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Abstract. We report on the state of the art in the formal specification
and analysis of concurrent systems whose activity duration depends on
general probability distributions. First of all the basic notions and results
introduced in the literature are explained and, on this basis, a conceptual
classification of the different approaches is presented. We observe that
most of the approaches agree on the fact that the specification of systems
with general distributions has a three level structure: the process algebra
level, the level of symbolic semantics and the level of concrete semantics.
Based on such observations, a new very expressive model is introduced
for representing timed systems with general distributions. We show that
many of the approaches in the literature can be mapped into this model
establishing therefore a formal framework to compare these approaches.

1 Introduction

The research community has widely recognized the importance of time aspects
in the specification and analysis of concurrent systems and communication pro-
tocols (see e.g. [1, 3, 19] and the references therein). There are fundamentally
two reasons behind this recognition: first of all, the (correct) behavior of certain
systems/protocols often depends on real-time aspects; second, expressing time
duration of system activities makes it possible to estimate system performance.
In this paper we report on the state of the art in the formal specification and
analysis of concurrent systems whose activity durations are random variables.

The random duration of an activity is represented by probability distribu-
tion functions. For example Fig. 1 depicts the probability of the duration of an
activity. This can be any time value between two and four time units.

An important special case of duration distribution is the exponential dis-
tribution. Due to its nice mathematical properties (the so called “memoryless”
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Fig. 1. Activity with a probabilistic duration

property),the problem of specifying systems which only make use of exponential
distributions is easier than the general case and has been successfully studied
(see e.g. [20, 19, 3, 5]). The approach obtained in this restricted setting is often
referred to as the “Markovian” approach, in that system behavior turns out to
be expressible by simple continuous time Markov chains (CTMCs). In spite of
its advantages, the Markovian approach imposes a considerable limitation on
the modeling of time aspects. Therefore, it is important to address the general
case in which probability distributions can be arbitrary.

In order to better understand the power of general distributions, let us look
again at the example of Fig. 1. The distribution of Fig. 1 expresses both time
bounds for the activity (i.e. it will certainly last between 2 and 4 time units) and
a probabilistic quantification over the possible duration values for the activity.
This shows that, compared to the Markovian case where time bounds are not
expressible, general distributions make it possible to express both the system
aspects typical of real time modeling (where time bounds are represented) and
the system aspects typical of stochastic modeling (where a probabilistic quan-
tification of time values is expressed) in an integrated fashion. In particular,
given a system specification with general distributions, it is possible both to
validate its real time properties via, e.g., model checking, and to evaluate its
performance.

The problem of specifying and analyzing systems with general distributions
has been studied, e.g., in [11, 9, 36, 17, 32, 6, 4]. This paper focuses on such a gen-
eral problem and presents the main concepts and results obtained in the litera-
ture. More precisely we proceed as follows. First of all we explain basic notions
about the formal specification and analysis of systems with general distribu-
tions and, on this basis, we present a conceptual classification of the different
approaches in the literature.

A result of such a conceptual step is the observation that much of the ap-
proaches in the literature are based on the common idea that the specification of
systems with general distributions has a three level structure: the process algebra
level, the level of symbolic semantics (where system timed behavior is repres-
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ented in a symbolic way by clocks), and the level of concrete semantics (where
system timed behavior is represented explicitly by numerical timed transitions).
Based on such an observation, we introduce a new model to represent timed
systems with general distributions. We show that many of the approaches in
the literature can be mapped into this model establishing therefore a formal
framework to compare such approaches.

The paper is organized as follows. In Sect. 2 we present the basic concepts
about the formal specification and analysis of concurrent systems with stochas-
tic time on the basis of the several approaches in the literature. In Sect. 3 we
introduce “prioritized stochastic automata (PSA)”: the common symbolic model
for the representation of stochastic timed systems on which we will map such ap-
proaches. Sect. 4 introduces “probabilistic timed transition systems (PTTSs)”:
the concrete timed model used to define the semantics of PSA. Actually we con-
sider two kind of semantics based on so-called “residual” (see [11]) and “spent”
(see [4]) clock lifetimes. Sect. 5 defines symbolic bisimulation equivalence (over
PSA) and concrete bisimulation equivalence (over PTTSs). In Sect. 6 we pro-
vide embeddings of the stochastic models presented in [4, 11, 9] into PSA. In
Sect. 7, semantics for the different process algebras in [4, 11, 9] are given directly
in terms of PSA and shown to be consistent with their original semantics. In
Sect. 8 we report some notes and discussions concerning a detailed comparison
of the approaches in [11, 9, 36, 17, 32, 6, 4]. Sect. 9 concludes the paper.

