respectively.

Example 8. The stochastic automaton defined by the process System in Example 4 is given in
Fig. 1. The automaton for process QSystem of Example 5 is depicted in Fig. 2.

3.3. Clock renaming

Definition 7 provides a semantics for every definable process. This is somewhat restrictive and can
be relaxed to terms modulo clock renaming, i.e., �-conversion. The semantics modulo �-conversion
in itself is not our interest, but is used to prove that for any process that suffers from conflict of
variables, a unique equivalent definable term does exist. As a consequence, the semantics (modulo

P.R. D’Argenio, J.-P. Katoen / Information and Computation 203 (2005) 39–74 53

Fig. 2. Stochastic automaton defined by process QSystem in Example 5.

symbolic bisimulation) for terms that suffer from the conflict of clock names can be obtained
by the recipe of Definition 7. For instance, term p ≡ {|x, y|} ({x, y}�→a; 0 + {|y|} {x, y}�→b; 0) is not
definable, but after a simple renaming of clocks, e.g., replace x by w and y by z, the term q ≡
{|w, z|} ({w, z}�→a; 0 + {|y|} {w, y}�→b; 0) is obtained,which exhibits the samebehaviour as p provided
Fx = Fw and Fy = Fz .
For terms p , q ∈ we write p &� q if and only if q can be obtained from p by an appro-

priate renaming of clocks. A renaming of clock x into y is appropriate whenever Fx = Fy . Re-
naming of (sets of) clocks in terms can be defined in the standard inductive way, e.g., (p ||A
q)[C ′/C] = (p[C ′/C]) ||A (q[C ′/C]). For the new operators we have: (C �→p)[C ′/C] = C ′ �→p[C ′/C]
and ({|C|} p)[C/C ′] = {|C ′|} (p[C/C ′])providedC ′ ∩ (fv(p)− C) = ∅, that is, the new clock names
should not coincide with the free variables in p .

Theorem 9. For every guarded term p ∈ , there exists q ∈ such that ldef(q) and p &� q.

Proof. Using induction on the size of p we first prove that for every guarded p and every finite
C ⊆ C, there exists a q such that p &� q, ¬lcv(q), and �(q) ∩ C = ∅. The idea is that C carries the
possible variables that may introduce conflict along the proof tree of p &� q. As an example, we
consider the following cases:

• C ′ �→p . By the induction hypothesis, there is a q such that p &� q,¬lcv(q), and �(q) ∩ C ′′ = ∅ for
any given finite C ′′ ⊆ C. In particular, take C ′′ = C ∪ C ′. Hence, C ′ �→p &� C ′ �→q, ¬lcv(C ′ �→q)

(since ¬lcv(q) and �(q) ∩ C ′ = ∅), and �(C ′ �→q) ∩ C = �(q) ∩ C = ∅.
• {|C ′|} p . By the induction hypothesis, [C∗/C ′](p) &� q, ¬lcv(q), and �(q) ∩ C = ∅. W.l.o.g.
assume C∗ ∩ C = ∅. Then {|C ′|} p &� {|C∗|} q, ¬lcv({|C ′|} q), and �({|C∗|} q) ∩ C = (C∗ ∪ �(q)) ∩
C = ∅.

It remains to show that �(q) is finite and that for every edge q
a,C�, C is finite. This can easily be

proved by structural induction on q exploiting that q is guarded (since p &� q and p is guarded).
Consequently, case q ≡ X does not occur. �

54 P.R. D’Argenio, J.-P. Katoen / Information and Computation 203 (2005) 39–74

The theoremdoesnothold forunguarded recursion, e.g., processX definedbyX =X + {|x|} {x}�→a; 0 ,
suffers from the local conflict of variables and cannot be �-converted into a (locally) definable pro-
cess. The same applies to X0 defined by {Xn = Xn+1 + {|xn|} {xn}�→a; 0 | n ∈ IN}.
Extend the inference rules in Table 5 with the rule:

alpha
p

a,C� p ′ p ′ &� q′ ¬lcv(p) ¬lcv(q′)
p

a,C� q′
,

that adds transitions to target terms that are�-congruent (and locally conflict-free) to existing target
terms. Note that this rule requires ¬lcv(p) and ¬lcv(q′), but not (the stronger) ldef(p) and ldef(q′),
because the fact that �(p) is infinite cannot be changed by �-conversion.

Definition 10. p ∈ is �-definable, denoted �def(p), if p &� p0 for some p0 ∈ , and whenever
p0

a1,C1� p1 · · · pn−1 an,Cn� pn with ldef(pi) for all 0 ≤ i < n, there is q ∈ such that pn &� q. 6

Let �={p ∈ | �def(p)}and �− = {p ∈ | �def(p)∧¬lcv(p)}. Terms in �− are�-definable,
and, more importantly, are locally free of conflict. These terms are the ones that play a central role
in the following definition.

Definition 11. The semantics of p ∈ � such that p &� q ∈ �− is defined by the rooted stochas-
tic automaton (SA(�−), q) where SA(�−) = (�−,A, C, �

�, �) with �
� = � ∩ (�− ×A×

Pfin(C)× �−). The other components are as before.

The next theorem states that for every �-definable term its semantics (up to �-conversion) is unique
up to symbolic bisimulation:

Theorem 12. For p ∈ � with p &� q and p &� r for q, r ∈ �−: (SA(�−), q) ∼& (SA(�−), r).

Proof. Tedious, see [19]. �

Themain result of this section states that the original semantics as given inDefinition 7 coincides,
modulo symbolic bisimulation, with the semantics up to �-conversion. The proof of this result goes
along similar lines as that of Theorem 12 and is omitted here.

Theorem 13. For p ∈ def. (SA(def), p) ∼& (SA(�−), p).

3.4. Representability

Any stochastic automaton can be represented by a (definable) term p whose semantics is
structural bisimilar to it.

Theorem 14. For any rooted stochastic automaton (SA, s0) with denumerable branching, there exists
a recursive specification E in def with root Xs0 such that (SA, s0) ∼s (SA(def),Xs0).

6 The edge-relation � is the least relation satisfying the rules in Table 5 and the rule alpha.

P.R. D’Argenio, J.-P. Katoen / Information and Computation 203 (2005) 39–74 55

Proof. Let SA = (S ,A, C, �
�, �′). Since we cannot represent infinite sums directly, define for each

location s ∈ S a distinct process variable Xs. Define the recursive specification ESA containing root
Xs0 and the recursive equations

Xs = {|�′(s)|}
(∑ {C �→a;Xs′ | s

a,C�
� s′}

)
. (4)

For n � 0 (possibly infinity), X0
def= ∑{Ci �→ai; pi | 0 ≤ i < n}, provided Xi = Xi+1 + Ci �→ai; pi, for

0 ≤ i < n; if n is finite, let Xn = 0 . By construction, ESA is definable. Consider now the relation
R = { 〈s,Xs〉 | s ∈ S }. It is routine to prove that R ∪ R−1 is a structural bisimulation. �
Corollary 15. For every p ∈ � there exists q ∈ def such that p ∼& q.

Due to Theorem 9 and this corollary, it follows that any guarded process can equivalently be
written as a conflict-free process.

Example 16. Consider the automaton of Fig. 1. Using the recipe in the above proof, we construct
the following recursive specification:

XSystem = {|x|} {x}�→on;XArrival||on SwitchOn

XArrival||on SwitchOn = {|x, y|} ({x}�→on;XArrival||on SwitchOn + {y}�→off;Xnoset(Arrival)||on SwitchOff)

Xnoset(Arrival)||on SwitchOff = {|∅|} {x}�→on;XArrival||on SwitchOn.

