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Abstract. We present a framework to analyze security properties in
distributed protocols. The framework is constructed on top of the so
called (strongly) distributed schedulers where secrecy is also considered.
Secrecy is presented as an equivalence class on actions to those compo-
nents that do not have access to such secrets; however these actions can
be distinguished by those with appropriate clearance. We also present an
algorithm to solve bounded reachability analysis on this kind of models.
The algorithm appropriately encodes the nondeterministic model by in-
terpreting the decisions of the schedulers as parameters. The problem is
then reduced to a polynomial optimization problem.

1 Introduction

Model-based verification has proven very useful in the verification of a hand-
ful of systems. It is particularly fit for the verification of distributed systems,
in which the model of the system is obtained by composing simpler models de-
scribing the behaviour of each component. A particular class of these systems are
distributed algorithms that aim to provide information hiding, i.e., they try to
prevent an adversary to infer confidential information from the observables [2].
Many of these algorithms propose a solution by adding randomization to their
decisions (e.g. [8,15]). In addition, the security property is best understood quan-
titatively by contrasting the likelihood of producing a secret w.r.t. the likelihood
of guessing such secret after reading the observables (see e.g. [3,16,2,1]). Notice
that, due to the nature of distributed systems, the model needs to consider both
probabilistic and nondeterministic behaviour: probabilities allow to model ran-
domization (including the likelihood of secrets) while nondeterminism expresses
the interleaving of different processes, abstraction of decision mechanisms, and
model underspecification among other things.

In this paper, we focus in quantitative reachability properties, i.e. those that
assert about the probability of reaching some states of particular interest, be it
because it is desirable or undesirable. In particular, we are interested in accu-
rately verifying security properties of distributed system where private actions
and interactions between some components are effectively hidden from others.
In this setting, we consider a system secure if the probability of reaching states
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Fig. 1. Output actions are suffixed with “!” and input actions are suffixed with “?”.
The set of actions of each component are only those depicted in the component. To
ensure input enabledness, all states are assumed to have self-loops labeled with the
inputs others than those already depicted leaving the state. For every final state s we
also omitted the transition s ⇒ μ with μ(s) = 1.

where these properties are violated is between certain known bounds. For exam-
ple, in an anonymous message exchanging protocol, we would like to verify that
the probability of guessing the anonymous sender of a message is not greater
than the probability of guessing the sender by chance alone.

Probabilistic model checking is –in principle– adequate to achieve this. How-
ever, traditional analysis techniques do not necessarily provide results reflecting
the security guarantees of the modeled systems: they only provide pessimistic
over-approximations for the actual probability of the property. This is due to
the fact that traditional techniques consider all possible resolutions of nondeter-
minism [4]. To understand the problem we present an example that we will use
along the paper. Consider a protocol where a client Cl chooses randomly one out
of two available service providers Sa and Sb (see Fig. 1). This component asks for
service with an encrypted message (a1 or b1, depending on the chosen provider).
To misguide possible attackers it also interchanges a dummy (encrypted) mes-
sage with the other provider (a0 or b0). Once the provider receives any of the
notifications it acknowledges reception of the message. If the encryption scheme
is secure, the selection and its outcome should be known only by the client and
the providers. Any other component of the system (in particular, the adversary
A) should not be able to infer it with certainty.

Resolution of nondeterminism is done by the so called schedulers which are
functions that select the next step based on the past execution of the system.
Traditional probabilistic model checking will consider the scheduler that, when-
ever enabled, selects action ga1 (for “guess Sa got 1”) if action a1 appears in the
execution, and it selects gb1 (“guess Sb got 1”) if b1 appears in the execution.
This is a valid scheduler that lets the adversary A guess with probability 1.

One of the reasons this happens is because the resolution of the local nonde-
terminism in A is made using global knowledge. This problem has been recently
observed by several authors [9,13,14,11] who proposed to restrict to the so called
distributed schedulers. Distributed schedulers enforce that local decisions of the
processes are based only on local knowledge [14]. However, nondeterminism
originated by interleaving in parallel composition is still resolved using global
knowledge in this new framework. Since distributed schedulers were not defined
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in a context were secrecy was important, actions a1 and b1 are considered differ-
ent from a0 and b0. As they are part of the global knowledge, the resolution of the
interleaving nondeterminism can be different in each case. This may lead to some
unrealistic leakage of information. We present an example in detail in Sec. 3.

In this paper we adapt distributed schedulers to deal also with secrecy, pre-
sented as an equivalence class on local states and actions. Therefore, two actions
in the same equivalence class can only be distinguished locally in components
with the appropriate clearance but cannot be distinguished globally.

In general, reachability under distributed schedulers is an undecidable prob-
lem [13]. However, if restricted to reachability properties where the goal states
should be reached within a given number of steps (i.e. (time-)bounded reachabil-
ity properties), the problem becomes decidable [5]. This is done by reducing the
bounded reachability problem to a polynomial optimization problem. In this pa-
per we adapt and improve the algorithm of [5] to work on the class of distributed
schedulers under secrecy. As an example of the application to information hiding,
we automatically verify the anonymity property in a case study.

2 Modeling Probabilistic Distributed System

To assert or refute a quantitative reachability property about a distributed sys-
tem, we first construct a model of each component of the system. The full model
is constructed by composing these submodels, considering possible interactions
between the components and all possible interleaving. Each component is de-
scribed with a state-based model that combines discrete-time Markov chains and
labeled transition systems. In this work we use a restricted variant of interactive
probabilistic chains (IPCs) [10,5], a formalism where probabilistic transitions
and action-labelled transitions are handled orthogonally.

