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We extend the theory of labelled Markov processes to include internal non-determinism,

which is a fundamental concept for the further development of a process theory with

abstraction on non-deterministic continuous probabilistic systems. We define

non-deterministic labelled Markov processes (NLMP) and provide three definitions of

bisimulations: a bisimulation following a traditional characterisation; a state-based

bisimulation tailored to our ‘measurable’ non-determinism; and an event-based bisimulation.

We show the relations between them, including the fact that the largest state bisimulation is

also an event bisimulation. We also introduce a variation of the Hennessy–Milner logic that

characterises event bisimulation and is sound with respect to the other bisimulations for an

arbitrary NLMP. This logic, however, is infinitary as it contains a denumerable ∨. We then

introduce a finitary sublogic that characterises all bisimulations for an image finite NLMP

whose underlying measure space is also analytic. Hence, in this setting, all the notions of

bisimulation we consider turn out to be equal. Finally, we show that all these bisimulation

notions are different in the general case. The counterexamples that separate them turn out

to be non-probabilistic NLMPs.

1. Introduction

Markov processes with continuous state spaces or continuous time evolution (or both)

arise naturally in several fields of physics, biology, economics and computer science

(Danos et al. 2006). Many formal frameworks have been defined to study them from a

process theory or process algebra perspective (Strulo 1993; Segala 1995; Desharnais 1999;

D’Argenio 1999; Bravetti 2002; Desharnais et al. 2002; Bravetti and D’Argenio 2004;

D’Argenio and Katoen 2005; Cattani 2005; Cattani et al. 2005; Danos et al. 2006).

† Supported by ANPCyT PICT 26135, ANPCyT PICT-PAE 2272, SeCyT-UNC and CONICET.
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A prominent and extensive topic in this area is built on the so-called labelled Markov

processes (LMP) (Desharnais 1999; Desharnais et al. 2002). This is because it has solid and

well-understood mathematical foundations. An LMP allows many transition probability

functions (or Markov kernels) leaving each state (instead of just one, as in normal Markov

processes). Each transition probability function is a measure ranging on a (possibly

continuous) measurable space, and the different transition probability functions can be

singled out through labels. Hence, this model does not consider internal non-determinism.

From the process algebra point of view, this is a significant drawback for the theory

since internal non-determinism immediately arises in the analysis of systems, for example,

because of abstracting internal activity, such as in weak bisimulation (Milner 1989), or

because of state abstraction techniques, such as in model checking (Clarke et al. 1999).

Many other papers have defined variants of continuous Markov processes that include

internal non-determinism, which are mainly used as the underlying semantics of a process

algebra (Strulo 1993; D’Argenio 1999; Bravetti 2002; Bravetti and D’Argenio 2004;

D’Argenio and Katoen 2005). They have also defined a continuous probabilistic variant

of the (strong) bisimulation. As correctly pointed out in Cattani (2005) and Cattani et al.

(2005), these models lack enough structure to ensure that bisimilar models share the same

observable behaviour. (This is due to the case where two objects may be bisimilar but

it is not possible to define probabilistic executions in one of them because the transition

relation is not a measurable object.) The solution proposed in Cattani (2005) and Cattani

et al. (2005) deals with the same unstructured type of model and lifts the burden of

checking measurability to the semantic tools (such as bisimulation or schedulers). In

particular, this results in the definition of a bisimulation as a relation between measures

rather than states.

A somewhat related observation was made in Danos et al. (2006) with respect to

the bisimulation relation for LMPs (Desharnais 1999; Desharnais et al. 2002). Danos

et al. (2006) showed that there are bisimulation relations that may distinguish beyond

events. That is, states that cannot be separated (that is, distinguished) by any measurable

set (that is, any event) may not be related for some bisimulation relation. This is also

awkward as events (measurable sets) are the building blocks of observations (probabilistic

executions). To overcome this, Danos et al. (2006) defined the so-called event bisimulation

(in opposition to the previous state bisimulation, a name that we will use from now on).

An event bisimulation is a sub σ-algebra Λ on the set of states such that the original

transition probability functions are also Markov kernels on Λ, that is, the original LMP

is also an LMP over Λ. Λ induces an equivalence relation R(Λ), which is also called event

bisimulation. Fortunately, it turns out that the largest state bisimulation is also an event

bisimulation.

In this paper, we follow the LMP approach to defining a theory of LMP with

internal non-determinism. Thus, we introduce non-deterministic labelled Markov processes

(NLMP). An NLMP has a non-deterministic transition function Ta for each label a

that, given a state, returns a measurable set of probability measures (rather than just one

probability measure as in LMPs). Moreover, Ta should be measurable. This calls for a

definition of a σ-algebra on top of Giry’s σ-algebra on the set of probability measures

(Giry 1981), which we also provide. We give definitions for event bisimulation and state
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bisimulation, and prove similar properties to those in Danos et al. (2006), including the

fact that the largest state bisimulation is also an event bisimulation. We also provide

a definition of ‘traditional’ bisimulation that follows along the lines of Strulo (1993),

D’Argenio (1999), Bravetti (2002) and D’Argenio and Katoen (2005). We prove that a

traditional bisimulation is also a state bisimulation, and give sufficient conditions that

make the converse holds. We also show that LMPs are just NLMPs without internal

non-determinism and that state (respectively, event) bisimulation in the different models

agree.

Behavioural equivalences like bisimulation have been characterised using logic with

modalities, notably the Hennessy–Milner logic (see, for example, van Glabeek (2001)).

We define an extension of the logic presented in the context of LMP (Desharnais 1999).

In fact, the logic is similar to that of Parma and Segala (2007), which was introduced in

a discrete setting. However, unlike Parma and Segala (2007), we consider two different

formula levels: one that is interpreted on states and another interpreted on measures. Such

a separation gives a particular insight: the actual complexity of the model lies exactly on

the internal non-determinism introduced by the values of Ta (which are sets of measures).

At state level, the logic is as simple as that of Desharnais (1999). We show that this logic

completely characterises event bisimulation and, as a consequence, it is sound with respect

to traditional and state bisimulation.

In addition, we show that a sublogic of the previous logic characterises all three

bisimulations (event, state and traditional) provided certain restrictions apply, namely,

NLMPs are image finite and the state space is analytic. Therefore, all bisimulation

equivalences as well as logical equivalence turn out to be the same in this setting.

Nonetheless, we also show that they are different in a more general setting. In the

final part of this paper, we present two counterexamples, one showing that traditional

bisimulation is strictly finer than state and event bisimulation and the other showing that

state bisimulation is strictly finer than event bisimulation. Both counterexamples turn out

to be non-probabilistic NLMPs, which can be thought of as measure theoretic versions

of labelled transition systems. The first example shows that traditional bisimulation

distinguishes beyond measurability, and the second that event bisimulation has some

weakness that has to be overcome.

This paper revises and extends our result in D’Argenio et al. (2009). In particular,

Section 6 is new to the current paper. Most importantly, the new counterexamples

presented here lead to new and different conclusions to those of D’Argenio et al. (2009).

2. Fundamentals and background

In this section we review some foundational theory and prove a few basic results that will

be of use later in the paper.

2.1. Measure theory

Given a set S and a collection Σ of subsets of S , we say Σ is a σ-algebra if and only if

S ∈ Σ and Σ is closed under complement and denumerable union. We use σ(G) to denote
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the σ-algebra generated by the family G ⊆ 2S , that is, the minimal σ-algebra containing

G. Each element of G is said to be a generator, and G is the set of generators. We say the

pair (S,Σ) is a measurable space. A measurable set is a set Q ∈ Σ. A σ-additive function

µ : Σ → [0, 1] such that µ(S) = 1 is called a probability measure. We use δa to denote the

Dirac probability measure concentrated in {a}. Let ∆(S) denote the set of all probability

measures over the measurable space (S,Σ). We use the Greek letter µ, sometimes with a

subscript or superscript (for example, µ′, µ1), to range over ∆(S). Let (S1,Σ1) and (S2,Σ2)

be two measurable spaces. A function f : S1,→ S2 is said to be measurable if ∀Q2 ∈ Σ2,

f−1(Q2) ∈ Σ1, that is, the inverse function maps measurable sets to measurable sets. In

this case we use the denotation f : (S1,Σ1) → (S2,Σ2).

A function f : S1 × Σ2 → [0, 1] is a transition probability (also called a Markov kernel )

if for all ω1 ∈ S1, we have f(ω1, ·) is a probability measure on (S2,Σ2) and for all Q2 ∈ Σ2,

we have f(·, Q2) is measurable.