The rooted stochastic automaton (SA(def), XSystem) is structurally bisimilar to that of Fig. 1.

We stipulate that the recursive specification ESA defined by the variables in (4) is guarded if SA
is finitely branching and regular if SA is finite, i.e., if in addition the number of locations is finite.

3.5. Congruences

To prove that structural bisimilarity is a congruence for the operators as well as recursion, we
resort to results in structured operational semantics, in particular to the so-called path format [4].
Let Rel, Reli be transition relations (as, for instance,

�), and let Pred, Predi be state predicates. Let
op be an n-ary operation. A rule is in path format if it has one of the following two forms:

{pi Reli yi | i ∈ I} ∪ {Predj qj | j ∈ J }
op(x1, . . . , xn) Rel p

,

{pi Reli yi | i ∈ I} ∪ {Predj qj | j ∈ J }
Pred op(x1, . . . , xn)

,

where vars = { x1, . . . , xn} ∪ {yi | i ∈ I } is a set of distinct variables (over terms), and p , pi, qj

are terms with free variables in vars.7 A set of rules is in path format if all of its rules are.

7 We have actually defined the so-called pure path format, which is sufficient for our purposes.

56 P.R. D’Argenio, J.-P. Katoen / Information and Computation 203 (2005) 39–74

The importance of this format is that bisimulation is a congruence for any operation whose
semantics is defined with rules in path format [4,31,27]. More recently, Rensink [50] has proved
a general congruence theorem for recursion with the only additional requirement that the rules
should not have look-ahead, that is, the free variables of the pi’s and qj’s can only be those
in {x1, . . . , xn}.
Assume that noset is also an operation of . It is not difficult to observe that the rules for �

given in Table 5 as well as the rule in Eq. (1) are in path format. Moreover, the definition of � can be
alternatively defined in terms of a proof system in such a way that, for x ∈ C, x ∈ �(_) is a predicate
and it defines the same sets as the equations in Table 5. For instance, the case of p ||A q is defined
by rules

x ∈ �(p)

x ∈ �(p ||A q)
,

x ∈ �(q)

x ∈ �(p ||A q)
.

Such set of rules is also in path format. Thus the new proof system for � is in path format and
defines the same stochastic automata as the one inTable 5.As a consequence, structural bisimulation
is a congruence for all the operations including noset. Since in addition none of the rules has
look-ahead, it is also a congruence for recursion.

Theorem 17. Let p , q ∈ with p ∼s q. For any -context C[], C[p] ∼s C[q]. Moreover, ∼s is a
congruence for recursion in .

Like structural and symbolic bisimulation, the different probabilistic bisimulations also extend to :
p ∼c q if there are p ′ and q′ such that their behaviours are �-definable, p &� p ′, q &� q′, and p ′ ∼c q′
where p ′ and q′ are locations in the stochastic automaton SA(�−)—or SA(def), if applicable—
, i.e.,

(
p ′, v

) ∼p

(
q′, v

)
for any valuation v, where

(
p ′, v

)
and

(
q′, v

)
are states in PTSc(SA(�−))

(or equivalently in PTSc(SA(def))). Similarly, p ∼o q if there are p ′ and q′ such that their be-
haviours are�-definable, p &� p ′, q &� q′, and p ′ ∼o q′where p ′ and q′ are locations in the stochastic
automaton SA(�−) (or SA(def)).
Probabilistic bisimilarity for the closed interpretation of stochastic automata is not a congruence.

This is illustrated by the following two examples.

Example 18. ∼c is not a congruence for || . Processes p1 ≡ a; 0 + {|x|} {x}�→b; 0 and p2 ≡ a; 0 +
{|x|} {x}�→c; 0 (b /= c) are closed p-bisimilar if Fx(0) = 0, since in both cases only the action a at time 0
can be performed.However, p1 ||a 0 and p2 ||a 0 are not. Because there is no possible synchronisation
in this parallel process, the execution of action a is preempted. Therefore, b or c may happen (at a
certain time greater than 0). This example is depicted in Fig. 3.

Example 19. ∼c is not a congruence for C �→p . Take p1 and p2 as in the previous example. Then,
{y}�→p1 $∼c {y}�→p2. To understand this, assume Fx is a uniform distribution in [1, 2]. For any
valuation v in which y takes a value greater than 2, all edges become enabled at time d = v(y). In
particular, edges {y}�→p1

b,{x,y}� 0 and {y}�→p2
c,{x,y}� 0 .

The above problems arise because a faster action is pre-empted or slowed down by the context,
thus giving the possibility for a slower activity to occur that otherwise (i.e., in the process in isolation)
would never occur. Open p-bisimilarity has been devised that prevents these cases. Rather than

P.R. D’Argenio, J.-P. Katoen / Information and Computation 203 (2005) 39–74 57

Fig. 3. Closed p-bisimilarity is not a congruence.

taking the fastest action, the open behaviour does not obey the maximal progress condition. In this
way, time may pass, allowing slower actions to be observed without the need for interaction to do
so. The following theorem shows that this notion indeed is a congruence.

Theorem 20. Let p , q ∈ � such that p ∼o q. LetC[] be a context such thatC[p],C[q] ∈ �. Then,
C[p] ∼o C[q].
Proof See [19, Appendix F.2]. �

4. Equational theory for

This section presents a sound and complete axiomatisation of ∼s (i.e., structural bisimulation).
We first do so for the basic operators of . An axiomatisation for∼o is then given, followed by the
axiomatic treatment of the static operators (for ∼s). In particular, we consider a generalisation of
the expansion law to and discuss the recursive specification principle and the recursive definition
principle (as in [6,5]) in .

4.1. Basic axioms for structural bisimulation

Definition 21. The equational theory for the basic sub-language of , denoted b, is defined by the
signature sig(b), containing the constant 0, the unary operators a; _,C �→_, and {|C|} _, for every
a ∈ A, and C ∈ ℘fin(C), and the binary operation +, and the axiom system ax (b) as given in
Table 7.

The axioms can be explained as follows. The choice is commutative (A1) and associative (A2).
AxiomA3 states that+ is idempotent on action-guarded processes andA4 states that 0 is the neutral
element for +. In contrast to traditional process algebras, choice is not idempotent in general, e.g.,
consider p ≡ {|x|} {x}�→a; 0 where Fx is a uniform distribution over [0, 2]. The probability that a

occurs in [0, 1] in p is 12 , whereas in p + p this is 34 . Thus, p $∼s p + p . Axioms T1–T5 show how
triggering conditions can be simplified. In particular, T3 defines how to reduce nested triggering
conditions into one, and axioms T4 and T5 indicate how to shift clock settings and summations
out of the scope of a triggering condition. AxiomCS1 says that it is irrelevant to set an empty set of
clocks. CS2 gathers the clock settings in a single clock setting and CS3moves clock settings out of
the scope of +. The side condition of the latter axiom is needed to avoid a conflict of clock names.

58 P.R. D’Argenio, J.-P. Katoen / Information and Computation 203 (2005) 39–74

Table 7
Axioms for b

A1 p + q = q+ p

A2 (p + q)+ r = p + (q+ r)

A3 a; p + a; p = a; p
A4 p + 0 = p

T1 C �→0 = 0

T2 ∅�→p = p

T3 C �→C′ �→p = C ∪ C′ �→p

T4 C �→{|C′|} p = {|C′|}C �→p if C ∩ C′ =∅

T5 C �→(p + q) = C �→p + C �→q

CS1 {|∅|} p = p

CS2 {|C|} {|C′|} p = {|C ∪ C′|} p
CS3 {|C|} p + {|C′|} q = {|C ∪ C′|} (p + q) if C ∩ (fv(q) ∪ �(q)) =∅ and C′ ∩ (fv(p) ∪ �(p)) =∅

The following property states that + is idempotent whenever clock settings only occur within the
context of a prefix.