Definition 1. A basic I/O-IPC is a tuple 〈S,A,→,⇒, ŝ〉 where S is a finite set
of states with initial state ŝ ∈ S, A = AI ∪AO is a finite set of actions consisting
of disjoint sets of input actions (AI) and output actions (AO), → ⊆ S × A × S
is the set of interactive transitions, and ⇒ : S ⇀ Dist (S) is a partial function
representing probabilistic transitions. We require that the I/O-IPC is (i) input
enabled, i.e. for all s ∈ S and a ∈ AI , there exists s′ ∈ S s.t. s

a−→ s′; and
(ii) action deterministic, i.e. for all s ∈ S and a ∈ A, s

a−→ s′ and s
a−→ s′′

implies s′ = s′′.

We use the shorthand notation s
a−→ s′ for an interactive transition (s, a, s′) ∈

→, s ⇒ μ for (s, μ) ∈ ⇒ and s 	→ if there is no a ∈ AO and s′ such that s
a−→ s′.

The requirement of input action determinism is present in this work to simplify
presentation. The general model can be treated just like in [14].

Parallel Composition. Distributed I/O-IPC are obtained by composing basic
ones through the parallel composition. We define it simultaneously on a finite
set of basic I/O-IPC. To avoid unnecessary technicalities, we require output
isolation, i.e. no output action can be performed by more than one basic process.
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Similarly to action determinism, the framework may be extended to models
without output isolation (see [14,12]).

Definition 2. A finite set of basic I/O-IPCs Pi = 〈SPi , APi ,→Pi ,⇒Pi , ŝPi〉,
1 ≤ i ≤ n, is composable if AO

Pi
∩ AO

Pj
= ∅, ∀i 	= j. Provided that {Pi}ni=1 is

composable, the parallel composition C = P1 ‖ · · · ‖ Pn is defined by the I/O-IPC〈
SC , AI

C ∪ AO
C ,→C ,⇒C , ŝC

〉
, where SC = SP1 ×· · ·×SPn and ŝC = (ŝP1 , . . . , ŝPn)

is the initial state; AO
C :=

⋃n
i=1 A

O
Pi

, AI
C :=

⋃n
i=1 A

I
Pi

\ AO
C and the transition

relations are defined according to the following rules:

{si a−→Pi s
′
i | a ∈ APi} ti = if (a ∈ APi) then s′i else si

(s1, . . . , sn)
a−→C (t1, . . . , tn)

(1)

{si ⇒Pi μi ∧ si �→ | 1 ≤ i ≤ n}
(s1, . . . , sn) ⇒C μ1 × · · · × μn

(2)

with μ1 × · · · × μn denoting the product distribution on SP1 × · · · × SPn defined
by (μ1 × · · · × μn) (s1, . . . , sn) =

∏n
i=1 μi (si) for all si ∈ SPi .

Notice that composability guarantees that at most one processes performs an
output action when synchronizing according to rule (1). Moreover, every other
process that knows the action will perform the step because of input enabledness.

We consider that output transitions are immediate and probabilistic transi-
tions are timed. We assume that immediate transitions always take precedence
over timed transitions. This assumption is known as maximal progress [17] and
it is reflected on rule (2). Following this criteria, a state is called vanishing if
at least one output-labeled transition is enabled on it. If only probabilistic or
input-labeled transitions are enabled in a state then it is called tangible. The
introduction of maximal progress may induce an infinite sequence of consecutive
output-labeled transitions. We consider this as Zeno behaviour and require that
composed models do not exhibit this type of behaviour. We will also assume that
composed systems are closed, that is, its set of input actions is empty. Dealing
with open systems in our context demands some assumption on the environment
behaviour. In any case, such assumption (even the most general) can be encoded
in one or more extra components such that the whole system is finally closed.

Resolving Nondeterminism through Schedulers. To obtain the probabil-
ity of reaching some states, nondeterministic choices between enabled transitions
have to be resolved. This is achieved by the so called schedulers (also adversaries
or policies). A scheduler is a function mapping each partial execution (or finite
path) to a distribution on actions enabled in the last state of the execution.

Let P = 〈S,A = AI ∪ AO,→, ⇒ , ŝ〉 be an I/O-IPC. We define enab(s) =

{a ∈ AO | ∃s′. s a−→ s′}, the set of output actions enabled in s.
A finite path of P is a sequence σ = s0a0s1a1 · · · an−1sn with s0 = ŝ, where

states and either actions or distributions alternate, that is, for i = 0, . . . , n− 1:
(i) ai ∈ enab(si) and si

ai−→ si+1, or (ii) ai ∈ Dist (S), si ⇒ ai, ai (si+1) > 0,
and enab (si) = ∅. The last state sn is denoted by last (σ), and length (σ) = n
is the total number of transitions (interactive or probabilistic) along the path.
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Moreover, we denote enab (last (σ)) as enab (σ) for finite path σ. An infinite
path of P is an infinite sequence s0a0s1a1 · · · alternating states and actions or
distributions satisfying the previous condition. We denote with Paths (P) and
Pathsfin (P) the set of paths and finite paths of P , respectively.

Definition 3. A scheduler for P is a function ηP : Pathsfin (P) → Dist (A)
such that ηP (σ)(enab(σ)) = 1 (that is ηP(σ)(a) > 0 implies a ∈ enab(σ)).

Probability Measure Induced by a Scheduler. When all the nondetermin-
istic choices in an I/O-IPC are resolved by a scheduler the resulting system is
a (possibly infinite) Markov chain. Hence it is possible to define a probability
measure over the sets of infinite paths of the model.

For the sake of simplicity we will assume that the I/O-IPC does not contain
tangible states which do not have an outgoing probabilistic transition. That is,
for every tangible state s, ⇒(s) is defined. If this is not the case, we just complete
it by extending ⇒ with the tuple (s, δs) where δs(s) = 1.