2 Concurrent Systems with Stochastic Time

In this section we explain how to formally represent and reason about concurrent
systems whose behavior is specified by means of activities with random duration.
As explained in Sect. 1, we focus on the general case, i.e., the expressiveness of our
specification paradigms is not limited to “memoryless” exponential distributions.
As we will see, abandoning such limitation changes the nature of the problem
and increases its complexity. In order to better understand this it is important
to glance some details of the Markovian approach.

2.1 Exponential Distributions Make Things Easy

Restricting to exponentially distributed durations gives the advantage of having
activities for which the memoryless property holds. This property basically says
that at each time point in which an activity has started but not terminated yet,
the residual duration of the activity is still distributed as the entire duration of
the activity. Such a property makes it possible to represent “timed” behavior
of systems by a continuous time Markov chain (CTMC), i.e. a simple contin-
uous time stochastic process where in each time point the future behavior of
the process is completely independent of its past behavior and depends on its
current state only (Markov property). In fact the memoryless nature of time in
the Markovian approach makes it possible to avoid the explicit representation of
time passage in system specifications. For instance, consider a simple example of
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Fig. 2. Parallel of exponential delays

two exponentially timed activities with rates (the parameters of the exponential
distribution) λ and µ executed in parallel. The resulting CTMC is the one in
Fig. 2. Transitions in a CTMC represent exponentially distributed delays and
choices in a state of a CTMC are resolved via the “race policy”, i.e. the delays
represented by the outgoing transitions are executed in parallel and the first
delay that terminates determines the transition to be performed. Therefore, in
the example, both delays count synchronously from the initial state and, when
one of them terminates, the corresponding transition is executed. Such a tran-
sition leads to a state where the other delay counts its residual duration until
it terminates as well. Note that, because of the memoryless property, the resid-
ual duration of the delay is also exponentially distributed and with the same
rate. Hence the CTMC of Fig. 2 is an adequate representation of the parallel
execution of the two considered activities.

If system behaviors in the form of CTMCs are obtained from system specifica-
tions expressed with a process algebra (see, e.g., [20, 19, 3, 5]), the “+” operator
will be the natural choice to express the same kind of alternative given by transi-
tions leaving a state of a CTMC. For example, λ+µ represents a choice between
exponentially timed delays λ and µ and it is solved via the race policy explained
above. As far as the “||” operator is concerned, the example of Fig. 2, should
make clear that the simple standard interleaving semantics can be adopted: the
semantics of λ || µ is just that of λ.µ+µ.λ. This example also shows that having
a race policy interpretation of operator “+” and an interleaving semantics for
operator “||” yields an expansion law like λ || µ = λ.µ + µ.λ, which is crucial for
building complete axiomatizations of process equivalence notions.

Regarding equivalences, it turns out that standard bisimulation equivalence
(as opposed to other notions of equivalence) can be easily extended by following
an approach similar to that of [26] for discrete probabilistic choices.

2.2 A Symbolic Model with Clocks

When the restriction to exponential distributions is abandoned, the behavior
in a global system state does depend on the time partially spent by activities
currently under execution. Therefore, we are forced to explicitly represent the
passage of time. For instance, if the two activities in the example of Fig. 2 are not
exponentially distributed, the time spent in a state reached after the termination
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of the first activity effectively depends on the time the second activity has already
(partially) spent in execution.

A simple way of representing the execution time of an activity is to adopt a
model with clocks in a similar manner timed automata do [1]. A timed
automaton represents the behavior of a system in terms of a fixed set of clocks c1,
c2, c3,. . . . During the execution of the automaton, each clock has an associated
time value. When the automaton sojourns in a state, clock time values increase
in a synchronous manner. The transitions of the automaton are executed instan-
taneously: their execution may depend on some condition on clocks (e.g. c1 ≥ t
for some time value t) and may cause some clock to be set to some value (e.g.
c3:=0). More precisely, labels of timed automata transitions are of three kinds:

– actions, used to express the occurrence of events and to synchronize system
components (when composing in parallel several timed automata),

– guards, expressing a condition on clocks, and
– clock setting events.

Note that the representation of time passage in a timed automata is symbolic
in the sense that the temporal behavior of the system is expressed by means of
events like clock setting and clock constraints instead of concrete (real-valued)
timed transitions. This makes it possible have a finite representation of system
behavior, hence the chance of analyzing some of its properties in a computable
way, even if the time domain is assumed to be (continuously) infinite. On the
other hand the semantics of timed automata (the meaning of the symbolic repre-
sentation) is usually defined in terms of an inherently infinite concrete semantic
model which makes use of real-valued timed transitions.