Proposition 22. Let p ∈ b such that every subterm {|C|} r in p occurs in a subterm of the form a; q.

Then ax (b) (p = p + p.

Proof. By induction8 on the structure of p .

Case 0 . 0 A4= 0 + 0

Case a; p . a; p A3= a; p + a; p

Case C �→p . C �→p
ind.= C �→(p + p)

T5= C �→p + C �→p

Case {|C|} p . It does not fall within the hypothesis of the property.

Case p + q. p + q
ind.= (p + p)+ (q+ q)

A1,A2= (p + q)+ (p + q). �

Theorem 23 (Soundness). For p , q ∈ def. ax (b) (p = q implies p ∼s q.

Proof. For axiom p = q in ax (b), let R = {〈p , q〉, 〈q, p〉} ∪ Id with Id the identity relation. It can
be straightforwardly checked that R is a structural bisimulation for any such axiom. �

Theorem 23 states that ax (b) is sound with respect to ∼s. For establishing completeness of
our axiom system, we rely on normal forms, called basic terms in the following.

8 In fact, the proof of this property also requires inductive reasoning which we assume to be standard part of equational
reasoning.

P.R. D’Argenio, J.-P. Katoen / Information and Computation 203 (2005) 39–74 59

Definition 24. The set B ⊆ b of basic terms is defined inductively using an auxiliary set B′ as
follows:

• 0 ∈ B′
• p ∈ B, C ⊆ ℘fin(C) and a ∈ A ⇒ C �→a; p ∈ B′
• p , q ∈ B′ ⇒ p + q ∈ B′
• p ∈ B′, C ⊆ ℘fin(C) ⇒ {|C|} p ∈ B.

A basic term has the following format (modulo the axioms A1–A4):

p = {|C|}
(∑

i∈I

Ci �→ai; pi

)
,

where I is a finite index-set and pi is a basic term. Terms in B′, also called pre-basic terms, are like
basic terms except that clock settings only occur within the context of an action prefix. They have
the following format: p =∑i∈I Ci �→ai; pi, with I and pi as before.

Theorem 25. For p ∈ b ∩ def, there is a basic term q ∈ def such that ax (b) (p = q.

Proof. By structural induction on p . The interesting cases are the triggering condition and
choice.

Case C �→p . From def(C �→p) it follows def(p). From the induction hypothesis, we may thus
assume that

p = {|C ′|}
(∑

i∈I

Ci �→ai; pi

)
,

where pi is a basic term such that def(pi) (for all i ∈ I). As C ∩ C ′ = ∅ it follows:

C �→p
T4= {|C ′|} (C �→∑

i∈I Ci �→ai; pi

)
T5,T3= {|C ′|} (∑i∈I (C ∪ Ci)�→ai; pi

)
.

From the definition of lcv, it directly follows that the obtained term is locally definable. Using
def(pi) for all i ∈ I , it follows that the term is also definable.

Case p + q. From def(p + q), it follows def(p) and def(q). From the induction hypothesis, it may
be assumed that:

p = {|C|}
(∑

i∈I

Ci �→ai; pi

)
and q = {|C ′|}

∑

j∈J

C ′j �→bj; qj

 ,

60 P.R. D’Argenio, J.-P. Katoen / Information and Computation 203 (2005) 39–74

where pi andqj such thatdef(pi)anddef(qj), for all i ∈ I and j ∈ J . SinceC ∩ C ′ = ∅,C ∩ fv(q) = ∅,
and C ′ ∩ fv(p) = ∅:

p + q
ind.= {|C|} (∑i∈I Ci �→ai; pi

)+ {|C ′|} (∑j∈J C ′j �→bj; qj

)
CS3= {|C ∪ C ′|}

(∑
i∈I (Ci �→ai; pi)+∑j∈J (C ′j �→bj; qj)

)
.

The latter term is locally definable as the summands initialise an empty set of clocks, andC ∩ C ′ = ∅.
As def(pi) and def(qj), it follows that it is also definable. �

Note that for any derivative q of p ∈ b, we have �(q) is finite. This follows from the fact that
p does not include process variables, and hence, no infinite clock settings may be obtained. The set
of sequential finite terms whose behaviour is definable equals in fact b ∩ def.

Definition 26. For pre-basic terms p and q: p is a summand of q, notation p ≤ q, if ax (b) (q =
q+ p .

Reflexivity of ≤ follows from Proposition 22 while transitivity follows from axioms A1, A2 (and
substitutivity).≤ is thus a partial ordering on pre-basic terms. In addition, from axiomA4 it follows
that 0 is the unique minimal element of �. The notion of summand relates to the operational
semantics as stated in the following proposition whose proof is straightforward.

Proposition 27. For pre-basic term p ∈ def :

1.C �→a; p ′ ≤ p implies p
a,C� p

�
and ax (b) (p

� = p ′.
2. p a,C� p

�
implies C �→a; p ′ ≤ p and ax (b) (p

� = p ′.

Here, � is the edge-relation as defined in Definition 7.

Theorem 28 (Completeness). For p , q ∈ b ∩ def. p ∼s q implies ax (b) (p = q.

Proof. Let p , q ∈ b ∩ def with p ∼s q. From Theorems 25 and 23, it follows that there are basic
terms p̂ , q̂ ∈ def such that p̂ ∼s p and q ∼s q̂. Let p̂ = {|C|} p ′ and q̂ = {|C ′|} q′ where p ′ and q′ are
pre-basic terms. By definition of∼s, �(p̂) = �(q̂), and since �(p ′) = �(q′) = ∅, it followsC = C ′. The
remainder of this proof proceeds by induction on the maximum number of nested prefixes in p̂ and
q̂. If this is 0, then p̂ = {|C|} 0 = q̂. Otherwise, p̂ = {|C|} p ′ and q̂ = {|C|} q′ with p ′ =∑i∈I Ci �→ai; pi

and q′ =∑j∈J Cj �→aj; qj . Consider now summand Ck �→ak; pk of p ′. By Proposition 27 (part 1),
p ′ ak ,Ck� p

�
for k ∈ I and ax (b) (pk = p

�
. By Theorem 23, pk ∼s p

�
. Since p̂ ∼s q̂, we have

p ′ ∼s q′. By definition of∼s, it follows that q′ ak ,Ck� q
�
and p

� ∼s q
�
. By Proposition 27 (part 2),

there is h ∈ J such that, ak = ah, Ck = Ch, ax (b) (q
� = qh, and Ch �→ah; qh � q′. By Theorem

23, qh ∼s q
�
. Since pk ∼s p

� ∼s q
� ∼s qh, it follows from the induction hypothesis that ax (b) (

pk = qh. Hence, ax (b) (Ck �→ak; pk = Ch �→ah; qh � q′. Proceeding in a similar way for every
summand of p ′, we conclude p ′ � q′. By symmetry q′ � p ′. Hence, p ′ = q′ and ax (b) (p = p̂ =
{|C|} p ′ = {|C|} q′ = q̂ = q. �

P.R. D’Argenio, J.-P. Katoen / Information and Computation 203 (2005) 39–74 61

4.2. Axioms and laws for open p-bisimulation

In this section, we extend the axiomatisation with a set of laws (cf. Table 8) that is sound for open
p-bisimulation. The new set of axioms is denoted ax (b)+Open.
Axioms Sy1–Sy3 respect symbolic bisimulation. Sy1 eliminates irrelevant clocks, that is, clocks

that are set but never used before they are set again. Axiom Sy2 asserts that clocks that have
already been used—i.e., they have expired—are not longer of interest. Sy3 relates clocks as
symbolic bisimulation does. Predicate Lnk, which is defined by rules Ln1–Ln6, checks whether
a set of clocks is linked in a process, that is, whether they are set and used together. Axiom
Sy3 states that a set C containing clocks that are linked can be replaced in a process p by a
single fresh clock z with the additional requirement that z and C represent the same stochastic
value, i.e., the distributions of z and max(C) are equal. (Recall that Fmax(C)(t) =∏x∈C Fx(t) for
any t ∈ IR.)
Axioms A3′ and Red preserve open p-bisimulation, but not symbolic bisimulation. A3′ gives

a weaker notion of idempotency in comparison to axiom A3. Notice that the branching pro-
cess is reduced to only one process that is faster than each of the summands in the origi-
nal process. This is due to the race policy. Recall that Fmin{x,y}(t) = Fx(t)+ Fy(t)− Fx(t)Fy(t) =
1− (1− Fy(t))(1− Fx(t)). Axiom Red states that clocks which are stochastically redundant—i.e.,
they are never set to a positive value—cannot affect the timing of a process. This axiom to-
gether with axioms Sy1 and Sy2 allows one to eliminate clocks whose support does not contain
positive reals.
In the following, we discuss several properties that can be derived from the equational theory

ax (b)+Open. First, notice that axiomSy3 implies �-conversion. In fact, if Fx = Fy and y /∈ fv(p),
{|x|} p = {|y|} [y/x]p is a special instance of Sy3 in which C = {x}. Moreover, axiom Sy3 allows us

Table 8
Axioms for open p-bisimulation in b

Sy1 {|C|} p = p if C ∩ fv(p) =∅

Sy2 C �→a;C �→p = C �→a; p
Sy3 {|C|} p = {|z|} {z/C}p if Lnk(C , p) ∧ z /∈ fv(p) ∧ Fz = Fmax(C)

A3′ {|x, y|} ({x}�→a; p + {y}�→a; p) = {|z|} {z}�→a; p if {x, y , z} ∩ fv(p) =∅ ∧ Fz = Fmin{x,y}
Red {|x|} {x}�→p = {|x|} p if Fx(0) = 1

Ln1
C ∩ fv(p) = ∅

Lnk(C , p)

Ln2
Lnk(C , p)

Lnk(C , a; p)

Ln3
C ⊆ C′ C ∩ fv(p) = ∅

Lnk(C ,C′ �→p)

Ln4
Lnk(C , p) C ∩ C′ = ∅

Lnk(C ,C′ �→p)

Ln5
Lnk(C , p) C ∩ C′ = ∅

Lnk(C , {|C′|} p)

Ln6
Lnk(C , p) Lnk(C , q)

Lnk(C , p + q)

62 P.R. D’Argenio, J.-P. Katoen / Information and Computation 203 (2005) 39–74

to eliminate redundant clocks. Suppose Lnk({x, y}, p) and, for some t ∈ IR, Fx(t) = 0 and Fy(t) = 1.
(Hence Fx = Fmax{x,y}.) Then

{|x, y|} p Sy3= {|z|} {z/{x, y}}p (&�)= {|x|} [x/z]({z/x, z/y}p) = {|x|} [x/y]p ,

provided z /∈ fv(p) and Fz = Fx .
For x /∈ fv(p), a; p + {|x|} {x}�→a; p = a; p . To prove this, assume fresh variables y , z /∈ fv(p) such

that Fy(0) = 1 and Fz = Fmin{x,y}. As a consequence Fz(0) = 1. Therefore:

a; p + {|x|} {x}�→a; p Sy1= {|y|} a; p + {|x|} {x}�→a; p
Red= {|y|} {y}�→a; p + {|x|} {x}�→a; p

CS3,A3′= {|z|} {z}�→a; p
Red,Sy1= a; p.

In the previous section we argued that {|x|} {x}�→a; p + {|x|} {x}�→a; p /= {|x|} {x}�→a; p . This can be
shown as follows. Assume Fx = Fy and x, y , z /∈ fv(p). Then,

{|x|} {x}�→a; p + {|x|} {x}�→a; p (&�)= {|x|} {x}�→a; p + {|y|} [y/x]{x}�→a; p
CS3= {|x, y|} ({x}�→a; p + {y}�→a; p)

A3’= {|z|} {z}�→a; p.

with Fz(t) = Fmin{x,y}(t) = 2Fx(t)− (Fx(t))2. Clearly, {|z|} {z}�→a; p /= {|x|} {x}�→a; p for every non-
trivial random variable x such that Fx(0) < 1. Notice, however, that {|x|} ({x}�→a; p + {x}�→a; p) =
{|x|} {x}�→(a; p + a; p) = {|x|} {x}�→a; p .
The next proposition states that once a clock is terminated (or has expired), it is no longer

necessary and can thus be removed. This result can be seen as a generalisation of axiom Sy2.

Proposition 29. For p ∈ b and C ⊆ C there is a term q such that C ∩ fv(q) = ∅ and ax (b)+
Open (C �→p = C �→q.

Proof. The proof follows by induction on the size of the term p by doing case analysis. Assume
C ∩ fv(q) = ∅ (which follows by inductive reasoning). We only present the most distinctive cases.

Case C �→C ′ �→p .

C �→C ′ �→p
T3= (C ′ − C)�→C �→p

ind.= (C ′ − C)�→C �→q
T3= C �→(C ′ − C)�→q

P.R. D’Argenio, J.-P. Katoen / Information and Computation 203 (2005) 39–74 63

Case C �→{|C ′|} p . By �-conversion, assume {|C ′|} p = {|C� |} [C�
/C ′]p with C

� ∩ C = ∅. Then,

C �→{|C ′|} p = C �→{|C�|} [C�/C ′]p T4= {|C�|}C �→[C�/C ′]p
ind.= {|C�|}C �→q

T4= C �→{|C�|} q. �

The axiom system ax (b)+Open is sound for ∼o; this result is proven in [19, Appendix G].

Theorem 30. For p , q ∈ �. ax (b)+Open (p = q implies p ∼o q.

4.3. Axioms for the static operators

The equational theories introduced so far provide axioms only for the basic operations. In this
section, the axiomatic treatment is extended to the static operators. The new axioms (see Table 9)
explain how the static operators are decomposed and eliminated in favour of the basic operations.
Axioms R1–R6 define the renaming operator in terms of the basic operations. Notice that if the

axioms are considered as rewrite rules from left to right, the renaming operation is “pushed” inside
the term while appropriately renaming actions.
The rest of the axioms concern the different parallel compositions. AxiomsMrg1 andMrg2move

clock settings out of the scope of the parallel composition. This is necessary to avoid the duplica-
tion of clocks when expanding parallel composition in terms of summations. Duplicating clocks
would transform processes without conflict of variables into (semantically different) processes with
conflict of variables.Mrg3 decomposes the parallel composition in terms of the left merge and the
communication merge. To avoid clock duplication, this axiom can be applied provided that clocks
in p and q are reset only if an action is previously performed. That is, a reset operator only appears
in the scope of a prefix. This requirement is established by predicate csf, which is defined by the
rules csf1–csf4 (clock set-free). Observe that if csf(p), then �(p) = ∅ and hence p ≡ noset(p). Notice
moreover, that a pre-basic term p ∈ B′ satisfies csf(p).
The axiomatisation of the parallel composition is completed by axioms LM1–LM7 and CM0–

CM7. Axioms LM1–LM7 define the left merge. Note that in LM3 it is necessary for the right
operand to not reset any clock (predicate csf(q)) to move a prefix in the left operand out of the
scope of the left merge. Finally, axioms CM0–CM7 define the communication merge.