There is a standard construction in Giry (1981) for endowing ∆(S) with a σ-algebra as

follows: ∆(Σ) is defined as the σ-algebra† generated by the sets of probability measures

∆B(Q)
.
= {µ | µ(Q) ∈ B}, with Q ∈ Σ and B ∈ B([0, 1]) (where B([0, 1]) is the Borel

σ-algebra on the interval [0, 1] generated by the open sets). When 0 � p � 1, we will

write ∆�p(Q), ∆>p(Q), ∆<p(Q), and so on, for ∆B(Q) with B = [p, 1], (p, 1], [0, p), and so on,

respectively. It is known that the set {∆�p(Q) | p ∈ (� ∩ [0, 1]), Q ∈ Σ} generates all ∆(Σ).

We use the Greek letters ξ and ζ, sometimes with a subscript or superscript, to range over

∆(Σ).

In this setting, f : S1 × Σ2 → [0, 1] is a transition probability if and only if its curried

version f : S1 → ∆(S2) is measurable. (Note the notation overloading of f.) This follows

from the next lemma.

Lemma 2.1. f : S1 → ∆(S2) is measurable if and only if f(·, Q) : S1 → [0, 1] is measurable

for all Q ∈ Σ2.

Proof. It is routine to show that f−1(∆B(Q)) = (f(·, Q))−1(B) for all Q ∈ Σ2 and

B ∈ B([0, 1]). From this observation, f−1(∆B(Q)) ∈ Σ1 if and only if (f(·, Q))−1(B) ∈ Σ1.

The lemma then follows since showing that f−1(∆B(Q)) ∈ Σ1 for all generators ∆B(Q) is

sufficient for us to state that f is measurable.

An important result for Giry’s construction is that the σ-algebra of measures is separative

(van Breugel 2005), that is, for any two elements, there is always a measurable set that

contains one element but not the other.

Proposition 2.1. ∆(Σ) is separative. That is, given different µ, µ′ ∈ ∆(S), there exists

ξ ∈ ∆(Σ) such that µ ∈ ξ and µ′ /∈ ξ.

† The application S 	→ ∆(S) gives rise to an endofunctor ∆ of the category of measurable spaces and measurable

maps. The base space of ∆(S,Σ) is ∆(S). By an innocuous abuse of notation, we say ∆(Σ) is the σ-algebra of

this measurable space; hence ∆(S,Σ) = (∆(S),∆(Σ)).
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2.2. Relations, measures and σ-algebras

Given a relation R ⊆ S × S , we use the predicate R-closed(Q) to denote R(Q) ⊆ Q. Note

that if R is symmetric, R-closed(Q) if and only if ∀s, t : s R t : s ∈ Q ⇔ t ∈ Q. Let (S,Σ)

be a measurable space. For symmetric R, we define

Σ(R)
.
= {Q ∈ Σ | R-closed(Q)}.

Σ(R) is the sub-σ-algebra of Σ containing all R-closed Σ-measurable sets. The next

proposition states that the inclusion order between two relations transfers inversely to the

σ-algebras induced by them and to Giry’s construction applied to these σ-algebras.

Proposition 2.2. Let R and R′ be symmetric relations such that R ⊆ R′. Then:

(i) Σ(R) ⊇ Σ(R′).

(ii) ∆(Σ(R)) ⊇ ∆(Σ(R′)).

Proof.

(i) This part follows from the fact that any measurable set that is R′-closed is also

R-closed whenever R ⊆ R′.

(ii) Recall that ∆(Σ(R′)) is generated by G = {∆B(Q) | Q ∈ Σ(R′) and B ∈ B([0, 1])}. Since

Σ(R′) ⊆ Σ(R) (by (i)), we have G ⊆ ∆(Σ(R)), from which the lemma then follows.

We can lift R to an equivalence relation in ∆(S) as follows:

µRµ′ if and only if ∀Q ∈ Σ(R) : µ(Q) = µ′(Q).

So the predicate R-closed can be defined on subsets of ∆(S) in just the same way as

before. The following proposition will be useful later.

Proposition 2.3. If R is a symmetric relation, then every ∆(Σ(R))-measurable set is R-closed.

Proof. Let Q ∈ Σ(R) and B ∈ B([0, 1]). Then, if µ ∈ ∆B(Q) and µRµ′, we have

µ′ ∈ ∆B(Q). So each generator ∆B(Q) of ∆(Σ(R)) is R-closed. Moreover, for any symmetric

R, the property of being R-closed is preserved by denumerable union and complement.

Since the lifted R is symmetric, we can conclude that every ∆(Σ(R))-measurable set is

R-closed.

A σ-algebra Σ defines an equivalence relation R(Σ) on S as follows:

s R(Σ) t if and only if ∀Q ∈ Σ, s ∈ Q ⇔ t ∈ Q.

That is, two elements are related if they cannot be separated by any measurable set. We

will just state the following properties (due to Danos et al. (2006)) here for the sake of

completeness; they relate σ-algebras and relations. In particular, (v) is a consequence of

(i) and (ii).

Proposition 2.4. Let (S,Σ) be a measurable space, R be a symmetric relation on S and

Λ ⊆ Σ be a sub-σ-algebra of Σ. Then,

(i) Λ ⊆ Σ(R(Λ));

(ii) R ⊆ R(Σ(R));
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(iii) if each R-equivalence class is in Σ, then R = R(Σ(R));

(iv) R(Λ) = R(Σ(R(Λ))); and

(v) Σ(R) = Σ(R(Σ(R)))†.

2.3. Labelled Markov processes

A labelled Markov process (LMP) (Desharnais 1999; Desharnais et al. 2002) is a triple

(S,Σ, {τa | a ∈ L})

where Σ is a σ-algebra on the set of states S , and for each label a ∈ L, we have τa :

S×Σ → [0, 1] is a transition probability. By Lemma 2.1, we can say that (S,Σ, {τa | a ∈ L})
is an LMP if every τa : S → ∆(S) is measurable.

Desharnais (1999) and Desharnais et al. (2002) introduced a notion of behavioural

equivalence similar to the probabilistic bisimulation of Larsen and Skou (1991).

Definition 2.1. R ⊆ S × S is a state bisimulation on LMP (S,Σ, {τa | a ∈ L}) if it is

symmetric‡ and for all s, t ∈ S , a ∈ L, we have s R t implies that τa(s) R τa(t).

This definition is pointwise and not ‘eventwise’ as one should expect in a measure-

theoretic realm, besides R has no measurability restriction. Danos et al. (2006) introduced

a measure-theory aware notion of behavioural equivalence.

Definition 2.2. An event bisimulation on an LMP (S,Σ, {τa | a ∈ L}) is a sub-σ-algebra Λ

of Σ such that (S,Λ, {τa | a ∈ L}) is an LMP.

Danos et al. (2006) shows that R is a state bisimulation if and only if Σ(R) is an event

bisimulation. This is an important result that leads to a proof that the largest state

bisimulation is also an event bisimulation (see Theorem 4.3 below).

3. Non-deterministic labelled Markov processes

In this section we extend the LMP model by adding internal non-determinism. That is,

we allow different but equally labelled transition probabilities for leaving the same state.

We also show the relation between this extension and the original LMPs.

3.1. The model

There have been several attempts to define non-deterministic continuous probabilistic

transition systems, and all of them are straightforward extensions of (simpler) discrete

versions. There are two fundamental differences in our new model. The first is that the

non-deterministic transition function Ta now maps states to measurable sets of probability

measures rather than to arbitrary sets as in previous approaches. This is motivated by the

† Proposition 2.4(v) appears in Danos et al. (2006), but with the unnecessary condition that R is a state

bisimulation.
‡ The requirement of symmetry is needed since otherwise Σ(R) may not be a σ-algebra.
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fact that later on the non-determinism will have to be resolved using schedulers. If we

allowed the target set of states to be an arbitrary subset, as with some continuous ones

(D’Argenio 1999; Bravetti and D’Argenio 2004; Cattani et al. 2005), then the system as a

whole could suffer from non-measurability issues, which would mean that it could not be

quantified. (Rigorously speaking, labels should also be provided with a σ-algebra, but we

omit that here since it is not needed.) The second difference is inspired by the definition

of LMP and Lemma 2.1 (see also the alternative definition of LMP above): for each label

a ∈ L, we ask that Ta be a measurable function. One of the reasons for this restriction

is to have well-defined modal operators of a probabilistic Hennessy–Milner logic, like in

the LMP case.

Definition 3.1. A non-deterministic labelled Markov process (NLMP for short) is a structure

(S,Σ, {Ta | a ∈ L}) where Σ is a σ-algebra on the set of states S , and for each label a ∈ L,

we have Ta : S → ∆(Σ) is measurable.