We first define the σ-algebra on the set of infinite paths of the I/O-IPC and
then the probability measure on this σ-algebra induced by a given scheduler.
The cylinder induced by the finite path σ is the set of infinite paths σ↑ = {σ′ ∈
Paths (P) | σ′ is infinite and σ is a prefix of σ′}. Define F to be the σ-algebra
on the set infinite paths of P generated by the set of cylinders.

Definition 4. Let η be a scheduler for P. The probability measure induced by
η on F is the unique probability measure Pr η such that, for any state s ∈ S, any
action a ∈ A and any distribution μ ∈ Dist(S):

Pr η(s
↑) = 1 if s = ŝ

Pr η(σas
↑) = Pr η(σ

↑) · η(σ)(a) if enab(σ) �= ∅ and last(σ)
a−→ s

Pr η(σμs
↑) = Pr η(σ

↑) · μ(s) if enab(σ) = ∅ and last(σ) ⇒ μ

Pr η(σ
↑) = 0 in any other case

By the assumption that tangible states are in the domain of ⇒, enab (σ) = ∅
implies that last (σ) ⇒ μ for some μ. Hence, Pr η is indeed a probability measure.

Time-bounded reachability properties demand that the system reaches a goal
state from a given set G within a given time t. In our case, the notion of time
is given by each probability step. So, for any finite path σ, we let time(σ) be
the number of probability steps appearing on σ. Then, given a scheduler η for
P , the probability of reaching a goal state in G within time t, can be computed
by Pr η(♦≤tG) = Pr η(

⋃{σ↑ | time(σ) ≤ t ∧ last(σ) ∈ G}). Let Ḡ be the set of
paths σ ∈ Pathsfin (P) such that last(σ) ∈ G and for any proper prefix σ̂ of σ,
last(σ̂) 	∈ G. Notice that for every σ′ ∈ Paths (P) reaching a state in G, there
exists a unique σ ∈ Ḡ such that σ′ ∈ σ↑. Then, we have that

Pr η
(
♦≤tG

)
= Pr η

(⊎{
σ↑ | time(σ) ≤ t ∧ σ ∈ Ḡ

})
=

∑
σ∈Ḡ

time(σ)≤t

Pr η(σ
↑). (3)

The model checking problem on nondeterministic probabilistic systems is
focused on finding worst case scenarios. Therefore, it aims to find the maxi-
mum or minimum probability of reaching a set of goal states ranging over a
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particular class of schedulers. That is, if K is a class of schedulers (i.e. a set of
all schedulers satisfying some given condition), then we are interested on finding
supη∈K Pr η(♦≤tG) or infη∈K Pr η(♦≤tG).

Distributed Schedulers. Not all resolutions of nondeterminism are appro-
priate in a distributed setting. There are “almighty schedulers” that allow a
component to guess the outcome of a probabilistic choice of a second compo-
nent even when they have no communication at all (not even indirectly). The
reader is referred to, e.g., [14,12] for a discussion. Therefore, we restrict to the
class of distributed schedulers [14]. This leads to a more realistic resolution of
nondeterminism, but unfortunately it also renders the model checking problem
undecidable in general [13,12].

Distributed schedulers consider a notion of local knowledge of each component
which is obtained by partially observing the global system behaviour. Thus, a
component can only see the global execution through its local states and the
actions it performs. Hence, two different global execution may appear the same
to a single component. We implement this with a projection function.

From now on we will consider a composed model C = P1 ‖ · · · ‖ Pn =
〈SC , AC ,→C ,⇒C , ŝC〉, where each Pi = 〈Si, Ai = AI

i ∪AO
i ,→i,⇒i, ŝi〉. For every

path σ ∈ Paths (C), the projection σ [Pi] ∈ Paths (Pi) of σ over Pi is defined as:

(s1, . . . , sn) [Pi] = si

σa(s1, . . . , sn) [Pi] = if a ∈ Ai then (σ [Pi])asi else σ [Pi]

σ(μ1 × · · · × μn)(s1, . . . , sn) [Pi] = (σ [Pi])μisi

In a (composed) state with enabled interactive transitions, the nondetermin-
ism is resolved in two phases. First, a component is chosen among all enabled
components. This choice may be probabilistic, and it is performed by the so
called interleaving scheduler. Afterwards, the chosen component decides which
transition to perform among all its enabled output transitions. This local choice
is resolved by a local scheduler taking into account only local knowledge. Hence
they are functions on local executions which are obtained by properly project-
ing the global executions. Therefore, a local scheduler is a scheduler as defined
in Def. 3, only that its domain is the set of all finite paths of the local compo-
nent. An interleaving scheduler is defined on finite paths of the composed system
(hence, global executions) as follows.

Definition 5. A function I : Pathsfin (C) → Dist ({P1, . . . ,Pn}) is an inter-
leaving scheduler if for all σ ∈ Pathsfin (C), I (σ) (Pi) > 0 ⇒ enab (σ [Pi]) 	= ∅.

A distributed scheduler is obtained by properly composing the interleaving
schedulers with all local schedulers.

Definition 6. A function ηC : Pathsfin (C) → Dist(AC) is a distributed sched-
uler if there are local schedulers ηP1 , . . . , ηPn and an interleaving scheduler I,
such that, for all σ ∈ Pathsfin (C) with enab(σ) 	= ∅ and for all a ∈ AC:
ηC(σ)(a) =

∑n
i=1 I(σ)(Pi) · ηPi(σ [Pi])(a).

Since at most one component can output action a, last equation reduces to:
ηC(σ)(a) = I(σ)(Pi) · ηPi(σ [Pi])(a) whenever a ∈ AO

Pi
.
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It has been shown that distributed scheduler as defined above still permeates
information from one component to others with no apparent reason (see [14,12]).
In essence, the problem is that the interleaving scheduler may use information
from a component P1 to decide how to pick between components P2 and P3.
Therefore, we need to restrict the set of possible interleaving schedulers. We will
require that, if neither components P2 and P3 can distinguish execution σ from
σ′, the interleaving scheduler has to consider the same relative (i.e. conditional)
probabilities for choosing P2 or P3 after both paths.