Definition 31. The equational theory for p is defined by the signature sig(p), containing the
constant 0 , the operators a; _, C �→_, {|C|} _, and _[f], and the binary operators +, ||A , || A , and |A ,
and the axiom system ax (p) as given in Tables 7 and 9.

Theorem 32 [Soundness of ax (p)].

1. For p , q ∈ def. ax (p) (p = q implies p ∼s q.

2. For p , q ∈ �. ax (p)+Open (p = q implies p ∼o q.

Proof.For both cases, it suffices to check that the axioms in Table 9 preserve ∼s. For both cases
it is routine to check that for every axiom p = q in Table 9, the relation R = { 〈p , q〉, 〈q, p〉 }
is a structural bisimulation up to ∼s (see [22] for a definition of this notion). For axioms

64 P.R. D’Argenio, J.-P. Katoen / Information and Computation 203 (2005) 39–74

Table 9
Axioms for the static operators

R1 0[f] = 0

R2 (a; p)[f] = f(a); (p[f])
R3 (C �→p)[f] = C �→(p[f])

R4 ({|C|} p)[f] = {|C|} (p[f])
R5 (p + q)[f] = p[f] + q[f]

Mrg1 ({|C|} p) ||A q = {|C|} (p ||A q) if C ∩ (�(q) ∪ fv(q)) =∅

Mrg2 p ||A ({|C|} q) = {|C|} (p ||A q) if C ∩ (�(p) ∪ fv(p)) =∅

Mrg3 p ||A q = p || A q+ q || A p + p |A q if csf(p) ∧ csf(q)

LM1 0 || A q = 0 if csf(q)

LM2 a; p || A q = 0 if csf(q) ∧ a ∈ A

LM3 a; p || A q = a; (p ||A q) if csf(q) ∧ a /∈ A

LM4 (C �→p) || A q = C �→(p || A q)

LM5 ({|C|} p) || A q = {|C|} (p || A q) if C ∩ (�(q) ∪ fv(q)) =∅

LM6 p || A ({|C|} q) = {|C|} (p || A q) if C ∩ (�(p) ∪ fv(p)) =∅

LM7 (p + q) || A r = (p || A r)+ (q || A r) if csf(r)

CM0 p |A q = q |A p

CM1 0 |A 0 = 0

CM2 0 |A a; q = 0

CM3 a; p |A a; q = a; (p ||A q) if a ∈ A

CM4 a; p |A b; q = 0 if a /∈ A

CM5 (C �→p) |A q = C �→(p |A q)

CM6 ({|C|} p) |A q = {|C|} (p |A q) if C ∩ (�(q) ∪ fv(q)) =∅

CM7 (p + q) |A r = (p |A r)+ (q |A r) if csf(r)

csf1 csf(0) csf2 csf(a; p) csf3
csf(p)

csf(C �→p)
csf4

csf(p) csf(q)

csf(p + q)

Mrg3 and CM0, it is necessary to know in addition that p ||A q ∼s q ||A p which can be easily
verified. �

The rest of this section is devoted to prove completeness of ax (p). First an elimination theorem
is provided stating that for every closed term in p there is a term in b that can be proved equal
using the axioms.

Theorem 33. For p ∈ p , there is q ∈ b such that ax (p) (p = q.

Proof [Sketch].For each axiom p = q in Table 9 (exceptCM0) define a rewrite rule p → q. Consider
the rewrite system with these rules modulo the axioms in Table 7 andCM0 (i.e., terms proved equal
with these axioms are considered the same term in the rewrite system). It is simple to prove that the
normal form in this rewrite system is a term in b. �

P.R. D’Argenio, J.-P. Katoen / Information and Computation 203 (2005) 39–74 65

Because of Theorem 28, completeness of ax (p) follows as a corollary.

Theorem 34. For p , q ∈ p ∩ def. p ∼s q implies ax (p) (p = q.

As argued in Section 1, it is not straightforward to obtain an expansion law [46] for a process
algebra in which action delays are governed by general distributions. For an expansion law can
be straightforwardly derived from the aforementioned axioms. This yields:

Theorem 35. Let p and q be terms such that p = {|C|} p ′ and q = {|C ′|} q′ with p ′ =∑i Ci �→ai; pi

and q′ =∑j C ′j �→bj; qj. Suppose p ||A q is �-definable and locally definable. The following equality
can be proven in ax (p) :

p ||A q = {|C ∪ C ′|}
(∑

ai /∈A

Ci �→ai; (pi ||A q′)

+
∑
bj /∈A

C ′j �→bj; (p ′ ||A qj)

+
∑

ai=bj∈A

(Ci ∪ C ′j)�→ai; (pi ||A qj)
)
.

If p[f] is �-definable and locally definable, the following equality also holds in ax (p).

p[f] = {|C|} (∑iCi �→f(ai); (pi[f])
)
.

To illustrate equational reasoning in , we prove that the switch modelled using in Example 4
is equal to the equation system that represents the stochastic automaton of the switch in Example
16.

Example 36. Recall that the switch is described by:

Arrival = {|x|} {x}�→on;Arrival

SwitchOff = on;SwitchOn
SwitchOn = on;SwitchOn + {|y|} {y}�→off;SwitchOff

System = Arrival ||
on

SwitchOff

The following calculations proceed by using the axioms, the expansion law, and process variable
folding and unfolding.

System = Arrival ||
on

SwitchOff

= ({|x|} {x}�→on;Arrival) ||
on

on;SwitchOn

= {|x|} {x}�→on; (Arrival ||
on

SwitchOn)

66 P.R. D’Argenio, J.-P. Katoen / Information and Computation 203 (2005) 39–74

We then proceed by deriving:

Arrival ||
on

SwitchOn

= ({|x|} {x}�→on;Arrival) ||
on

(on;SwitchOn + {|y|} {y}�→off;SwitchOff)

= {|x, y|} ({x}�→on; (Arrival ||
on

SwitchOn)+ {y}�→off; ({x}�→on;Arrival ||
on

SwitchOff))

= {|x, y|} ({x}�→on; (Arrival ||
on

SwitchOn)+ {y}�→off; (Arrivalnoset ||
on

SwitchOff))

where:

Arrivalnoset ||
on

SwitchOff = {x}�→on;Arrival ||
on

on;SwitchOn

= {x}�→on; (Arrival ||
on

SwitchOn)

Recall that in Example 16 the obtained equation system was as follows:

XSystem = {|x|} {x}�→on;XArrival||on SwitchOn

XArrival||on SwitchOn = {|x, y|} ({x}�→on;XArrival||on SwitchOn + {y}�→off;Xnoset(Arrival)||on SwitchOff)

Xnoset(Arrival)||on SwitchOff = {|∅|} {x}�→on;XArrival||on SwitchOn

Though, apparently, the calculation is about to finish, we are not yet in conditions to actually
conclude that System = XSystem (continued below).

In fact, both tuples 〈System,Arrival ||
on

SwitchOn,noset(Arrival) ||
on

SwitchOff 〉 and

〈XSystem,XArrival||on SwitchOn,Xnoset(Arrival)||on SwitchOff 〉 solve the same system of equations, but we did not
yet provide any tool that allows to conclude that both solutions are the same. To characterise those
models inwhich recursive specifications, i.e., systems of recursive equations, have (unique) solutions,
process algebras provide the following principles [6,5]:

• The Recursive Specification Principle (RSP) is the assumption that every guarded recursive
specification has at most one solution.
• The Restricted Recursive Definition Principle (RDP−) is the assumption that every guarded
recursive specification has a solution.