To ensure that the requirement that Ta is measurable is satisfied, we need to endow

∆(Σ) with a σ-algebra. This is a key construction for the forthcoming definitions and

theorems.

Definition 3.2. H(∆(Σ)) is the minimal σ-algebra containing all sets

Hξ
.
= {ζ ∈ ∆(Σ) | ζ ∩ ξ �= �}

with ξ ∈ ∆(Σ).

This construction is similar to that of the Effros–Borel spaces (Kechris 1995), and

resembles the so-called hit-and-miss topologies (Naimpally 2003). Note that the generator

set Hξ contains all measurable sets that ‘hit’ the measurable set ξ. Also note that T−1
a (Hξ)

is the set of all states s such that, through label a, they ‘hit’ the set of measures ξ (that is,

Ta(s)∩ξ �= �). This forms the basis for existentially quantifying over the non-determinism,

and it is fundamental for the behavioural equivalence and the logic.

The next two examples (inspired by an example in Cattani (2005)) show why Ta is

required to map into measurable sets and to be measurable. For these examples, we fix

the state space and σ-algebra in the real unit interval with the standard Borel σ-algebra.

Example 3.1. Let V = {δq | q ∈ V }, where V is the non-measurable Vitali set in [0, 1].

It can be shown that V is not measurable in ∆(Σ). Let Ta(s) = V for all s ∈ [0, 1].

The resolution of the internal non-determinism by means of so-called schedulers (also

adversaries or policies) (Vardi 1985; Puterman 1994), whatever its definition is, would

require us to assign probabilities to all possible choices. This amounts to measuring the

non-measurable set Ta(s). This is why we require that Ta maps into measurable sets.

Example 3.2. Let Ta(s) = {µ} for a fixed measure µ, and let

Tb(s) = if (s ∈ V ) then {δ1} else �,

for every s ∈ [0, 1], with V a Vitali set. Note that both Ta(s) and Tb(s) are measurable

sets for every s ∈ [0, 1]. Assuming there is a scheduler that chooses to first do a and then

b starting at some state s, the probability of such a set of executions cannot be measured,
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as it requires us to apply µ to the set T−1
b (H∆(S )) = V , which is not measurable. Besides,

we will later need the fact that sets T−1
a (Hξ) are measurable so that the semantics of the

logic maps into measurable sets (see Section 5).

3.2. NLMPs as a generalisation of LMPs

Note that an LMP is an NLMP without internal non-determinism. That is, an NLMP

in which Ta(s) is a singleton for all a ∈ L and s ∈ S is an LMP. In fact, an LMP

can be encoded as an NLMP by taking Ta(s) = {τa(s)}. (We will prove this formally in

Proposition 3.1.) As a consequence, singletons {µ} must be measurable in ∆(Σ) for the

NLMP to be well defined. The following lemma gives sufficient conditions to ensure that

all singletons are measurable in ∆(Σ).

Lemma 3.1. Let G be a denumerable π-system on S (that is, a denumerable subset of

2S containing S and closed under finite intersection). Then, for all µ ∈ ∆(S), we have

{µ} ∈ ∆(σ(G)).

Proof. It is sufficient to prove that the set

∩{∆>qi (Qi) | Qi ∈ G, qi ∈ � ∩ [0, 1], qi < µ(Qi)} ∩
∩{∆<qi (Qi) | Qi ∈ G, qi ∈ � ∩ [0, 1], µ(Qi) < qi},

which is a denumerable intersection, is equal to the singleton {µ}. By construction, µ is in

the intersection. Take µ′ such that µ �= µ′. By a classical theorem of the extension of a

measure (Billingsley 1995, Theorem 3.3), there must be a Qi ∈ G such that µ(Qi) �= µ′(Qi).

If µ(Qi) > µ′(Qi), then µ′ does not belong to the first intersection; if µ(Qi) < µ′(Qi), then

µ′ does not belong to the second one.

In other words, we can guarantee that singletons are measurable in Giry’s construction

if the underlying σ-algebra is countably generated. Note that Lemma 3.1 also gives

sufficient conditions to define NLMPs with finite and denumerable non-determinism.

Note also that asking for measurable singletons in ∆(Σ) does not trivialise Σ (in the

sense that Σ = 2S ). A non-trivial example in which Lemma 3.1 holds is the standard Borel

σ-algebra in �. A less obvious example is as follows. Define the σ-algebra Q-coQ by

Q-coQ
.
= 2� ∪ {� \ � | Q ∈ 2�}.

Note that Q-coQ cannot separate one irrational from another (let alone asking for all

singletons being measurable). Nevertheless, as it is generated by the denumerable π-system

{{q} | q ∈ �}∪{�}, it is under the conditions of Lemma 3.1, and hence for every measure

µ on it, {µ} is measurable on ∆(Q-coQ).

The formal connection between NLMP and LMP is an immediate consequence of the

next proposition.

Proposition 3.1. Let Ta(s) = {τa(s)} for all s ∈ S and Σ be a σ-algebra on S . Then

τa : S → ∆(S) is measurable if and only if Ta : S → ∆(Σ) is measurable.
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Proof. Let ξ ∈ ∆(Σ). Note that Ta(s) ∈ Hξ if and only if {τa(s)} ∩ ξ �= � if and only if

τa(s) ∈ ξ. So T−1
a (Hξ) = τ−1

a (ξ). Therefore τa is measurable whenever Ta is measurable. For

the converse, we have that T−1
a (Hξ) is measurable for all generators Hξ . As a consequence,

Ta is measurable in general.

4. The bisimulations

In this section, we provide event and state bisimulations for NLMPs and show their

relation to earlier definitions of bisimulation on non-deterministic and continuous prob-

abilistic transition systems.

4.1. Event and state bisimulations

Event bisimulation in NLMP is defined exactly in the same way as for LMP: an event

bisimulation is a sub-σ-algebra that, together with the same set of states and transition

of the original NLMP, makes a new NLMP.

Definition 4.1. An event bisimulation on an NLMP (S,Σ, {Ta | a ∈ L}) is a sub-σ-algebra

Λ of Σ such that Ta : (S,Λ) → (∆(Σ), H(∆(Λ))) is measurable for each a ∈ L.

Note that Ta is the same function from S to ∆(Σ) except that, for Λ to be an event

bisimulation, it should be measurable from Λ to H(∆(Λ)). Here, H(∆(Λ)) is the sub-σ-

algebra of H(∆(Σ)) generated by {Hξ | ξ ∈ ∆(Λ)}.
We extend the notion of event bisimulation to relations. We say that a relation R is

an event bisimulation if there is an event bisimulation Λ such that R = R(Λ). More

generally, we say that two states s, t ∈ S are event bisimilar, denoted s ∼e t, if there is an

event bisimulation Λ such that s R(Λ) t. The fact that ∼e is an equivalence relation is an

immediate corollary of Theorem 5.5 given below. Note that, by Proposition 3.1, an event

bisimulation on an LMP is also an event bisimulation on the encoding NLMP and vice

versa.

The definition of state bisimulation is less standard. Following the original definition of

(Milner 1989), which was lifted to discrete probabilistic models in Larsen and Skou (1991),

a traditional definition of bisimulation (see Definition 4.3) asserts that, whenever s R t,

every measure on Ta(s) has a corresponding one (modulo R) in Ta(t). Rather than looking

pointwise at probability measures, our definition follows the idea of Definition 3.2 and

asserts that both Ta(s) and Ta(t) hit the same measurable sets of measures.

Definition 4.2. A relation R ⊆ S × S is a state bisimulation if it is symmetric and for all

a ∈ L, we have s R t implies

∀ξ ∈ ∆(Σ(R)) : Ta(s) ∩ ξ �= � ⇔ Ta(t) ∩ ξ �= �.

The following property, which also holds in LMPs, states the fundamental relation

between state bisimulation and event bisimulation.

Lemma 4.1. Provided R is symmetric, R is a state bisimulation if and only if Σ(R) is an

event bisimulation.
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Proof. By Definition 4.1, Σ(R) is an event bisimulation if and only if Ta is Σ(R)-

measurable. Since Ta is Σ-measurable, it suffices to prove that T−1
a (Hξ) is R-closed for all

labels a ∈ L and generators Hξ , we have ξ ∈ ∆(Σ(R)). So we have

R-closed(T−1
a (Hξ))

if and only if (since R is symmetric)

s R t ⇒
(
s ∈ T−1

a (Hξ) ⇔ t ∈ T−1
a (Hξ)

)

if and only if (by the definition of the inverse function)

s R t ⇒
(
Ta(s) ∈ Hξ ⇔ Ta(t) ∈ Hξ

)

if and only if (by the definition of Hξ)

s R t ⇒
(
Ta(s) ∩ ξ �= � ⇔ Ta(t) ∩ ξ �= �

)
.