Definition 7. A scheduler η of C is said to be strongly distributed if it is dis-
tributed and for every two components Pi,Pj, and σ, σ′ ∈ Pathsfin (C) the inter-
leaving scheduler I of η satisfies that, whenever (i) σ [Pi] = σ [Pj] and σ′ [Pi] =
σ′ [Pj ], and (ii) I(σ)(Pi)+I(σ)(Pj) 	= 0 and I(σ′)(Pi)+I(σ′)(Pj) 	= 0, it holds
that I(σ)(Pi)

I(σ)(Pi)+I(σ)(Pj)
= I(σ′)(Pi)

I(σ′)(Pi)+I(σ′)(Pj)
.

The previous restriction generalizes to I(σ)(Pj)∑
i∈I I(σ)(Pi)

=
I(σ′)(Pj)∑
i∈I I(σ′)(Pi)

, where I ⊆
{1, . . . , n} and j ∈ I [14, Theorem 3.4].

3 Distributed Schedulers in Systems with Secrecy

Recall the example of Fig. 1 and consider the following paths:

σa = 〈c0, sa0, sb0, ad0〉μ 〈c1, sa1, sb1, ad1〉 a1 〈c3, sa2, sb1, ad1〉 b0 〈c5, sa2, sb3, ad1〉
σb = 〈c0, sa0, sb0, ad0〉μ 〈c2, sa1, sb1, ad1〉a0 〈c4, sa3, sb1, ad1〉 b1 〈c6, sa3, sb2, ad1〉
σ′
a = σa acka 〈c5, sa4, sb3, ad1〉 σ′

b = σb ackb 〈c6, sa3, sb4, ad1〉

with μ(〈c1, sa1, sb1, ad1〉) = μ(〈c2, sa1, sb1, ad1〉) = 1
2 .

σa and σb are the only two possible paths of the system in which Cl executes
all its outputs before any other component. σ′

a (resp., σ′
b) is the path in which

server Sa (resp., Sb) acknowledge reception after both servers were contacted by
the client Cl. Define the interleaving scheduler I by I(σa)(Sa) = I(σb)(Sb) =
I(σ′

a)(A) = I(σ′
b)(A) = 1, and I(σ)(Cl) = 1 if σ is a prefix of σa or σb. The

definition of I in any other case is not relevant as long as it satisfies the condition
of Def. 7. Then I satisfies in general the condition of Def. 7. (Notice, in particular,
that σa [Sa] 	= σb [Sa] and σa [Sb] 	= σb [Sb].)

Define the local scheduler for the adversary A by ηA(σ acka ad1)(ga1) =
ηA(σ ackb ad1)(gb1) = 1. I.e., the scheduler chooses with probability 1 to guess
that server Sa has being selected (action ga1) if the last acknowledgement it
observes comes from Sa (action acka). Instead, if Sb is the last to acknowledge,
the scheduler choses to guess Sb. Note that all other local schedulers are trivial.

Let η be the strongly distributed scheduler obtained by properly combining
the previous interleaving and local schedulers. It is not difficult to verify that

Pr η

(
(σ′

a ga1 〈c5, sa4, sb3, ad2〉)↑ ∪ (σ′
b gb1 〈c6, sa3, sb4, ad3〉)↑

)
=

= Pr η(σ
′
a
↑) · I(σ′

a)(A) · ηA(σ′
a [A])(ga1) + Pr η(σ

′
b
↑) · I(σ′

b)(A) · ηA(σ′
b [A])(gb1)

= Pr η(σ
′
a
↑) + Pr η(σ

′
b
↑) = 1

2
+ 1

2
= 1.
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Notice that the adversary A guesses right whenever the system reaches a state of
the form 〈c5, ∗, ∗, ad2〉 or 〈c6, ∗, ∗, ad3〉. Therefore, the previous calculation states
that the adversary guesses the server chosen by the client with probability 1.

It is nonetheless clear that there is no apparent reason for the adversary A
to guess right all the time. In fact, scheduler ηA is defined in a pretty arbi-
trary manner. The correct guessing is actually a consequence of the interleaving
scheduler I that let the chosen server acknowledge first and immediately after
it passes the control to the adversary A (hence making A guess through the
arbitrary scheduler ηA).

Observe that the interleaving scheduler of the previous example decides which
is the next enabled component based on the outcome of a secret. However, a se-
cret should not be directly observed by the environment. Hence, the interleaving
should not be able to distinguish action a1 from a0 and neither b1 from b0. Sim-
ilarly, internal states of a component that only differ on the value of confidential
information should not influence the decision of the interleaving scheduler.

Therefore the notion of a valid interleaving scheduler of Def. 7 needs to be
strengthen. In the new definition, the interleaving scheduler has to consider the
same relative (i.e. conditional) probabilities for two components if both of them
show the same behaviour to the environment. By “showing the same behaviour”
we mean the projected traces are the same after hiding secret information.