Notice that a model that satisfies both RSP and RDP− guarantees that every guarded recursive
specification has a unique solution. Every guarded recursive specification in has a solution. As
a result, satisfies RDP−. The proof that satisfies RSP is more tedious and is omitted here.

P.R. D’Argenio, J.-P. Katoen / Information and Computation 203 (2005) 39–74 67

We just mention that it is a straightforward adaptation of the proof given for ACP [5]. As a
consequence:

Theorem37. The algebrawith carrier set �, signature sig(p), and∼o as equivalence relation satisfies
RSP and RDP−.

Example 38 (Continuation of Example 36). Because RSP and RDP− hold in , guarded recursive
specifications have unique solutions. Therefore:

XSystem = System

XArrival||on SwitchOn = Arrival ||
on

SwitchOn

Xnoset(Arrival)||on SwitchOff = noset(Arrival) ||
on

SwitchOff

which concludes our proof.

4.4. Summary of results

This section summarises our main results and places them in perspective. Let BC be a basic
calculus (à la CCS) with signature sig(BC) = {0 , a; _,+} and ax (BC) containing the axioms:

A1 p + q = q+ p , A3 a; p + a; p = a; p ,
A2 (p + q)+ r = p + (q+ r), A4 p + 0 = p.

Despite that axiom A3 is not the traditional CCS idempotency, it is not difficult to see that, for
closed terms, this axiom system is equivalent to the traditional CCS axiom set. Fig. 4 summarises the
relationship between the equational theories presented in this paper. The arrows have the following
meaning: ax (A) � ax (B) expresses that B is a conservative extension [5] of A, i.e., for all closed
terms p , q in A it holds: ax (A) (p = q if and only if ax (B) (p = q. ax (A) � � � � �� ax (B) states

Fig. 4. Summary of axiomatisations.

68 P.R. D’Argenio, J.-P. Katoen / Information and Computation 203 (2005) 39–74

that for every closed term p in A there is a term q in B such that ax (A) (p = q, i.e., operations
in sig(A)− sig(B) can be eliminated and replaced by those in sig(B). Finally, ax (A) � ax (B)

expresses that sig(A) = sig(B) and ax (A) (p = q implies ax (B) (p = q.
The results in Fig. 4 are justified as follows. From results on conservative extensions [26] it follows

that ax (BC) � ax (b); for details we refer to [19, Chapter 11]. Since ∼s and ∼o coincide for
terms in the basic calculus BC, it immediately follows ax (BC) � ax (b)+Open. ax (b) �

ax (p) can also be proven using the general results in [26]. This technique cannot be applied
to prove ax (b)+Open � ax (p)+Open, since it requires that ax (b)+Open is complete
for ∼o, which is not the case. It can, however, be straightforwardly proven using classical process
algebra techniques (see, e.g. [5]). The result ax (p) � � � � �� ax (b) follows directly fromTheorem 33.
Consequently, ax (p)+Open � � � � �� ax (b)+Open also holds. Finally, ax (b) � ax (b)+
Open and ax (p) � ax (p)+Open follow from the fact that ax (b) ⊆ ax (b)+Open and
ax (p) ⊆ ax (p)+Open.

5. Related work

Several authors have proposed different approaches to incorporate general distributions in a
process algebraic framework. We discuss the main approaches and their differences with .
TIPP [30] is the earliest process algebra with general distributions. Its basic construct is the prefix

aF ; p which corresponds to {|x|} {x}�→a; p with Fx = F . The semantics is based on labelled transition
systems in which transitions are decorated with a distribution function and, to keep track of the
execution of parallel processes, a number (a start reference) that indicates howmany times an action
has not been chosen to be executed. This approach yields infinite semantic objects, even for simple
regular processes. Similar techniques have been adopted by [2,45,49].
Harrison and Strulo [33,34,55] introduce a process algebra for discrete-event simulation. Three

operations are considered: one that randomly assigns a value to a variable, another that starts
a timer and waits for it to reach a value (possibly stored in a variable), and the occurrence
of immediate actions. (Notice that in the operator {|x|} p starts a timer and randomly sets
its expiration time, while {x}�→p only waits for a timer to reach its expiration value.) Their
process algebra includes an urgent and a delay prefix, thus combining the closed and open
system interpretation. The semantic model is similar to probabilistic transition systems where
non-deterministic transitions are split into discrete transitions and timed transitions. Due to these
explicit time transitions, semantic objects contain usually uncountably many states and transi-
tions. Since timer-initialisation and termination are a single operation, an expansion law cannot
be obtained.
A non-interleaving semantics using a stochastic extension of event structures has been proposed

by Brinksma et al. [15]. Non-interleaving semantics seems to be more natural to deal with general
distributions since activities that are causally independent (i.e., concurrent activities) are unordered,
as opposed to interleaving semantics. Using techniques like McMillan prefixes, finite semantic
objects can be obtained for recursive processes and analysed [52].
A general semi-Markovian process algebra (GSMPA) based on the Markovian process algebra

EMPA has been discussed in [11,10]. GSMPA has a semantics in a semi-interleaving model that

P.R. D’Argenio, J.-P. Katoen / Information and Computation 203 (2005) 39–74 69

allows for refinement of actions (the so-called ST-semantics). Although this calculus preserves
finiteness of semantic objects, the semantics is rather complex. A nice characteristic of GSMPA
is that it represents the GSMP model in a complete way. Recently, Bravetti and Gorrieri [13,10]
adapted the previous work to consider—like in this paper—the separation between the beginning
of a delay, the ending of it, and the execution of an action. This yields an elegant semantics for
GSMPA, and exploits known results from ST-semantics to deal, for instance, with naming of
clocks (name clashes). Apart from strong bisimulations, a weak equivalence relation (accompanied
with a complete axiomatic characterisation) is defined and allows for the abstraction of internal
immediate actions.
There are two main distinguishing aspects between and most other approaches toward

general distributions. Whereas most approaches use infinite-state probabilistic transition sys-
tems as semantical model, takes a layered approach, by first providing a mapping onto
stochastic automata. These automata are mostly (e.g., for regular processes) finite state, thus en-
abling formal reasoning. The role of stochastic automata is similar to that of timed automata,
a well-known symbolic model for real-time systems. A similar approach has been advocated by
Bravetti and Gorrieri [11,13,10] who exploit ST-semantics to handle general distributions. For
dealing with action-prefixes of the form aF ; p , there is no need for considering �-conversion,
but one can resort to standard techniques of ST-semantics to bind names of completion events
to those of start events, e.g., using the static approach in [1]. This is illustrated in [12]. In the
setting of , however, start and completion events do not always occur as pairs, e.g., clocks
that are set may never be used, or used multiple times. We therefore take a somewhat more
general approach and consider renaming. Bravetti and D’Argenio recently provided a detailed
account of the differences between the approach taken for and the one using ST-semantics
[12]. A second issue is the presence of non-determinism: all approaches (with the notable excep-
tion of [13,10,33,34,55]) listed above take a purely probabilistic viewpoint, in which all choices
are resolved probabilistically. Non-determinism plays a prominent role in . We finally remark
that if all clocks in are exponential, a calculus is obtained that strongly resembles Hermanns’
language for describing interactive Markov chains [35].
The language is equally expressive as stochastic automata, and as GSMPs are a proper subset

of stochastic automata, can be used as a high-level language for discrete-event simulation. A dif-
ferent approach to use process algebra for discrete-event simulation has been taken by Pooley [48]
and Tofts and Birtwistle [56]. They use (traditional) process algebra as semantical model for prac-
tical discrete-event simulation languages, enabling e.g., deadlock analysis techniques to simulation
models.