This completes the proof as the last statement is the definition of state bisimulation.

The following results are consequences of Proposition 2.4, with, for Lemma 4.2.3, the

addition of Lemma 4.1 and the fact that R(Λ) is an equivalence relation. The proofs are

the same as the proofs of similar results for LMP in Danos et al. (2006).

Lemma 4.2. Let R be a state bisimulation. Then:

(1) R is an event bisimulation if and only if R = R(Σ(R)).

(2) If the equivalence classes of R are in Σ, then R is an event bisimulation.

(3) R(Σ(R)) is both a state bisimulation and an event bisimulation.

Let ∼s =
⋃

{R | R is a state bisimulation}. In the following we show that ∼s is also a

state bisimulation, and thus the largest one. Moreover, we show that ∼s is also an event

bisimulation and, as a consequence, an equivalence relation.

Theorem 4.3. ∼s is:

(i) the largest state bisimulation;

(ii) an event bisimulation (and hence ∼s ⊆ ∼e); and

(iii) an equivalence relation.

Proof.

(i) Take s, t ∈ S such that s ∼s t. Then there is a state bisimulation R with s R t. Take a

measurable set ξ ∈ ∆(Σ(∼s)). Since R ⊆∼s, by Proposition 2.2, ∆(Σ(R)) ⊇ ∆(Σ(∼s)).

Hence, ξ ∈ ∆(Σ(R)) and by Definition 4.2,

Ta(s) ∩ ξ �= � ⇔ Ta(t) ∩ ξ �= �,

which proves that ∼s is a state bisimulation. By definition, it is the largest one.

(ii) Because ∼s is a state bisimulation, R(Σ(∼s)) is a state bisimulation and an event

bisimulation (Lemma 4.2.3). Since ∼s is the largest bisimulation, we have ∼s=

R(Σ(∼s)), so it is an event bisimulation.

(iii) By definition, every event bisimulation is an equivalence relation.
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4.2. A traditional view of bisimulation

We have already stated that our definition of state bisimulation differs from a more

traditional view such as those in Strulo (1993), D’Argenio (1999), Bravetti (2002),

D’Argenio and Katoen (2005) and Bravetti and D’Argenio (2004). These definitions

closely resemble the definition in Larsen and Skou (1991) (the only difference is that two

measures are considered equivalent if they agree in every measurable union of equivalence

classes induced by the relation). We will now give a more ‘modern’ variant of this

definition.

Definition 4.3. A relation R is a traditional bisimulation if it is symmetric and for all a ∈ L,

we have s R t implies Ta(s) R Ta(t). We say that s, t ∈ S are traditionally bisimilar, denoted

s ∼t t, if there is an traditional bisimulation R such that s R t.

Note that R is lifted this time to sets as usual: Ta(s) R Ta(t) if for all µ ∈ Ta(s), there is

µ′ ∈ Ta(t) such that µRµ′ and vice versa. (If we had explicitly included this in Definition 4.3,

it would have resembled traditional definitions.)

The proof of the next proposition follows the standard strategy of classic bisimulation

(Milner 1989). Apart from the probabilistic treatment, it only differs in that the composi-

tion R ◦ R′ is a traditional bisimulation if R and R′ are reflexive traditional bisimulations

(if one of R or R′ is not reflexive, R ◦ R′ may not be a traditional bisimulation).

Proposition 4.1. ∼t is a traditional bisimulation and an equivalence relation.

We will now discuss the relation between state bisimulation and traditional bisimulation.

Lemma 4.4 states that every traditional bisimulation is a state bisimulation. Theorems 4.5

and 4.6 give sufficient conditions for strengthening Lemma 4.4 so that the converse also

holds.

Lemma 4.4. If R is a traditional bisimulation, R is a state bisimulation.

Proof. Let s R t and ξ ∈ ∆(Σ(R)). If Ta(s) ∩ ξ �= �, there is µ ∈ Ta(s) such that µ ∈ ξ.

Since R is a traditional bisimulation, Ta(s) R Ta(t), that is, there is µ′ ∈ Ta(t) such that

µRµ′. By Proposition 2.3, R-closed(ξ), so µ′ ∈ ξ, and hence Ta(t)∩ξ �= � as required. The

other implication follows by symmetry.

In the following, we give two sufficient conditions that ensure that a state bisimulation

is also a traditional bisimulation. The first condition focuses on the NLMP, and requires

the NLMP to be image denumerable.

Definition 4.4. An NLMP (S,Σ, {Ta | a ∈ L}) is image denumerable if and only if for all

a ∈ L, s ∈ S , we have Ta(s) is denumerable.

Theorem 4.5. Let (S,Σ, {Ta | a ∈ L}) be an image denumerable NLMP. Then R is a

traditional bisimulation if and only if it is a state bisimulation.

Proof. The left-to-right implication is Lemma 4.4. For the other implication, we proceed

as follows.
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Let s R t and for all ξ ∈ ∆(Σ(R)), let

Ta(s) ∩ ξ �= � ⇔ Ta(t) ∩ ξ �= �.

In order to show a contradiction, we suppose that Ta(s) �R Ta(t), that is,

∃µ ∈ Ta(s), ∀µ′
i ∈ Ta(t) : ∃Qi ∈ Σ(R) : µ(Qi) �	i µ

′
i(Qi),

where �	i ∈ {>,<} and i ∈ � (the NLMP is image denumerable). By density of

the rationals, there are {qi}i ⊆ � ∩ [0, 1] such that µ(Qi) �	i qi �	i µ
′
i(Qi). Then µ ∈

∆�	iqi (Qi) �� µ′
i. Let ξ

.
= ∩i∆

�	iqi (Qi). This set is measurable, moreover, since every

Qi ∈ Σ(R), so ξ ∈ ∆(Σ(R)). Then µ ∈ Ta(s) ∩ ξ, but Ta(t) ∩ ξ = �, which contradicts the

assumption.

It should be clear from this proof that we can relax the sufficient condition so that we

only require that the partition Ta(s)/R is denumerable for each state s and label a instead

of requiring image denumerability.

Note that a state bisimulation on an LMP is a traditional bisimulation on the encoding

NLMP and vice versa since

{τa(s)} = Ta(s) R Ta(t) = {τa(t)}

if and only if

τa(s) R τa(t).

As a consequence of Lemma 4.4 and Theorem 4.5 (a deterministic NLMP is image denu-

merable!), we can conclude that a state bisimulation on an LMP is a state bisimulation

on the encoding NLMP and vice versa.

The second sufficient condition looks at the σ-algebra Σ(R) induced by the state

bisimulation R. It turns out that if Σ(R) is generated by a denumerable π-system, then R

is also a traditional bisimulation.

Theorem 4.6. Let R be a symmetric relation such that Σ(R) is generated by a denumerable

set G. Then R is a traditional bisimulation if and only if it is a state bisimulation.

Proof. As before, the left-to-right implication is Lemma 4.4. For the other implication

we proceed as follows. In order to show a contradiction, we suppose that s R t and

Ta(s) �R Ta(t), that is,

∃µ ∈ Ta(s), ∀µ′ ∈ Ta(t) : µ �R µ′.

By Billingsley (1995, Theorem 3.3), this implies that there exists Qi ∈ π(G) such that

µ(Qi) �= µ′(Qi) with i ∈ �. (Note that π(G), the π-system generated by G, is also

denumerable and generates Σ(R).) The rest of the proof is as in Theorem 4.5.

5. A logic for bisimulation on NLMP

The logic presented in this section is based on the logic given by Parma and Segala (2007).

The main difference is that we consider two kinds of formulas: one that is interpreted on
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states and another that is interpreted on measures. The syntax is as follows:

ϕ ≡ � | ϕ1 ∧ ϕ2 | 〈a〉ψ
ψ ≡

∨
i∈I ψi | ¬ψ | [ϕ]�q

where a ∈ L, I is a denumerable index set and q ∈ � ∩ [0, 1]. We use L to denote the

set of all formulas generated by the first production and L∆ for the set of all formulas

generated by the second production.

The semantics is defined with respect to an NLMP (S,Σ, T ). Formulas in L are

interpreted as sets of states in which they become true, and formulas in L∆ are interpreted

as sets of measures on the state space as follows:

��� = S �
∨
i∈I ψi� =

⋃
i�ψi�

�ϕ1 ∧ ϕ2� = �ϕ1� ∩ �ϕ2� �¬ψ� = �ψ�c

�〈a〉ψ� = T−1
a (H�ψ�) �[ϕ]�q� = ∆�q(�ϕ�).