The way in which we have chosen to hide information is through an equiva-
lence relation. Thus, two actions that are equivalent share a secret and should
not be distinguished by the environment, and similarly for states. This idea of
indistinguishability is local to each component. So for each component Pi we
consider an equivalence relation ∼Ai on actions and another equivalence rela-
tion ∼Si on states. In our example, we need to define equivalence relations for
Cl, Sa, and Sb such that:

a1 ∼ACl
a0

b1 ∼ACl
b0

a1 ∼ASa
a0

b1 ∼ASb
b0

c1 ∼SCl
c2

c3 ∼SCl
c4

c5 ∼SCl
c6

sa2 ∼SSa
sa3

sa4 ∼SSa
sa5

sb2 ∼SSb
sb3

sb4 ∼SSb
sb5

This relations can be lifted to an equivalence relation on paths as expected:
if ∼Si ⊆ Si × Si and ∼Ai ⊆ Ai ×Ai are equivalence relations, we define ∼Pi ⊆
Paths (Pi)× Paths (Pi) recursively by

s ∼Pi s′ ⇔ s ∼Si s
′

σas ∼Pi σ′a′s′ ⇔ σ ∼Pi σ
′ ∧ a ∼Ai a′ ∧ s ∼Si s

′

σμs ∼Pi σ
′μ′s′ ⇔ σ ∼Pi σ

′ ∧ s ∼Si s
′

Notice that in our example, σa [Sa] ∼Sa σb [Sa], σa [Sb] ∼Sb
σb [Sb], and

σa [Cl] ∼Cl
σb [Cl]. Therefore, under some secrecy assumptions, the environment

is not able to distinguish the local execution of Sa under σa from the local ex-
ecution under σb (and similarly Sb and Cl). Hence, the interleaving scheduler
should not make a difference on the relative probabilities of choosing Sa or Sb.
Therefore, we define distributed scheduler under secrecy as follows.

Definition 8. Let C = P1 ‖ · · · ‖ Pn and let ∼Si⊆ Si × Si,∼Ai⊆ Ai × Ai,
with i = 1, . . . , n, be equivalence relations. A scheduler η of C is a distributed
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scheduler under secrecy if it is distributed and, for every I ⊆ {1, . . . , n}, and
σ, σ′ ∈ Pathsfin (C), the interleaving scheduler I of η satisfies that, whenever

(i) σ [Pi] ∼Pi σ
′ [Pi] for all i ∈ I,

(ii)
∑

i∈I I(σ)(Pi) 	= 0 and
∑

i∈I I(σ′)(Pi) 	= 0, and
(iii) enab (σ [Pi]) 	= ∅ ⇔ enab (σ′ [Pi]) 	= ∅, for all i ∈ I,

it holds that, for every j ∈ I, I(σ)(Pj)∑
i∈I I(σ)(Pi)

=
I(σ′)(Pj)∑
i∈I I(σ′)(Pi)

. We let DSS denote
the set of all distributed scheduler under secrecy.

Just like for the case of strongly distributed schedulers, it suffices to consider
a pair of components for the restriction of I (i.e., sets I s.t. #I = 2). We choose
instead this more general definition because it plays an important role later.

Conditions (i) and (ii) already appear in the definition of strongly distributed
schedulers (see Def. 7) only that (i) is consider under equality rather than the
secrecy equivalences ∼Pi . Condition (iii) is new here and not needed in Def. 7.
This has to do with the fact that, though σ [Pi] and σ′ [Pi] may appear the
same to the environment due to hidden secrets, they may be different executions
of Pi and hence enable different sets of output actions. This is not the case for
Def. 7 in which item (i) requires that σ [Pi] = σ′ [Pi]. In fact, strongly distributed
schedulers are a particular case of distributed schedulers under secrecy in which
there is no secret (i.e. ∼Ai and ∼Si are the identity relation).

Returning to our running example, notice that the interleaving scheduler
defined at the beginning of this section is not a valid interleaving scheduler
for a distributed scheduler under secrecy. In effect, notice that (i) σa [Sa] ∼Sa

σb [Sa] and σa [Sb] ∼Sb
σb [Sb], (ii) I(σa)(Sa) + I(σa)(Sb) = 1 and I(σb)(Sa) +

I(σb)(Sb) = 1 (since I(σa)(Sa) = I(σb)(Sb) = 1), and (iii) enab (σa [Sa]) =
enab (σb [Sa]) = {acka} and enab (σa [Sb]) = enab (σb [Sb]) = {ackb}; hence con-
ditions (i), (ii), and (iii) from Def. 8 hold. However, I(σa)(Sa)

I(σa)(Sa)+I(σa)(Sb)
= 1 	=

0 = I(σb)(Sa)
I(σb)(Sa)+I(σb)(Sb)

, contradicting the requirement on I in Def. 8.

4 Parametric Characterization

��
ad0
1 ��
ad1

acka? �� ackb?
ad2

acka? �� ackb?
ad3

ga1!

����
� gb1!

���
���

ad4 ad5

Fig. 2. A

A scheduler resolves all nondeterministic choices of an I/O-
IPC thorough probabilistic choices. Therefore, it defines an
(infinite) Markov chain which is a particular instance of the
original I/O-IPC where all nondeterminism has been replaced
by a probabilistic transition.

To illustrate this, consider our example of Fig. 1 with com-
ponent A replaced by the one in Fig. 2 (which we adopt for
simplicity). The resolution through a scheduler of the com-
posed system would look very much like the tree of Fig. 3,
except that variables xi should be omitted and variables yi
should be interpreted as probability values in the interval [0, 1]
properly defining a probabilistic distribution (e.g., y1 = 1 and
y3 + y4 = 1). However, if variables yi are not interpreted we



Security Analysis in Probabilistic Distributed Protocols 191

s01
2

�� ������
�����������
�����

1
2

�����
������

��
������

�����

s1a1
y1

��				
			

		 s2 a0
y2

��














s3acka
y3

�����
���

�� b0
y4

��












 s4b1

y5

��				
			

		 acka
y6

����
���

���

s5
b0
y7

��

s6acka
y8

��



ackb
y9

���
��

��
� s7ackb

y10

��



acka
y11

���
��

��
� s8

b1
y12

��
s9

ackb
y13

��

s10
ackb
y14

��

s11
acka
y15

��

s12
acka
y16
��

s13
ackb
y17
��

s14
ackb
y18
��

s15ga1
y19x1



��
��

gb1
y19x2

���
��
� s16ga1

y20x1



��
��

gb1
y20x2

���
��
� s17ga1

y21x3



��
��

gb1
y21x4

���
��
� s18ga1

y22x3



��
��

gb1
y22x4

���
��
� s19ga1

y23x1



��
��

gb1
y23x2

���
��
� s20ga1

y24x1



��
��

gb1
y24x2

���
��
�

s21 s22 s23 s24 s25 s26 s27 s28 s29 s30 s31 s32

Fig. 3. Parametric scheduler η. States are the obvious tuples. Underlined states are
guessing states.

could think of such parametric tree as a symbolic representation of any possible
scheduler. (Keep ignoring xi’s by the time being.)