6. Concluding remarks

This paper introduced the stochastic process algebra whose semantics is defined in terms of
stochastic automata, which, in turn, are interpreted as (infinite) probabilistic transition systems.
The structured operational semantics of is rather concise and simple. In the accompanying paper
[22], several notions of strong bisimulation have been defined on stochastic automata including
probabilistic, symbolic, and structural bisimulation. The technical results of this paper are strongly
based on these equivalence notions and include:

70 P.R. D’Argenio, J.-P. Katoen / Information and Computation 203 (2005) 39–74

(i) the semantics of a term up to �-conversion is unique up to symbolic bisimulation;
(ii) stochastic automata and are equally expressive up to structural bisimulation;

(iii) open probabilistic and structural bisimulation are congruences for ;
(iv) a sound and complete axiomatisation for structural bisimulation;
(v) a sound axiomatisation for open probabilistic bisimulation.

Put in a nutshell, can be considered as a language for the modular representation of stochastic
automata that has a solid algebraic foundation.
Concerning the analysis of properties of terms, the techniques applicable to stochastic au-

tomata do apply. This includes discrete-event simulation [25] for assessing quantitative properties
and verification techniques such as model checking for untimed safety properties [25] as well as
timed safety and liveness properties [20]. Recently, a light-weight modeling language [21] with ac-
companying tool support has been developed based on . This specification formalism enriches
with data types, control flow constructs (e.g., iteration and exception handling), non-deterministic
timing and discrete probabilistic branching.

Acknowledgments

We thank Ed Brinksma for his collaboration in this research. The reviewers are gratefully
acknowledged for their valuable comments that improved the presentation of the paper signifi-
cantly. Part of this work was done while the first author was working for the STW/PROGRESS
project TES-4999 “Verification of Hard and Softly Timed Systems (HaaST)” at the University of
Twente.

Glossary

Probabilities
�: Sample space;
F : �-algebra;
�: Probability measure;
Prob(�): Set of probability spaces in �;
B(IRn): Borel algebra on the nth real hyperspace;
R(F1, . . . , Fn): Probability space on B(IRn) with measure uniquely defined by F1, . . . , Fn;
Ds

v: Decoration (measurable) function;

Semantics
A: Set of action names;
C: Set of clock names;
V: Set of valuations;
S: Set of locations;
�: Clock setting function;
�: Edge on the definable semantics;
�

�: Edge on the �-definable semantics;
expd (v,C): Expiration predicate;
mprd (s, v): Maximal progress predicate;

P.R. D’Argenio, J.-P. Katoen / Information and Computation 203 (2005) 39–74 71

(p , v): Probabilistic state;
[p , v]: Non-deterministic state;
T : Probabilistic transition;
−→ : Non-deterministic transition;
∼=: Isomorphism on stochastic automata;
∼p : Probabilistic bisimulation;
∼c: Closed p-bisimulation;
∼o: Open p-bisimulation;
∼&: Symbolic bisimulation;
∼s: Structural bisimulation;

operators and terms
a; p: Action prefix;
C �→p: Triggering condition;
{|C′|} p: Clock setting;
p + p: Sum or (non-deterministic) choice;
p ||A p: Parallel composition or merge;
p || A p: Left merge;
p |A p: Communication merge;
p[f]: (Action) renaming;
V: Set of process variables;
noset(p): Auxiliary clock removal operation;
fv(p): Free clock variables in a process;
[C′/C]: Substitution;
{x/C}: Multiple substitution;
&�: �-congruence;
lcv(p): Local conflict of clock names;
ldef(p): Locally definable process;
def(p): Definable process;
�def(p): �-definable process;
csf(p): Clock set-free process;
Lnk(p): Linked clocks in a process;
ax (A): Set of axioms for equational theory A;
sig(A): Signature of equational theory A;
: Set of all terms;
def: Set of definable terms;
�: Set of �-definable terms;
�−: Set of non-locally conflicting �-definable and terms;
b: Set of closed basic terms;
p : Set of closed terms;

References

[1] L. Aceto, A static view of localities, Formal Aspects Comput. 6 (1994) 201–222.
[2] M. Ajmone Marsan, A. Bianco, L. Ciminiera, R. Sisto, A. Valenzano, A LOTOS extension for the performance
analysis of distributed systems, IEEE/ACM Trans. Networking 2 (2) (1994) 151–165.

72 P.R. D’Argenio, J.-P. Katoen / Information and Computation 203 (2005) 39–74

[3] R. Alur, D. Dill, A theory of timed automata, Theor. Comput. Sci. 126 (1994) 183–235.
[4] J.C.M. Baeten, C. Verhoef, A congruence theorem for structured operational semantics with predicates, in: E. Best
(Ed.), Concurrency Theory (CONCUR), Lecture Notes in Computer Science, vol. 715, Springer, Berlin, 1993, pp.
477–492.

[5] J.C.M. Baeten, W.P. Weijland, Process Algebra, volume 18 of Cambridge Tracts in Theoretical Computer Science,
Cambridge University Press, Cambridge, 1990.

[6] J.A. Bergstra, J.W. Klop, Verification of an alternating bit protocol by means of process algebra, in: W. Bibel, K.P.
Jantke (Eds.), Math. Methods of Spec. and Synthesis of Software Systems, Akademie Verlag, 1986, pp. 9–23.

[7] M. Bernardo, Theory and application of extended Markovian process algebras. PhD thesis. Università di Bologna,
Padova, Venezia, 1999.

[8] M. Bernardo, R. Gorrieri, A tutorial on EMPA: a theory of concurrent processes with nondeterminism, priorities,
probabilities and time, Theor. Comput. Sci. 202 (1–2) (1998) 1–54.

[9] T. Bolognesi, E. Brinksma, Introduction to the ISO specification language LOTOS, Comput. Networks 14 (1987)
25–59.

[10] M. Bravetti, Specification and analysis of stochastic real-time systems. PhD thesis. Università di Bologna, Padova,
Venezia, 2002.

[11] M. Bravetti,M. Bernardo,R.Gorrieri, Towards performance evaluationwith general distributions in process algebra,
in: D. Sangiorgi, R. de Simone (Eds.), Concurrency Theory (CONCUR), Lecture Notes in Computer Science, vol.
1466, Springer, Berlin, 1998, pp. 405–422.

[12] M.Bravetti, P.R.D’Argenio,Tutte le algebre insiemi: concepts, discussions and relationsof stochastic process algebras
with general distributions, in: C. Baier (Ed.), et al., Validation of Stochastic Systems, Lecture Notes in Computer
Science, vol. 2925, Springer, Berlin, 2004, pp. 44–89.

[13] M. Bravetti, R. Gorrieri, The theory of interactive generalized semi-Markov processes, Theor. Comput. Sci. 286
(2002) 5–32.

[14] E. Brinksma, H. Hermanns, Process algebra andMarkov chains, in: E. Brinksma, H. Hermanns, J.-P. Katoen (Eds.),
Lectures on Formal Methods and Performance Analysis, Lecture Notes in Computer Science, vol. 2090, Springer,
Berlin, 2001.

[15] E. Brinksma, J.-P. Katoen, R. Langerak, D. Latella, A stochastic causality-based process algebra, Comput. J. 38 (6)
(1995) 552–565.

[16] P. Buchholz, Markovian process algebra: composition and equivalence, in: U. Herzog, M. Rettelbach (Eds.). Process
Algebra and Performance Modelling (PAPM). Arbeitsbericht 29(9), University of Erlangen-Nürnberg, 1994, pp.
11–30.

[17] C.G. Cassandras, Discrete Event Systems. Modeling and Performance Analysis, Aksen Associates, Irwin, 1993.
[18] M.E. Crovella, Performance evaluation with heavy tail distributions (extended abstract), in: B.R. Haverkort, H.C.