In particular, note that 〈a〉ψ is valid in a state s whenever there is some measure µ ∈ Ta(s)

that makes ψ valid, and that [ϕ]�q is valid in a measure µ whenever µ(�ϕ�) � q. As a

consequence, we require that sets �ϕ� and �ψ� are measurable in Σ and ∆(Σ), respectively.

Indeed, the satisfaction of this requirement follows straightforwardly by induction on the

construction of the formula after observing that all operations involved in the definition

of the semantics preserve measurability (in particular, Ta is a measurable function). For

the rest of this section, we fix �L� = {�ϕ� | ϕ ∈ L} and �L∆� = {�ψ� | ψ ∈ L∆}.
Note that some other operators can be encoded as syntactic sugar. For instance, we

can define

[ϕ]>r ≡
∨
q∈�∩[0,1]∧q>r[ϕ]�q

for any real r ∈ [0, 1], and [ϕ]�r ≡ ¬[ϕ]>r .

We now show that L characterises event bisimulation. This is an immediate consequence

of the fact that σ(�L�), the σ-algebra generated by the logic L, is the smallest event

bisimulation, which we will prove in this part of the section. The proof strategy resembles

that of Danos et al. (2006, Section 5), but it is properly tailored to our two-level logic.

Moreover, this separation allowed us to find an alternative to Dynkin’s Theorem (which

was used in Danos et al. (2006)).

We extend the definition of ∆(C) to any arbitrary set C ⊆ Σ by taking ∆(C) to be the

σ-algebra generated by ∆�p(Q) with Q ∈ C and p ∈ [0, 1]. From now on, we will write

σ(L), ∆(L) and R(L) instead of σ(�L�), ∆(�L�) and R(�L�), respectively.

The concept of a stable family of measurable sets is crucial to the proof of Theorem 5.5.

Definition 5.1. Given an NLMP (S,Σ, T ), the family C ⊆ Σ is stable for (S,Σ, T ) if for

all a ∈ L and ξ ∈ ∆(C), we have T−1
a (Hξ) ∈ C.

Note that C is an event bisimulation if and only if it is a stable σ-algebra.

The key point of the proof is to show that �L� is the smallest stable π-system, which

is stated in Lemma 5.2. The next lemma is auxiliary to Lemma 5.2.

Lemma 5.1. �L∆� = ∆(L)
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Proof. �L∆� is a σ-algebra since:

(i) ∆(S) = �[�]�1� ∈ �L∆�;

(ii) for ξi ∈ �L∆�, there are ψi ∈ L∆ such that ξi = �ψi�, and hence
⋃
i ξi =

⋃
i�ψi� =

�
∨
i∈I ψi� ∈ �L∆�; and

(iii) for ξ ∈ �L∆�, there is ψ ∈ L∆ such that ξ = �ψ�, so ξc = �ψ�c = �¬ψ� ∈ �L∆�.

Moreover, since �[ϕ]�p� = ∆�p(�ϕ�), every generator set of ∆(L) is in �L∆�, so ∆(L) ⊆
�L∆�.

Finally, it can be proved by induction on the depth of the formula that �L∆� ⊆ C for

any σ-algebra C containing all sets �[ϕ]�p� = ∆�p(�ϕ�) for p ∈ [0, 1] and ϕ ∈ L. So �L∆�

is the smallest σ-algebra containing all generator sets of ∆(L). Therefore �L∆� = ∆(L).

Lemma 5.2. �L� is the smallest stable π-system for (S,Σ, T ).

Proof. �L� is a π-system since:

(i) S = ��� ∈ �L�;

(ii) for Q1, Q2 ∈ �L�, there are ϕ1, ϕ2 ∈ L such that Q1 = �ϕ1� and Q2 = �ϕ2�, so

Q1 ∩ Q2 = �ϕ1� ∩ �ϕ2�

= �ϕ1 ∧ ϕ2�

∈ �L�.

For stability, let ξ ∈ ∆(L). By Lemma 5.1, there is ψ ∈ L∆ such that �ψ� = ξ. So

T−1
a (Hξ) = T−1

a (H�ψ�)

= �〈a〉ψ�

∈ �L�.

Let C be another stable π-system for (S,Σ, T ). By induction on the depth of the formula,

we show simultaneously that C ⊇ �L� and ∆(C) ⊇ ∆(L). First note that ��� = S ∈ C
since C is a π-system. Now suppose as induction hypothesis that �ϕ�, �ϕ1�, �ϕ2� ∈ C and

�ψ�, �ψi� ∈ ∆(C) for i � 0. Then:

(i) �ϕ1 ∧ ϕ2� = �ϕ1� ∩ �ϕ2� ∈ C, because C is a π-system.

(ii) �〈a〉ψ� = T−1
a (H�ψ�) ∈ C, because C is stable.

(iii) �
∨
i∈I ψi� =

⋃
i�ψi� ∈ ∆(C) because ∆(C) is a σ-algebra.

(iv) �¬ψ� = �ψ�c ∈ ∆(C) because ∆(C) is a σ-algebra.

(v) �[ϕ]�p� = ∆�p(�ϕ�) ∈ ∆(C) by definition of generator set of ∆(C).

Lemma 5.3 is auxiliary to Lemma 5.4. It is also significantly simpler than the related

Danos et al. (2006, Lemma 5.4). This is because of our definition of stability and the use

of a powerful result from Viglizzo (2005).

Lemma 5.3. If C is a stable π-system for (S,Σ, T ), then σ(C) is also stable.

Proof. We first observe that C is stable if and only if

{T−1
a (Hξ) | a ∈ L, ξ ∈ ∆(C)} ⊆ C.
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By Viglizzo (2005, Lemma 3.6), ∆(C) = ∆(σ(C)), so

{T−1
a (Hξ) | a ∈ L, ξ ∈ ∆(σ(C))} ⊆ C ⊆ σ(C),

which proves that σ(C) is stable.

The next lemma is central to the proof that L characterises event bisimulation, which

is stated in Theorem 5.5.

Lemma 5.4. σ(L) is the smallest stable σ-algebra included in Σ.

Proof. Let F be the smallest stable σ-algebra included in Σ. By Lemma 5.2, �L� ⊆ F,

since F is a stable π-system. Therefore σ(L) ⊆ F since F is also a σ-algebra. For the

other inclusion, we observe that �L� is a stable π-system because of Lemma 5.2. Then,

by Lemma 5.3, σ(L) is stable, and thus contains F.

Theorem 5.5. The logic L completely characterises event bisimulation. In other words,

R(L) = ∼e

Proof. Lemma 5.4 establishes that σ(L) is stable, that is, it is an event bisimulation.

Being the smallest, it implies that any other event bisimulation preserves L formulas.

A consequence of this theorem, together with Theorem 4.3 and Lemma 4.4, is that both

traditional and state bisimulation are sound for L, that is, they preserve the validity of

formulas.

Theorem 5.6. ∼t ⊆ ∼s ⊆ ∼e = R(L).

5.1. Completeness for image finite NLMPs

The rest of this section is devoted to showing that the logic completely characterises (all

three) bisimulation(s) on NLMPs with image finite non-determinism and standing on

analytic spaces. In fact, we show completeness of the sublogic of L defined by

ϕ ≡ � | ϕ1 ∧ ϕ2 | 〈a〉[ �	iqiϕi]ni=1

where �	i ∈ {>,<} and qi ∈ � ∩ [0, 1]. We define the new modal operation using a

shorthand notation:

〈a〉[ �	iqiϕi]ni=1 ≡ 〈a〉
n∧
i=1

[ϕi]�	iqi .

Therefore, its semantics is given by

�〈a〉[ �	iqiϕi]ni=1� = T−1
a (H∩n

i=1∆
�	iqi (�ϕi�)).

We use Lf ⊆ L to denote the set of all formulas defined with the grammar above. Note

that Lf is a denumerable set whenever the set of labels L is denumerable.

The expression 〈a〉[ �	iqiϕi]ni=1 is like a conjunction of formulas 〈a〉�	iqiϕi, but the

probabilistic bounds must be satisfied by the same non-deterministic transition. Modality

〈a〉>qϕ suffices to characterise bisimulation on LMP (Desharnais et al. 2002), but, as we
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Fig. 1. s and t are not bisimilar

see in the next example, which originates in Celayes (2006), it is not enough for the more

general setting of NLMPs.