It is easy to see that a simple probabilistic extension of the clocks of a timed
automaton gives the possibility of representing generally distributed time.

Introducing Stochastic Clocks

In order to express generally distributed time it is sufficient to consider a variant
of timed automata where:

– each clock has an associated probability distribution expressing its duration:
c1 �→ f , c2 �→ g, c3 �→ h,. . . ;

– the three kinds of labels of a transitions are the following ones:
• actions (represented with a, b,. . . ), used to express the occurrence of

events and to synchronize system components (as in timed automata),
• guards, requiring all clocks in a certain set to be terminated, and
• clock setting events representing the start of all clocks in a certain set;

– we possibly may express probabilistic and/or prioritized choices.

By using an approach like this, two parallel activities with random duration can
be easily represented even if they are not exponentially distributed. Suppose that
the duration of two activities are generally distributed according to distributions
f and g. The behavior of f || g can be represented as in Fig. 3. In this figure,
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Fig. 3. Parallel of generally distributed delays

the execution of these activities is represented by clocks c1 and c2, where their
associated distribution functions are f and g, respectively. A c+ label means
that the clock c is set to be started, while a c− label represents the clock c to be
terminated. In this event-based representation, we assume that whenever a clock
is not explicitly restarted it continues counting. Therefore, Fig. 3 is a correct
representation of the parallel execution f || g. (Compare to the exponential case
in Fig. 2, in which a clock does not need to be explicitly started.)

Models to represent systems like this, which may execute generally dis-
tributed timed activities in parallel, are also used in probability theory. In partic-
ular the class of generalized semi-Markov processes (GSMPs) exploits a similar
event-based symbolic representation where clocks are also called “elements”.
GSMPs also provide the capability of expressing probabilistic choices.

2.3 A Concrete Semantics

Similarly as for classic timed automata, the meaning of the symbolic represen-
tation given by an automata with probabilistic clocks can be formally defined in
terms of a concrete model with real-valued timed transitions.

A Concrete Probabilistic Timed Model

In the case that a continuous time domain is considered (as we do in this paper),
the concrete model is given by a transition system on an uncountably large state
space where time passage is represented explicitly via transitions labeled with
real numbers. More precisely, the concrete model must have at least the following
three kinds of transitions:

– actions transitions,
– time transitions, labeled with a time t ∈ IR≥0,
– continuous probabilistic transitions represented by probability spaces.

In particular, continuous probabilistic choices are used to represent the sampling
of time values from distributions on durations.
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The easiest way to understand the concrete model is to see it as a representa-
tion of the behavior of the symbolic probabilistic automata when it is “executed”
(i.e. when actual time values are sampled from duration distributions). In the
literature, there are two techniques to represent this execution (i.e. to define the
semantics of the symbolic automata):

– keeping track of residual lifetime of clocks, i.e. the amount of time that
a clock has to spend in execution from the current time instant until its
termination.

– keeping track of spent lifetime of clocks, i.e. the amount of time that a clock
has already spent in execution since it was started until the current time
instant.

While the residual lifetime of a clock decreases as time passes, the spent lifetime
of a clock increases. This last case is similar to the way clock values are treated
in the semantics of timed automata.

Recording Residual Lifetimes

The technique based on clock residual lifetimes (see e.g. [11]) is the simplest one:
the duration of a clock is decided once and for all when a clock is started (by
sampling from its associated distribution) and the duration time is decreased
until it gets to zero.

More precisely the concrete semantic model is derived from the stochastic
automata as follows:

– When a clock is started, its residual lifetime is determined by sampling a
value from its associated duration distribution.

– When a clock is under execution, its time to termination tTERM is given by
its residual lifetime tR (tTERM = tR). This means that if we consider the
situation of the system after a time period t (i.e., a t transition is performed):

• if t < tTERM then the residual lifetime of the clock becomes tR − t,
• if t ≥ tTERM then the clock is terminated.