Bohnenkamp, C.U. Smith (Eds.), Computer Performance Evaluation: Modelling, Techniques and Tools, Lecture
Notes in Computer Science, vol. 1786, Springer, Berlin, 2000, pp. 1–9.

[19] P.R. D’Argenio, Algebras and automata for timed and stochastic systems, PhD thesis, University of Twente,
1999.

[20] P.R. D’Argenio, A compositional translation of stochastic automata into timed automata, CTIT Tech. Rep. 00-08,
University of Twente, 2000.

[21] P.R. D’Argenio, H. Hermanns, J.-P. Katoen, J. Klaren,MoDeST—amodelling and description language for stochas-
tic timed systems, in: L. de Alfaro, S. Gilmore (Eds.), Process Algebra and Probabilistic Methods, Lecture Notes in
Computer Science, vol. 2165, Springer, Berlin, 2001, pp. 87–104.

[22] P.R. D’Argenio, J.-P. Katoen, A theory of stochastic systems. Part I: Stochastic automata, Inf. Comput. 2005,
10.1016/j.ic.2005.07.001.

[23] P.R. D’Argenio, J.-P. Katoen, E. Brinksma, A stochastic automatamodel and its algebraic approach, in: E. Brinksma,
A.Nymeyer (Eds.), ProcessAlgebra and PerformanceModeling (PAPM), CTITTech. Rep. 97-14, pp. 1–16,University
of Twente, 1997.

[24] P.R. D’Argenio, J.-P. Katoen, E. Brinksma, An algebraic approach to the specification of stochastic systems (ex-
tended abstract), in: D. Gries, W.-P. de Roever (Eds.), IFIPWorking Conf. on Programming Concepts andMethods
(PROCOMET), IFIP Conf. Proceedings 125, Chapman & Hall, London, 1998, pp. 126–147.

P.R. D’Argenio, J.-P. Katoen / Information and Computation 203 (2005) 39–74 73

[25] P.R. D’Argenio, J.-P. Katoen, E. Brinksma, Specification and analysis of soft real-time systems: quantity and quality,
in: 20th IEEE Real-Time Systems Symposium (RTSS), IEEE CS Press, 1999, pp. 104–114.

[26] P.R. D’Argenio, C. Verhoef, A general conservative extension theorem in process algebras with inequalities, Theor.
Comput. Sci. 177 (2) (1997) 351–380.

[27] W.J. Fokkink,The tyft/tyxt format reduces to tree rules, in:M.Hagiya, J.C.Mitchell (Eds.), SymposiumonTheoretical
Aspects of Computer Software (TACS), Lecture Notes in Computer Science, vol. 789, Springer, Berlin, 1994, pp. 440–
453.

[28] W.J. Fokkink, Introduction to Process Algebra, Springer, 2000.
[29] P.W. Glynn, A GSMP formalism for discrete event simulation, Proc. IEEE 77 (1) (1989) 14–23.
[30] N. Götz, U. Herzog, M. Rettelbach, TIPP—introduction and application to protocol performance analysis,

in: H. König (Ed.), Formale Beschreibungstechniken für verteilte Systeme, FOKUS series, Saur Publishers,
1993.

[31] J.F. Groote, F.W. Vaandrager, Structured operational semantics and bisimulation as a congruence, Inf. Comput. 100
(2) (1992) 202–260.

[32] P.G. Harrison, N.M. Patel, Performance Modelling of Communication Networks and Computer Architectures,
Addison-Wesley, Reading, MA, 1992.

[33] P.G. Harrison, B. Strulo, Stochastic process algebra for discrete event simulation, in: F. Bacelli, A. Jean-Marie, I.
Mitrani (Eds.), Quantitative Methods in Parallel Systems, Esprit Basic Research Series, Springer, Berlin, 1995, pp.
18–37.

[34] P.G. Harrison, B. Strulo, Spades: Stochastic process algebra for discrete event simulation, J. Logic Comput. 10 (1)
(2000) 3–42.

[35] H.Hermanns, in: InteractiveMarkovChains—TheQuest forQuantifiedQuality, LectureNotes inComputer Science,
vol. 2428, Springer, Berlin, 2002.

[36] H. Hermanns, U. Herzog, J.-P. Katoen, Process algebra for performance evaluation, Theor. Comput. Sci. 274 (1–2)
(2002) 43–87.

[37] H. Hermanns, M. Rettelbach, Syntax, semantics, equivalences, and axioms forMTIPP, in: U. Herzog, M. Rettelbach
(Eds.). ProcessAlgebra andPerformanceModelling (PAPM).Arbeitsbericht 29(9),University ofErlangen-Nürnberg,
1994, pp. 71–87.

[39] J. Hillston, The nature of synchronisation, in: U. Herzog, M. Rettelbach (Eds.). Process Algebra and Performance
Modelling (PAPM). Arbeitsbericht 29(9), University of Erlangen-Nürnberg, 1994, pp. 51–70.

[40] J. Hillston, A Compositional Approach to Performance Modelling, Cambridge University Press, Cambridge, 1996.
[41] J. Hillston, M. Ribaudo, Stochastic process algebras: a new approach to performance modeling, in: K. Bagchi, J.

Walrand, G. Zobrist (Eds.), Modeling and Simulation of Advanced Computer Systems, Gordon Breach, 1998.
[42] C.A.R. Hoare, Communicating Sequential Processes, Prentice-Hall, New Jersey, 1985.
[43] R. Jain, The Art of Computer Systems Performance Analysis, John Wiley & Sons, New York, 1991.
[45] N. López, M. Núnez, NMSPA: a non-Markovian model for stochastic processes, in: Distributed System Validation

and Verification (DSVV), 2000. http://www.math.ntu.edu.tw/∼eric/dsvv_proc/.
[46] R. Milner, Communication and Concurrency, Prentice-Hall, New Jersey, 1989.
[47] G.D. Plotkin,A structural approach tooperational semantics,ReportDAIMIFN-19,Computer ScienceDepartment,

Aarhus University, 1981.
[48] R.J. Pooley, Integrating behavioural and simulationmodelling, in: Quantitative Evaluation of Computing and Com-

munication Systems, Lecture Notes in Computer Science, vol. 977, Springer, Berlin, 1995, pp. 102–116.
[49] C. Priami, Stochastic �-calculus with general distributions, in: M. Ribaudo (Ed.), Process Algebra and Performance

Modelling (PAPM), Università di Torino, 1996, pp. 41–57.
[50] A. Rensink, Bisimilarity of open terms, Inf. Comput. 156 (2000) 345–385.
[52] T. Ruys, R. Langerak, J.-P. Katoen, D. Latella, M. Massink, First passage time analysis of stochastic process algebra

using partial orders, in: T. Margaria, W. Yi (Eds.), Tools and Algorithms for the Construction and Analysis of
Systems (TACAS), Lecture Notes in Computer Science, vol. 2031, Springer, Berlin, 2001, pp. 220–235.

[53] A.N. Shiryaev, in: Probability, Graduate Texts in Mathematics, vol. 95, Springer, Berlin, 1996.
[54] W. Stewart, Introduction to the Numerical Solution of Markov Chains, Princeton University Press, New Jersey,

1994.

74 P.R. D’Argenio, J.-P. Katoen / Information and Computation 203 (2005) 39–74

[55] B. Strulo, Process algebra for discrete event simulation, PhD thesis, Imperial College, 1993.
[56] C. Tofts, G.M. Birtwistle, Denotational semantics for a process-based simulation language, ACM Trans. Modeling

Comput. Simulation 8 (3) (1998) 281–305.
[57] W. Whitt, Continuity of generalized semi-Markov processes, Math. Oper. Res. 5 (1980) 494–501.