Example 5.1. Consider the discrete NLMPs shown in Figure 1. States s and t are not

bisimilar since given a µ ∈ Ta(s), there is no µ′ ∈ Ta(t) such that µ(Q) = µ′(Q) for all

Q ∈ {{x}, {y}, {z}} (which are the only relevant possible R-closed sets). A logic having a

modality that can only describe one behaviour after a label will not be able to distinguish

between s and t. For example, �〈a〉>qϕ� = {w | Ta(w) ∩ ∆>q(�ϕ�) �= �} will always have

s and t together. Observe that negation, denumerable conjunction or disjunction do not

add any distinguishing power (on an image finite setting).

The fact that this new modal operator is essential also shows that our σ-algebra H(∆(Σ))

in Definition 3.2 cannot be simplified to

σ({H∆B (Q) : B ∈ B([0, 1]), Q ∈ Σ}).

States s and t in the example above should be observationally distinguished from each

other. Formally, this amounts to saying that there must be some label a and some

measurable Θ ∈ H(∆(Σ)) such that T−1
a (Θ) separates {s} from {t}. Therefore, the same

must be true for some generator Θ, but this does not hold for the family {H∆B (Q) : B ∈
B([0, 1]), Q ∈ Σ}.

The logical characterisation of bisimulation is succinctly stated as

s ∼s t ⇔ s R(Lf ) t

(and similarly for ∼t). The left-to-right implication is immediate by Theorem 5.6. For the

converse, we restrict the state space and the branching.

The strategy is to prove that R(Lf ) is a traditional bisimulation, that is, s R(Lf ) t

implies that ∀µ ∈ Ta(s), ∃µ′ ∈ Ta(t), µ R(Lf ) µ
′; recall this means µ(Q) = µ′(Q) for

all Q ∈ Σ(R(Lf )). For analytic spaces this holds if it is valid for the restricted set of

Q ∈ Σ(R(Lf )) such that Q = �ϕ�, for some ϕ ∈ Lf . We first introduce analytic spaces

and a result from descriptive set theory that is fundamental for the proof.

Definition 5.2. A topological space is Polish if it is separable (that is, it contains a

countable dense subset) and completely metrisable. A topological space is analytic if it is

the continuous image of a Polish space. A measurable space is analytic (standard) Borel

if it is isomorphic to (X, σ(T)) where T is an analytic (Polish) topology on X.
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Every standard Borel space is analytic, but the converse is not true. The real line with

the usual Borel σ-algebra, and, more generally, A� with A a countable discrete space, are

standard Borel and, therefore, analytic.

The next theorem from Desharnais and Panangaden (2003) essentially shows that in

analytic Borel spaces, the R-closed measurable sets are well behaved when the relation R

is defined in terms of a sequence of measurable sets.

Theorem 5.7. Let (S,Σ) be an analytic Borel space. Let F ⊆ Σ be countable and assume

S ∈ F. Then Σ(R(F)) = σ(F).

The following lemma provides a general framework for proving that a logic characterises

bisimulation. In fact, it has been used to prove that less expressive logics characterise

traditional bisimulation in some restricted NLMPs (Celayes 2006).

Lemma 5.8. Let (S,Σ, T ) be an NLMP with (S,Σ) being an analytic Borel space. Let L

be a logic such that:

(i) L contains operators � and ∧ with the usual semantics;

(ii) for every formula ϕ ∈ L, �ϕ� is Σ-measurable;

(iii) the set of all formulas in L is denumerable; and

(iv) for every s R(L) t and every µ ∈ Ta(s), there exists µ′ ∈ Ta(t) such that

∀ϕ ∈ L, µ(�ϕ�) = µ′(�ϕ�).

Then two logically equivalent states s, t are traditionally bisimilar.

Proof. Let F = {�ϕ� | ϕ ∈ L}. Because of condition (i), ��� = S and

�ϕ1� ∩ �ϕ2� = �ϕ1 ∧ ϕ2�.

So F forms a π-system. Because of condition (iv), µ, µ′ agree in F and, by Billingsley (1995,

Theorem 3.3), they also agree in σ(F). Note that the hypotheses of Theorem 5.7 are met,

that is, Σ is analytic, F ⊆ Σ is countable (by conditions (ii) and (iii)) such that S ∈ F (by

condition (i)), and R(L) equals R(F). Therefore, by Theorem 5.7, σ(F) = Σ(R(L)), which

implies that µ and µ′ agree in Σ(R(L)). Since R(L) is symmetric, R(L) is a traditional

bisimulation.

Note that Lemma 5.8 holds for any logic fulfilling the hypothesis, in particular, it

should encode the transfer property of the bisimulation and may not contain negation.

We already know that Lf has operators � and ∧, is denumerable, and that each formula

is interpreted in a Σ-measurable set. We will now show that the transfer property can be

encoded using the modality.

Lemma 5.9. Let (S,Σ, T ) be an image finite NLMP (that is, Ta(s) is finite for all a ∈
L, s ∈ S). Then for every pair of states such that s R(Lf ) t and µ ∈ Ta(s), there is a

µ′ ∈ Ta(t) such that ∀ϕ ∈ Lf , µ(�ϕ�) = µ′(�ϕ�).

Proof. In order to show a contradiction, we suppose that there are s, t with s R(Lf ) t

and there is a µ ∈ Ta(s) such that for all µ′
i ∈ Ta(t) there is a formula ϕi ∈ Lf

with µ(�ϕi�) �= µ′
i(�ϕi�). Since Ta(t) is finite, there are at most n different µ′

i. We can

http://journals.cambridge.org


http://journals.cambridge.org Downloaded: 06 Jan 2012 IP address: 129.67.149.27

P. R. D’Argenio, P. S. Terraf and N. Wolovick 60

choose �	i ∈ {>,<}, qi ∈ � ∩ [0, 1] accordingly to make µ(�ϕi�) �	i qi �	i µ
′
i(�ϕi�). Take

ψ = 〈a〉[ �	iqiϕi]ni=1. Then s ∈ �ψ� but t /∈ �ψ�, which contradicts s R(Lf ) t.

So, finally, we can state the following theorem.

Theorem 5.10. Let (S,Σ, T ) be an image finite NLMP with (S,Σ) being analytic. For all

s, t ∈ S ,

s ∼t t ⇔ s ∼s t ⇔ s ∼e t ⇔ s R(Lf ) t.

Proof.

s ∼t t ⇒ s ∼s t

⇒ s ∼e t

⇔ s R(L) t (by Theorem 5.6)

⇒ s R(Lf ) t (because Lf ⊆ L)

⇒ s ∼t t. (by Lemmas 5.8 and 5.9)

6. Non-probabilistic NLMPs and counterexamples

The purpose of this section is to construct counterexamples over standard Borel spaces

witnessing the fact that all our notions of bisimilarity are different in the case of

uncountable non-determinism. Moreover, it suffices to consider a non-probabilistic variant

of NLMP, in which transitions only map into a set of Dirac measures. These structures

look very much like LTSs, the only difference being that the state space has a σ-algebra

attached.

In a way, the form of the counterexamples – non-probabilistic NLMPs over standard

Borel spaces with uncountable branching – shows that our Theorems 4.5 and 4.6 are

the best possible, even if we assume that our state space is the Borel space of the real

numbers.

6.1. The subspace of Dirac measures

Since the counterexample NLMPs only run on Dirac measures over standard Borel spaces,

we focus first on understanding these objects.

Let (S,Σ) be a measurable space. We define δ(P ) = {δs : s ∈ P } for each P ⊆ S . The

set δ(S) inherits the measurable structure from ∆(S) by restriction: its σ-algebra is

∆(Σ)|δ(S) = {ξ ∩ δ(S) : ξ ∈ ∆(Σ)}.

Note that the elements of ∆(Σ)|δ(S) are not necessarily measurable sets in (∆(S),∆(Σ)).

However, it is indeed the case if Σ is Borel standard. This is stated in the following

proposition.
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Proposition 6.1.

(1) The map s 	→ δs is a measurable embedding between S and ∆(S), that is, the function

δ(·) is a bijection between S and its image δ(S) such that both δ(·) and δ−1
(·) are

measurable.

(2) If (S,Σ) is a standard Borel space, δ(S) belongs to ∆(Σ), that is, it is a measurable set,

so ∆(Σ)|δ(S) ⊆ ∆(Σ).

(3) If (S,Σ) is standard and X ⊆ S , then δ(X) is measurable if and only if X is measurable.