The main advantage of this technique, which is commonly used in discrete
event simulation, is its simplicity and applicability (see e.g. [27]). However, it
may be argued that this approach is not adequate if non-deterministic choices
need to be resolved by adversaries. This is due to the fact that the eventual
duration of a clock is decided when it starts. Hence, an adversary can base its
decisions on the knowledge of the future behavior of the system and therefore,
play a more angelic (or more demonic) role than it is desired. For instance, if
three clocks are being concurrently executed in a symbolic state, an adversary
a priory may know not only which one of the three clocks will terminate first
in such a state, but also which clock will be the next one to terminate, thus
obtaining information about the future behavior of the system.
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Recording Spent Lifetimes
The technique based on clock spent lifetimes (see [4]) is more complex but similar
to that of timed automata: the spent lifetime of a clock is set to zero when it
starts and it increases as time passes. At every (concrete) state the distribution
of the time to termination of the clock is resampled from its associated duration
distribution conditioned to the spent lifetime.

More precisely the concrete semantic model is derived from the automata
with stochastic clocks as follows:

– When a clock is started its spent lifetime is set to 0.
– When a clock is under execution, its time to termination tTERM is deter-

mined by sampling a value from its residual duration distribution. This is
computed from:
• the spent lifetime tS of the clock and
• the duration distribution associated to the clock.

This means that if we consider the situation of the system after a time period
t (i.e., a t transition is performed):
• if t < tTERM then the spent lifetime of the clock becomes tS + t,
• if t ≥ tTERM then the clock is terminated.

This technique presents an appropriate context for the resolution of non-
determinism by adversaries. However, it cannot easily be taken into practice by
means of discrete event simulation. This would require to compute the residual
duration distribution of every clock in execution and sample a value from it, and
this repeated at every state traversed by the automata.

2.4 Bisimulation Equivalences

Similarly to the Markovian case, we want to find some extension of standard
bisimulation equivalence which makes it possible to reason about equivalence of
systems with generally distributed durations.

It is important to have a definition of bisimulation equivalence both at the
symbolic model and at the concrete model level. Equivalences at the symbolic
level make it possible to actually decide the equivalence of two systems and to
minimize the state space of a system in a computable way. Equivalences at the
concrete level show that equivalence at the symbolic level is correct with respect
to the adopted concrete semantics. Note that in general, at the concrete level,
systems can be compared on the basis of actual time delays and probability
spaces, while at the symbolic level we can only check correspondence of clock-
events and correspondence of probability distributions. Therefore equivalence at
the concrete level represents, somehow, the coarsest notion of equivalence that
we can hope to gain with a symbolic equivalence (in fact the symbolic equivalence
is typically much finer than the concrete one).

Symbolic Bisimulation
Symbolic bisimulation is an equivalence defined on the symbolic stochastic timed
model. It is defined in such a way that:
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– action transitions are matched as in standard bisimulation,
– clock start and clock termination events are matched if they refer to clocks

with the same duration distribution.

Moreover if the symbolic model includes probabilistic choices they are matched
as in standard probabilistic bisimulation [26].

Two approaches may be followed in order to match clock start and termi-
nation. The simplest one is to only match clocks if they have the same name,
therefore ensuring that duration distributions are the same. The advantage of
this approach is its simplicity; its disadvantage is that it hardly provides any
stochastic insight.

The other approach relies on a clock name association, given by a function or
a relation. This relation ensure that start and termination events of clocks with
different names but with the same duration distribution are properly matched.
This second type of symbolic bisimulation is coarser than the first one.

Examples of the first case appear in [14, 11]; examples of the second one can
be found in [6, 11, 4].

A particularly distinct case appears in [8, 4] where symbolic models can be
restricted to canonical one (in the sense that clocks are canonically named) for
which building clock name associations is not needed (it works just like the first
type of equivalence) and nonetheless it equates symbolic automata just like the
second kind.

Concrete Bisimulation

Concrete bisimulation is an equivalence defined on the concrete timed model. In
particular it is defined in such a way that:

– action transitions and timed transitions are matched as in standard bisimu-
lation,

– continuous probabilistic transitions are matched according to an extension
of probabilistic bisimulation [26] to continuous probability spaces.

2.5 Dealing with Composition: Process Algebra

The essence of designing a process algebra for modeling systems with generally
distributed activities can be captured by simply considering the extension of a
standard process algebra with a new prefix or guard “f.P”. This new operation
represents the execution of P after a random delay (sampled from the general
distribution f) took place.

In order to obtain a symbolic model with clocks just like those previously
described, the semantics of f.P should take into account the following:

– it should represent the execution of the delay as the combination of a start
and a termination event (e.g. denoted by f+ and f−, respectively).