The probability of path σ = s0 μ s1 a1 s3 b0 s6 acka s10 ackb s16 can be calcu-
lated using Def. 4 for the symbolic scheduler: Pr (σ↑) = 1

2 · y1 · y4 · y8 · y14.
To construct a distributed scheduler under secrecy, we need to consider the

interleaving scheduler and the local schedulers. Notice that in our example, only
the local scheduler of A is relevant. In the parametric scheduler η of Fig. 3,
variables yi’s correspond to the probabilistic choices of the interleaving scheduler,
while variables xj ’s correspond to the probabilistic choices of the local scheduler
of A (all other local schedulers only have trivial choices and hence we omit
them). The multiplication of variables yi’s and xj ’s in the last step corresponds
to the composition of the interleaving scheduler with the local scheduler in order
to define the distributed scheduler η as it is in Def. 6 (which extends to Def. 8).
Notice that, contrarily to the fact that variables yi’s are all different, x1, x2, x3,
and x4 repeat in several branches. This has to do with the fact that some local
paths of A are the same for different paths of the composed system. For example,
the choice of the local scheduler of A at states s15, s16, s19, and s20 is determined
by the same local path ad0 μ

′ ad1 acka ad2 ackb ad3, with μ′(ad1) = 1. (Notice
that, e.g. (s0 μ s1 a1 s3 acka s5 b0 s9 ackb s15) [A] = ad0 μ

′ ad1 acka ad2 ackb ad3.)
Following Def. 4 and equation (3), the parametric probability of reaching a

guessing state (which are underlined in Fig. 3), is given by the polynomial
1
2
· y1 · y3 · y7 · y13 · y19 ·x1 + 1

2
· y1 · y4 · y8 · y14 · y20 ·x1 + 1

2
· y1 · y4 · y9 · y15 · y21 ·x3 +

1
2
· y2 · y5 · y10 · y16 · y22 · x4 + 1

2
· y2 · y5 · y11 · y17 · y23 ·x2 + 1

2
· y2 · y6 · y12 · y18 · y24 ·x2 .

Maximizing (resp. minimizing) the previous polynomial under the obvious con-
straints (each variable takes a value within [0, 1], and they define proper prob-
ability distribution, e.g. y3 + y4 = 1), yields to the maximum (resp. minimum)
probability under distributed schedulers. This was presented in [5].

However, this is not sufficient to characterize distributed schedulers under se-
crecy. Notice that, for σa = s0μs1a1s3b0s6 and σb = s0μs2a0s4b1s7 (which are
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the same σa and σb of Sec. 3), and components Sa and Sb, we are under conditions
(i), (ii), and (iii) of Def. 8. Therefore, it should hold that I(σa)(Sa)

I(σa)(Sa)+I(σa)(Sb)
=

I(σb)(Sa)
I(σb)(Sa)+I(σb)(Sb)

. Since I(σa)(Sa) = y8, I(σa)(Sb) = y9, I(σb)(Sa) = y11 and
I(σb)(Sb) = y10, this means that constraint y8

y8+y9
= y11

y10+y11
needs to be con-

sidered in the optimization problem. Similarly, constraints y9

y8+y9
= y10

y10+y11
,

y3

y3+y4
= y6

y5+y6
, and y4

y3+y4
= y5

y5+y6
are also needed.

In the following, we give the formal construction of the optimization problem.
Let Paths≤t (C) = {σ ∈ Pathsfin (C) | time(σ) ≤ t}. We consider the following
set of variables

V =
{
yi
σ | σ ∈ Paths≤t (C) ∧ 1 ≤ i ≤ #C ∧ enab(σ [Pi]) �= ∅} ∪

{
xa
σ[Pi]

| σ ∈ Paths≤t (C) ∧ 1 ≤ i ≤ #C ∧ a ∈ enab(σ [Pi])
} ∪

{
wj,I

f | I ⊆ {1, . . . ,#C} ∧ j ∈ I ∧ f : I → Pathsfin ∧
∃σ ∈ Paths≤t (C) : ∀i ∈ I : enab(σ [Pi]) �= ∅ ∧ f(i) = [σ [Pi]]∼i

}
(4)

Variables yiσ and xa
σ[Pi]

are associated to the interleaving and local schedulers
respectively, and we expect that I(σ)(i) = yiσ and ηPi(σ [Pi])(a) = xa

σ[Pi]
. Vari-

ables wj,I
f are associated to the restriction of the interleaving scheduler in Def. 8.

We expect that wj,I
f =

I(σ)(Pj)∑
i∈I I(σ)(Pi)

=
yj
σ∑

i∈I yi
σ

whenever f(i) = [σ [Pi]]∼i
for all

i ∈ I. Notice that, if there is another σ′ such that f(i) = [σ′ [Pi]]∼i
for all i ∈ I,

then also wj,I
f =

I(σ′)(Pj)∑
i∈I I(σ′)(Pi)

. This ensure the desired equality.
In our example of Fig. 3, if σ = s0 μ s1 a1 s3 b0 s6, then y8 and y9 corre-

spond respectively to ySa
σ and ySb

σ . If σ̂ = ad0 μ
′ ad1 acka ad2 ackb ad3, then x1

and x2 correspond respectively to xga1

σ̂ and xgb1
σ̂ . Moreover, notice that if σ′ =

s0 μ s1 a1 s3 b0 s6 acka s10 ackb s16 and σ′′ = s0 μ s1 a1 s3 acka s5 b0 s9 ackb s15,
then xga1

σ̂ , xga1

σ′ [A], and xga1

σ′′ [A] are the same variable.
Let G be the set of goal states and let t be the time bound of the time-

bounded reachability property under study. Let Paths≤t
G (C) = Paths≤t (C) ∩ Ḡ.