Proof. It is clear that δ is injective. To show that it is an embedding amounts to proving

that

∆(Σ)|δ(S) = {δ(Q) : Q ∈ Σ}.
First observe that ∆(Σ) is the smallest family that contains

G = {∆<q(Q), (∆(S) \ ∆<q(Q)) : q ∈ � ∩ [0, 1], Q ∈ Σ}

and is closed under countable intersections and unions. We first show that for every ξ ∈ G,

we have ξ ∩ δ(S) is of the form δ(Q):

∆<q(Q) ∩ δ(S) =

⎧⎪⎪⎨
⎪⎪⎩

� q � 0

δ(S \ Q) 0 < q � 1

δ(S) q > 1

(∆(S) \ ∆<q(Q)) ∩ δ(S) =

⎧⎪⎪⎨
⎪⎪⎩

δ(S) q � 0

δ(Q) 0 < q � 1

� q > 1.

Incidentally, this also proves ∆(Σ)|δ(S) ⊇ {δ(Q) : Q ∈ Σ}. Assume ξi ∩ δ(S) is of the form

δ(Qi) with Qi ∈ Σ for every i. Then
(⋃

i ξi
)

∩ δ(S) =
⋃
i ξi ∩ δ(S)

=
⋃
i δ(Qi)

= δ
(⋃

i Qi
)
.

Since Σ is a σ-algebra, (
⋃
i ξi) ∩ δ(S) is of the form δ(Q). The same works for countable

intersections, so we have the other inclusion.

If S is standard, then ∆(S) is standard by Kechris (1995, Theorem 17.23, 17.24). Since

s 	→ δs is injective, (2) follows from Kechris (1995, Corollary 15.2)†.

By (1), we have that for X ⊆ S , δ(X) is (∆(Σ)|δ(S))-measurable if and only if X is

measurable. Using (2), we can state that δ(X) is ∆(Σ)-measurable if and only if X is

measurable.

† Alternatively, (S,Σ) is isomorphic to ([0, 1],B([0, 1])) and the functor ∆ can be defined in the category of

Polish spaces and continuous functions. It is not hard to show that δ is a continuous embedding. Hence

δ([0, 1]) is compact in ∆([0, 1]) and a fortiori measurable.
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6.2. Non-probabilistic NLMPs

We say an NLMP S = (S,Σ, {Ta : a ∈ L}) is non-probabilistic if for all a ∈ L and s ∈ S , we

have Ta(s) ⊆ δ(S). A non-probabilistic NLMP is essentially a labelled transition system

(LTS) over a measurable space. However, as we will see, our notions of bisimulation differ

from the classical notion for LTS.

We will write 〈a〉Q for {s : Ta(s) ∩ δ(Q) �= �}. The interpretation of this is clear: 〈a〉Q
are the states from which we can reach Q after an a-action.

Lemmas 6.2, 6.3 and 6.4 give the formulation of event, state and traditional bisimulations

in the setting of non-probabilistic NLMPs over standard Borel spaces. Lemma 6.1 is the

basis of the proof of Lemma 6.2 and is also used in the proof of our counterexamples.

Lemma 6.1. Assume (S,Σ) is standard and Λ ⊆ Σ is a sub-σ-algebra. Let Ta : S → ∆(Σ)

with Ta(s) ⊆ δ(S) for all s ∈ S . Then Ta is (Λ, H(∆(Λ)))-measurable if and only if for all

Q ∈ Λ, we have 〈a〉Q ∈ Λ (that is, Λ is stable under the mapping 〈a〉·).

Proof.

(⇒) Let Q ∈ Λ and take

ξ = (∆(S) \ ∆<1(Q)) ∈ ∆(Λ).

Then

〈a〉Q = {s : Ta(s) ∩ δ(Q) �= �}

= {s : Ta(s) ∩ δ(S) ∩ ξ �= �}

= T−1
a (Hξ)

∈ Λ.

(⇐) Let ξ ∈ ∆(Λ). By Proposition 6.1 (1), we have

∆(Λ)|δ(S) = {δ(Q) : Q ∈ Λ},

so ξ ∩ δ(S) = δ(Q) for some Q ∈ Λ. Then

T−1
a (Hξ) = {s : Ta(s) ∩ δ(Q) �= �}

= 〈a〉Q

∈ Λ.

Throughout the rest of this section we will assume that S = (S,Σ, {Ta : a ∈ L}) is a

non-probabilistic NLMP over a standard Borel space. The next lemma is a corollary of

Lemma 6.1.

Lemma 6.2. A σ-algebra Λ ⊆ Σ is an event bisimulation on S if and only if it is stable

under the mapping 〈a〉·.

Lemma 6.3. A symmetric relation R is a state bisimulation on S if and only if for all

s, t ∈ S such that s R t, we have for all Q ∈ Σ(R), that s ∈ 〈a〉Q ⇔ t ∈ 〈a〉Q.
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Proof.

(⇒) Let s R t and Q ∈ Σ(R). Observe that ∆�1(Q) ∈ ∆(Σ(R)) and ∆�1(Q) ∩ δ(S) = δ(Q).

Then

s ∈ 〈a〉Q ⇔ T (s) ∩ ∆�1(Q) �= �
�⇔ T (t) ∩ ∆�1(Q) �= �

⇔ t ∈ 〈a〉Q,

where in � we use the fact that R is a state bisimulation.

(⇐) Let s R t and ξ ∈ ∆(Σ(R)). Let Q be such that δ(Q) = δ(S) ∩ ξ. Then

Ta(s) ∩ ξ = Ta(s) ∩ δ(Q),

so

Ta(s) ∩ ξ �= � ⇔ s ∈ 〈a〉Q.

Similarly,

Ta(t) ∩ ξ �= � ⇔ t ∈ 〈a〉Q.

If Q ∈ Σ(R), then

s ∈ 〈a〉Q ⇔ t ∈ 〈a〉Q

by hypothesis.

We now show that indeed Q ∈ Σ(R). Since ξ ∈ ∆(Σ(R)), by Proposition 6.1 (2) and (3),

Q ∈ Σ. It only remains to show that Q is R-closed. So we let x R y and x ∈ Q; hence

δx ∈ ξ. But for any X ∈ Σ(R) and q ∈ [0, 1], we have

δx ∈ ∆�q(X) ⇔ x ∈ X

⇔ y ∈ X

⇔ δy ∈ ∆�q(X).

Since δx and δy cannot be separated by any generator set of ∆(Σ(R)), they cannot be

separated by a set in ∆(Σ(R)), so δy ∈ ξ and thus y ∈ Q.

Lemma 6.4. A symmetric relation R is a traditional bisimulation on S if and only if for

all s, t ∈ S and δu ∈ Ta(s), if s R t then there exists δv ∈ Ta(t) such that u R(Σ(R)) v.

Proof. Assume s R t. So Ta(s)R Ta(t) if and only if for every µ ∈ Ta(s) there exists

µ′ ∈ Ta(t) such that µR µ′. But since S is non-probabilistic, µ = δu, and µ′ = δv for some

u, v ∈ S . Now δu R δv means that for every Q ∈ Σ(R), we have δu(Q) = δv(Q), and this is

equivalent to ∀Q ∈ Σ(R) : u ∈ Q ⇔ v ∈ Q. The last assertion is u R(Σ(R)) v.

Given the last lemma, it should be clear that this ‘measurable’ notion of bisimulation is

weaker than the standard one for LTS in Milner (1989).
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6.3. Traditional bisimilarity �= event- or state-bisimilarity.

Consider the standard Borel space

(S1,Σ1) = ([0, 1] ∪ [2, 3] ∪ {s, t, x},B([0, 1] ∪ [2, 3] ∪ {s, t, x}))

where {s, t, x} ⊂ � \ [0, 3]. Let V be a non-Borel subset of [2.5, 3]. It is clear that

[0, 1] is equinumerous with [2, 3] \ V ; just pick a bijection f between them. Now, we let

L1 = {a} ∪ [0, 1] be the set of labels and let S1 = (S1,Σ1, {Ta : a ∈ L1}) where

Ta(s) = δ([2, 3])

Ta(t) = δ([0, 1])

Tr(r) = Tr(f(r)) = {δx} if r ∈ [0, 1]

Tc(y) = � otherwise.

Now, take F to be {{s, t}, {x}, {r, f(r)}r∈[0,1]} and R =R(σ(F)).

Lemma 6.5. S1 is a non-probabilistic NLMP, σ(F) is an event bisimulation and R is a

state bisimulation.

Proof. First note that for all c, y, we have Tc(y) ∈ ∆(Σ1) by Proposition 6.1 (3). The

proof that Tc is a measurable map for each c ∈ L1 is routine.

We now check that σ(F) is an event bisimulation. Observe first that for all Q ∈ σ(F),

we have 〈a〉Q is empty or equal to {s, t} ∈ σ(F), so σ(F) is stable under Ta by Lemma 6.1.