– it must generate a (clock) name for the delay which keeps it distinguished
from other delays being executed at the same time (e.g. in f || f).
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If we see f as being the “type” of the delay, a semantics which operates in
this way is exactly the classical ST semantics of [15, 7]. Therefore, conceptually,
the essence of the problem of representing symbolically general distributions is
just like the classical problem of expressing ST semantics for actions in algebraic
terms.

As in the standard case of ST semantics (see [7]), we can employ different
kind of techniques for generating clock names from delay prefixes. In particular
such techniques can be classified into static and dynamic techniques. Note that
it is also possible (see [11]) to define the semantics of the process algebra by ab-
stracting from the particular name generation mechanism. We can just say that
names are generated by arbitrary α-conversion: any name can be chosen for a
delay provided that it is not in use by another clock in execution. Terms are then
considered to be equivalent up to (distribution preserving) clock associations.

On the other hand, choosing a particular technique (static or dynamic) may
lead to smaller models or may make it easier to check symbolic bisimulation
equivalence at the price of introducing some (often quite complex) unique name
generation mechanism.

In static techniques, clock names are generated statically according to the
syntactic structure of the process algebra term. For instance, in [6] clocks are
named according to the syntactic position of the delay w.r.t. the parallel oper-
ators in the term (the location of the delay). A simple rule like this is enough
to guarantee that two delays that may be executed at the same time always get
different names. The main advantage of the static approach is simplicity and the
size of the symbolic state space which is smaller than the one of the dynamic
approach, due to the fact that a delay always gets the same name independently
on when it is executed. The main drawback is that clock names must be explic-
itly associated in the symbolic bisimulation (see, e.g., [6, 11]) in order to capture
equivalence of systems just based on duration distributions.

Example 1. In figure 4 we depict the behavior of “f || f” (only the phase of
clock starts) according to a static technique like that of [6] which assigns names
to delays according to their position w.r.t. parallel operators. In the example of
figure 4 the delay f to the left of the parallel operator is named “fl”, the delay
f to the right “fr”. Note that, since names of delays are determined by their

f+
r f+

l

f ||f−

f−||f−

f−||f

f ||f
f+

l f+
r

Fig. 4. Parallel of delays with the static technique (starting phase)
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syntactical position in the current term, after an event of starting of a delay f ,
we just have to record that this happened by turning f prefix into f− in the
term (we do not have to record names assigned to starting delays).

In dynamic techniques, clock names are generated dynamically (at run-time)
according to the order of delay execution, with a fixed rule. For instance, in the
approach of [8] the clock name generated for a delay f is fi, where i is the least
i ∈ IN which is not used in the name of any clock with the same distribution f
already in execution. The main advantage of the dynamic approach is the fact
that clock names do not need to be explicitly associated in the symbolic bisim-
ulation. This is due to the fact that the method to compute new names is fixed:
processes that perform equivalent computations generate the same “canonical”
names for clocks. The main drawback is the complex mechanism to composi-
tionally generate canonical names in operational semantics (we have to perform
a so-called level wise renaming [8, 4]) and the size of the state space which is
larger than the one of the static approach since the same delay may get different
names depending on the moment in which it is executed with respect to other
delays.

Example 2. In figure 5 we depict the behavior of “f || f” (only the phase of clock
starts) according to a dynamic technique like that of [8] which assigns names to
delays (indexes i ∈ IN) according to the rule of the minimum index not currently
in use by delays with the same distribution. In the example of figure 5, depending
on the order in which delays are started, either the lefthand one gets name 1 and
the righthand one gets name 2, or vice-versa. Note that, since names of delays
are determined by the order in which they are executed, after an f+

i event, we
have to record, not only that this happened by turning f prefix into f− in the
term, but also the name i assigned to the delay f at the moment of delay start.
As a consequence we produce an additional state w.r.t. the static naming case.

f ||f
f+

1 f+
1

f−
1 ||f f ||f−

1

f+
2 f+

2

f−
1 ||f−

2 f−
2 ||f−

1

Fig. 5. Parallel of delays with the dynamic technique (starting phase)

It could be said that [9, 23] also follow a dynamic approach. However, as
event names are arbitrarily chosen, it does not have the advantages of using
“canonically” chosen names. Other approaches do not generate a symbolic model
as an intermediate semantics, therefore they are not concerned with clock name
generation.
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Basic Operators in the Case of Pure ST Semantics