The function P that assigns a polynomial term with variables in V to each path
in Paths≤t

G (C), is defined by

P(ŝC) = 1

P(σαs) =

{
P(σ) · yi

σ · xα
σ[Pi]

if enab(σ) �= ∅ ∧ α ∈ AO
Pi

∧ last(σ)
α−→ s

P(σ) · α(s) if enab(σ) = ∅ ∧ last(σ) ⇒ α

P(σ) = 0 in any other case

(5)

Then, following (3), the objective polynomial of the optimization problem is
∑

σ∈Paths≤t
G (C) P(σ) (6)
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and it is subject to the following constraints:

0 ≤ v ≤ 1 if v ∈ V (7a)
∑

a∈A xa
σ[Pi]

= 1 if σ ∈ Paths≤t (C) , 1 ≤ i ≤ #C, A = enab (σ [Pi]) (7b)
∑

i∈I y
i
σ = 1 if σ ∈ Paths≤t (C) , I = {i | 1 ≤ i ≤ #C, enab(σ [Pi]) �= ∅} (7c)

wj,I
f (

∑
i∈I y

i
σ) = yj

σ if

{
σ ∈ Paths≤t (C) , I ⊆ {i | 1≤i≤#C, enab(σ [Pi]) �= ∅} ,
j ∈ I, ∀i ∈ I : enab(σ [Pi]) �= ∅ ∧ f(i) = [σ [Pi]]∼i

(7d)

Equations (7a–7c) ensure that the probabilisitic choices of the local and interleav-
ing schedulers are well defined. Equation (7d) is a rewriting of wj,I

f =
yj
σ∑

i∈I yi
σ

to
avoid possible division by 0. (Notice that, when

∑
i∈I y

i
σ = 0, the constraint be-

comes trivially valid.) These constraints encode the restriction on the interleaving
scheduler. In effect, let σ and σ′ be such that, for all i ∈ I, σ [Pi] ∼Pi σ′ [Pi],
enab (σ [Pi]) 	= ∅ and enab (σ′ [Pi]) 	= ∅. Then, equations wj,I

f (
∑

i∈I y
i
σ) = yjσ

and wj,I
f (

∑
i∈I y

i
σ′) = yjσ′ , with f(i) = [σ [Pi]]∼i

= [σ′ [Pi]]∼i
, are present in the

constraints and hence yj
σ∑

i∈I yi
σ
=

yj

σ′∑
i∈I yi

σ′
.

We have the following theorem, whose proof we omit as it follows closely the
proof of [5, Theorem 2].

Theorem 1. Time-bounded reachability for a distributed I/O-IPC C under the
class DSS is equivalent to solve the polynomial optimization problem with objec-
tive function in (6) under constraints (7). The result of maximizing (resp. min-
imizing) polynomial (6) is supη∈DSS Pr η(♦≤tG) (resp. infη∈DSS Pr η(♦≤tG)).

5 Implementation

We developed a prototypical tool to produce the optimization problem. It takes
as input the model of each component of the system (as transitions between
states with the initial state and equivalence classes indicated); a list of goal
states G and a time-bound t.

The tool computes elements of Paths≤t (C) from the composed initial state
following rules (1) and (2). While generating paths, new variables and constraints
are defined if the conditions of Eq. (7) hold. Also the expression P of the path
is determined according to Eq. (5). This process is iterated for each generated
path as long as its last state is not in G and it has successors in Paths≤t (C), i.e.,
as long as the enabled transitions also lead to a finite path within the requested
time-bound. When all the elements of Paths≤t

G (C) are identified, the tool exports
the constrained optimization problem. For an exact solution, we set a quantifier
elimination problem over the real domain as an input for Redlog1 (within the
Reduce computer algebra system) or QEPCAD2. For a numeric solution, we
generate source code for compiling against the IPOPT3 library.
1 http://redlog.dolzmann.de
2 http://www.usna.edu/cs/~qepcad
3 https://projects.coin-or.org/Ipopt

http://redlog.dolzmann.de
http://www.usna.edu/cs/~qepcad
https://projects.coin-or.org/Ipopt
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The complexity of the algorithm is clear: the optimization problem grows ex-
ponentially with the number of components in the system and the degree of local
nondeterminism. Therefore it is essential to find ways to reduce it to a smaller
equivalent optimization problem. Curiously enough, the fact of considering ar-
bitrary summations in the constraints for the interleaving scheduler (see Def. 8)
rather than only binary, permits a drastic reduction on the number of variables
and constraints as well as the size and degree of the objective polynomial.

Notice that if I = {i | enab(σ [Pi])} in (7d), we know by (7c) that
∑

i∈I y
i
σ = 1.

As a consequence, wj,I
f = yjσ for all j ∈ I. If there is another σ′ such that

I = {i | enab(σ′ [Pi])} and f(i) = [σ [Pi]]∼i
for all i ∈ I, then wj,I

f = yjσ′ = yjσ
for all j ∈ I. This only simplification has allowed us to eliminate a large number
of variables and, more importantly, non-linear constraint introduced by (7d).

Moreover, this unification of variables reduces also the size and degree of the
polynomial. Often, after substitution, we find out that by factorizing, we can
single out

∑
i∈I y

i
σ which, when I = {i | enab(σ [Pi])}, equals to 1. This reduces

the number of terms in I − 1 and the degree of these terms by 1.