For 0 � r � 1, we have 〈r〉Q �= � if and only if x ∈ Q, and in that case

〈r〉Q = {r, f(r)} ∈ σ(F). (1)

We now show that R is a state bisimulation. In order to show a contradiction, using

Lemma 6.3, we assume that there exists Q ∈ Σ1(R), c ∈ L1 and z, y ∈ S1 such that z R y

and z ∈ 〈c〉Q but y /∈ 〈c〉Q. Hence 〈c〉Q must not be R-closed. By (1), for 0 � r � 1 and

every Q ∈ Σ1, we have 〈r〉Q is R-closed. So it should be the case that 〈a〉Q is not R-closed.

Observe that the only R-closed sets Q ⊆ S1 such that 〈a〉Q is not R-closed are of the form

A∪V where A ∈ {�, {s, t, x}, {s, t}, {x}}. This set Q is non-measurable since V was chosen

to be non-measurable. But then Q is not in Σ1(R), which gives a contradiction.

Theorem 6.6. State bisimilarity (respectively, event bisimilarity) and traditional bisimilarity

differ in S1.

Proof. Because of Lemma 6.5, it sufficies to show that s and t are not traditionally

bisimilar.

It is easy to see that for 0 � r � 1, we have r �∼t y if y /∈ {r, f(r)} since Tr(r) is non-empty

but Tr(y) = �. Therefore, {r, f(r)} is ∼t-closed for every 0 � r � 1, so {r, f(r)} ∈ Σ1(∼t).

In order to show a contradiction, we now assume s ∼t t. Let y ∈ V . Since δy ∈ Ta(s),

by Lemma 6.4, there must exist some 0 � r � 1 such that y R(Σ1(∼t)) r. But y > 1 and is

not in the image of f, so the set {r, f(r)} ∈ Σ1(∼t) separates y from r, which contradicts

the fact that y R(Σ1(∼t)) r.

Since ∼s ⊆ ∼e, event bisimilarity and traditional bisimilarity also differ in S1.
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6.4. State bisimilarity �= event bisimilarity

In the final part of this section we prove that the greatest event bisimulation ∼e is not

contained in ∼s. We do this by slightly modifying S1. We now take V to be the interval

(2.5, 3] and let (S2,Σ2) = (S1,Σ1). We complete the construction of a non-probabilistic

NLMP by picking any bijection f between [0, 1] and [2, 2.5]. The transition is defined in

just the same way as for S1 except that we use the new f. We also use family F, but

defined with the new f.

Lemma 6.7. V /∈ σ(F).

Proof. It is clear that every member of σ(F) is countable or has a countable comple-

ment, from which the lemma then follows.

The proof of Lemma 6.5 works equally well for the following lemma.

Lemma 6.8. S2 = (S2,Σ2, {Ta : a ∈ L1}) is a non-probabilistic NLMP and σ(F) is an

event bisimulation.

In this case, relation R = R(σ(F)) is an event bisimulation that it is not a state

bisimulation.

Theorem 6.9. Event and state bisimilarity differ in S2.

Proof. Since (s, t) ∈ R ⊆ ∼e, we just have to show that s �∼s t. Observe that V ∈ Σ2(R).

If s and t were state-bisimilar, by Lemma 6.3, it would be the case that s ∈ 〈a〉V
if and only if t ∈ 〈a〉V . But this is clearly not the case since δ3 ∈ Ta(s) ∩ δ(V ) and

Ta(t) ∩ δ(V ) = �.

7. Concluding remarks

In order to define a process theory that allows the verification of compositionally modelled

systems against simple (possibly non-deterministic) specifications, we need a semantic

relation that allows for abstraction such as weak bisimulation. In this setting, internal

non-determinism is crucial.

In this paper we have introduced the model of non-deterministic labelled Markov

processes that allows the modelling of continuous probabilistic systems with internal

non-determinism. Unlike similar models (D’Argenio 1999; Bravetti 2002; Bravetti and

D’Argenio 2004; D’Argenio and Katoen 2005; Cattani 2005), NLMPs are defined to have

a measure theoretic structure. In particular, we require that the transition relation is a

measurable function that maps on measurable sets. This was devised so that it is possible

to build the rest of the theory (in particular, event bisimulation and logic, but it also

means schedulers are definable). We have shown that NLMPs naturally extend LMPs.

For the definition of the transition and the development of the whole work, Definition 3.2

is crucial, as it provides the foundation for dealing with non-determinism.

As a first step towards developing the desired process theory, we have given different

definitions of bisimulations. We have proposed three possible generalisations of the

two bisimulations on LMPs. The event bisimulation here responds exactly to the same
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definition principle in both LMP and NLMP. Instead, the state bisimulation in LMPs

generalises to NLMPs as both state bisimulation and traditional bisimulation. We know

that traditional bisimulation is finer than state bisimulation, but, in Theorems 4.5 and 4.6,

we have given sufficient conditions under which they agree.

We have also given a logical characterisation of event bisimulation (Theorem 5.5). Such

a logic (L) can be seen as a revision of the one introduced in Parma and Segala (2007)

in a discrete probabilistic setting. Formulas in our setting belong to two different classes:

state formulas and measure formulas. Note that negation and infinitary (but denumerable)

disjunction (or conjunction) is only present for the second of these classes, meaning that

the complexity of the model lies precisely in the internal non-determinism.

A consequence of the characterisation is that the logic is sound for both state and

traditional bisimulations (Theorem 5.6). For the restricted case of image finite NLMPs

running on analytic Borel spaces, all equivalences coincide (Theorem 5.10). Note that the

logic we used to show this equivalence is in fact a sublogic of L, which has already

appeared in earlier work (Celayes 2006).

The coincidence between all these equivalences does not generalise to arbitrary NLMPs,

as we showed in Theorems 6.6 and 6.9. Observe that the counterxamples presented in

these theorems are non-probabilistic NLMPs over standard Borel spaces with uncountable

branching. This shows that Theorems 4.5 and 4.6 are in some way the best possible for

equating traditional and state bisimulation, even if we assume that the state space is the

Borel space of the real numbers. Though we did not present a theorem, we mentioned a

third important difference for these ‘measure-theoretic’ LTSs: in the general case, Park and

Milner’s bisimulation is strictly finer than traditional bisimulation. The latter considers

the measure space of the state space, while the former does not (or, alternatively, it only

considers the discrete σ-algebra 2S ).

Some additional observations on the counterexamples are in order. First, counter-

example S1 in Theorem 6.6 relies on the fact that state bisimulation cannot distinguish a

non-measurable set V while traditional bisimulation can. From our point of view, such a

distinction should not be possible since V has no measure. A second observation is that

counterexample S2 in Theorem 6.9 makes a distinction for measurable set V that the event

bisimulation cannot distinguish. In our opinion, such a distinction should be observed

since a possible scheduler may lead to such a set of states with certain probability. Note

that in this example, states in V do not allow the system to reach state x from s, while x

can always be reached from t. In this sense, we argue that state bisimulation is the most

appropriate definition.

This is rather disappointing since logic L has a natural definition but, as it completely

characterises event bisimulation, it will not be able to test for the presence of states like

those in V in S2. This is due to the fact that the logic cannot test transitions bearing

continuously many labels. This means we need to add structure to the set of labels on

the NLMP. In any case, this would also be necessary for the definition of schedulers and

probabilistic trace semantics.

We are currently focussed on defining NLMPs with labels equipped with a σ-

algebra, as well as on the study of schedulers for these objects and probabilistic trace

semantics. This will allow us to contrast the two local behavioural equivalences: state
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and traditional bisimulation. It is expected that at least one of them implies a global

behavioural equivalence, like probabilistic trace equality. Schedulers would also let us

define probabilistic weak transitions and their related bisimulations. We are also trying to

refine the idea of event bisimulation and the logic so that they can distinguish situations

like the one shown by NLMP S2.

If necessary, we will restrict consideration to standard Borel spaces. Confining ourselves

to standard Borel spaces is not as restricting as it seems since most natural problems arise

in this setting. For example, we have shown elsewhere that the underlying semantics of

stochastic automata (D’Argenio 1999) in terms of NLMPs meets most of the restrictions

required in this article: it runs on standard Borel spaces and is image finite. We recall that

stochastic automata and similar models are used to give semantics to stochastic process

algebras and specification languages (see D’Argenio (1999), Bravetti (2002), Bravetti and

D’Argenio (2004), D’Argenio and Katoen (2005), Bohnenkamp et al. (2006), and so on),

which, in turn, are used to model dynamic systems. Moreover, LMP-like models restricted

to standard Borel spaces have been studied in Doberkat (2007).
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