Case Study: The Dining Cryptographers Protocol. As a case study we
automated the verification of sender untraceability in dc-net, a protocol inspired
on a solution for the dining cryptographers problem [8]: Three cryptographers
are having dinner at a restaurant while the waiter informs that the bill has been
paid anonymously. If one of the cryptographers is paying they want to respect
his anonymity, but they like to know if their boss is paying. Briefly, the protocol
goes as follows. Each participant toss a fair coin and share the outcome with his
neighbour at the left, then he publicly announces if his outcome and the one of
the neighbour are the same, but if the participant is paying, he announces the
opposite. If the number of “different” announces is odd, one of the participants
is paying but the others cannot distinguish which one.

This protocol has been analyzed a large number of times with different tech-
niques. It is noticeable that most of the proofs, if not all (in particular model-
based fully automated proofs), fix the order in which the participants make their
announcements. Most generally, this has to do precisely with the inability of the
techniques to control the arbitrariness of the scheduler. The model we verify
does not impose such restrictions. We anyway prove that the protocol preserves
anonymity when the participants’ announcement do not follow a fixed order.

We consider the case of three cryptographers C1, C2 and C3. We fix the
probability of the boss paying in 1

2 . Otherwise, the probability of any of the
participants paying is uniformly distributed ( 16 each). We want to know what
is the probability Pguess that participant C3 correctly guesses if C1 or C2 have
paid, knowing that one of them has actually paid. We will then calculate the
maximum and minimum probability of reaching the set of states G = {s |
C3 guesses Ci and Ci paid, i = 1, 2}, say P+

♦G and P−
♦G, respectively. Knowing

that the probability that C1 or C2 have paid is 1
3 , if it turns out that P+

♦G =

P−
♦G = p, the conditional probability that we are looking for is Pguess = p/ 1

3 = 3p.
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Indeed, after running our tool, we verified that P+
♦G = P−

♦G = 1
6 . Hence

Pguess =
1
2 , proving that C3 has no better knowledge than previously known (i.e.

that any of C1 or C2 pay with probability 1
2 ). The original system contains 9606

variables, 1348 linear constraints, 16176 nonlinear constraints and the polyno-
mial has 3456 terms and degree 7. After unification of variables the numbers
are 774, 200, 36, 3456, and 7, resp., and after factorization and elimination of
irrelevant variables, numbers reduces to 351, 17, 0, 544, and 5, resp. Given the
complexity of the optimization problem, we were unable to solve it exactly, but
the numerical computation was almost immediate. On an aside note, a similar
verification of our running example was solved using only the simplifications.

6 Concluding Remarks

Related Work. The interest on understanding and verifying probabilistic dis-
tributed systems under the assumption that not all information is shared by all
components has appeared several times before in the literature (e.g. [9,14,11,1]).
We base this work on extending the framework of [12] and the algorithm of [5].

Our ideas about equivalence relations and limiting the interleaving scheduler
based on projections under equivalences are inspired in task-PIOAs [6]. Task-
PIOAs are a variation of probabilistic I/O automata with an equivalence relation
over the set of “controllable actions” of the composed system. The model restrict
to output isolation and action determinism. The set of schedulers they con-
sidered are a combination of a task schedule with a regular total-information
scheduler. The resulting scheduler maps equivalent execution fragments to prob-
ability measures that ensure that equivalent actions receive the same probability
value. This roughly corresponds to our interleaving scheduling under secrecy as-
sumptions. Because of output isolation, no other scheduler is needed. Despite
that [6] provides techniques to analyze time-bounded attacks in Task-PIOA, to
our knowledge, no fully automatic algorithm is provided.

[2] proposes another restricted family of schedulers over tagged probabilistic
automata, a formalism with similar semantics to ours. The actions in composed
systems are “tagged” with the components engaged in the action (or compo-
nents, in case of synchronization). The set of enabled tags in a state is part
of the observable behavior. Then, the scheduler is defined as a function from
observable traces to tags. In this sense, the schedulers are quite like our inter-
leaving schedulers, and no local scheduler is needed. Another restriction is that
they only consider deterministic schedulers (which are strictly less expressive
than randomised schedulers, see [14]). [2] also provides an automatic technique
based on automorphism that check for sufficient conditions to ensure anonymity
in systems whose components do not have internal nondeterminism (comparable
to our output nondeterminism).

A somewhat similar approach is presented in [7] where labels are also used for
the scheduler to resolve the nondeterminism. In this case the scheduler is provided
explicitly as a deterministic component that only synchronizes with the system
through labels. Again randomized schedulers are not considered. A particularity
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of this work is that the “equivalence classes” (which are actually defined by how
labels are associated to actions) can change dynamically.

Conclusion and Further Work. We refined the schedulers of [14] to deal with
information hiding and adapted the technique of [5] to the new setting. Moreover,
the generation of the polynomial optimization problem has been significantly
improved, first by avoiding the generation of the intermediate parametric Markov
chain, and then by adding simplification rules that drastically reduced the size of
the optimization problem. In addition, the connection to numerical tools allow
for effective and rapid calculations. In particular, our technique allowed for the
verification of a more nondeterministic version of the dining cryptographers,
without constraining the ordering of independent actions.

In the future, we propose to revise the synchronisation mechanism. Notice
that, in the running example, adversary A does not observe the communication
of the secret at all. However, it is reasonable that A observes the transmission
of the encrypted secret, that is, A should synchronize with the equivalence class
without knowing which particular action was executed. Another further work
is to study the use of our framework to analize timing attacks, after all it is
already prepared for it. Moreover, by properly bounding the numbers of steps
of the attackers, we may explore the possibility of restricting the computational
complexity of the attack.
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