As far as the choice operator “+” is concerned, due to the generation of start
and termination events f+ and f− from delays f operated by ST semantics, we
have that (intuitively)

f + g = f+.f− + g+.g−

i.e. choices between delays become choices between starting events in semantic
models. Since start events are executed immediately this means that choices are
solved by a preselection policy, where first we choose the delay to be performed
and then we execute it, instead of the race policy used with exponential distri-
butions. A possible justification of this fact (given in [8, 4]) is the following one.
Preselection policy can be claimed to be more natural than race policy when
the restriction to exponential distributions (justifying race policy) is abandoned.
This because it causes f + g to represent a real choice and not a form of parallel
execution. In particular in the approach of [8, 4] probability information is at-
tached to delays (by using “weight” values) and the choice between start events
is resolved probabilistically. For instance, <f, 1>.P + <g, 2>.Q means that 1/3
of the time the delay f is chosen, after which P is executed, while the other 2/3
the delay g followed by process Q is executed. This choice allows for a represen-
tation of the full GSMP model [10] (with the only restriction that we assume
“decay rate” of delays to be always 1). On the other hand, adopting preselection
policy for generally distributed delays is absolutely not mandatory (it is just a
matter of taste) and as we will see, there are alternative technical solutions (e.g.
that of [11]) which allow race policy for the “+” operator to be used.

As far as the parallel operator “||” is concerned, due to the generation of start
and termination events f+ and f− from delays f operated by ST semantics, we
have that (intuitively):

f || g = f+.f− || g+.g− = f+.g+.(f−.g− + g−.f−) + g+.f+.(f−.g− + g−.f−)

i.e. parallel of delays becomes interleaving of events in semantic models1. This
shows that even in the case of general distributions it is possible to have an
expansion law at the level of events. This makes it possible to produce complete
axiomatizations for symbolic bisimulation equivalence (see [11, 4]). In the history
of stochastic process algebra with general distributions obtaining an expansion
law has been an important issue. First approaches failed to obtain expansion
laws providing, at best, only partial decomposition (e.g. [17, 36, 32, 18]). Others
pursued a true concurrency approach, dropping the idea of having an expansion
law [9, 23]. Modern stochastic process algebras solved this problem and the so-
lution depends on the splitting of the delay into start and termination events:
parallel of delays becomes the interleaving of events.

1 For the sake of simplicity we assume delay starts to have precedence over delay
terminations of another process as in [8, 4], hence we do not generate the complete
interleaving of events.
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Technical Solutions Different to ST Semantics
The treatment of generally distributed durations in process algebra that we
explained above is just intended to be conceptual and adheres completely to the
approach of [8] only.

In the literature we can find approaches which essentially follows the concept
that we explained, but adopt some different technical solution:

– We can have event separation already in the specification language [11]. In
this case clock events C+ and C− are used directly in the initial system
algebraic specification instead of delays f . This somehow gives more spec-
ification freedom, but forces the specifier to deal with clock names at the
algebraic level.

– We can have that clock start events do not resolve the choice [11]. In this
case the choice operator treats start events in a “special” way, i.e. in such a
way that their execution does not resolve the choice. Therefore having that
(intuitively):

({c+
1 }.c−

1 ) + ({c+
2 }.c−

2 ) = {c+
1 , c+

2 }.(c−
1 + c−

2 )

where {c+
1 , c+

2 , ...} represents a set of clocks starting at the same time.
In this way we can obtain race policy instead of preselection policy for choice
even in the case of generally distributed durations.

– The possibility of dealing with termination of multiple clocks can be intro-
duced [11, 6]. This basically means that we can specify systems behaving like
this (intuitively):

{c+
1 , c+

2 }.({c−
1 }.P + {c−

2 }.Q + {c−
1 , c−

2 }.R)

where {c−
1 , c−

2 , . . . } represents a set of terminated clocks.

2.6 Totally Different Approaches

In the following we briefly discuss approaches which deal with general distribu-
tions in a very different way with respect to the methodology above.
– The approach of [9] is based on a truly concurrent semantics for the process

algebra. The semantics of process algebraic specifications is given in terms of
stochastic bundle event structures instead of transitions over global system
states. Therefore it does not represent “interleaved” execution of processes,
but keeps instead a “local” representation of the behavior of each process.
The advantage is that it does not need to represent residual duration distri-
butions of generally distributed activities. However, it is not so clear how to
use truly concurrent models for actual system analysis apart from discrete
event simulation [24] and analysis of the first passage time of events [34] (a
technique to approximate performance measures).

– The approach of [36, 18] is based on a direct concrete semantics for the pro-
cess algebra. The semantics of process algebraic specifications is given dir-
ectly in terms of a concrete model with explicit time. This is a fine approach
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if we only expect to perform discrete event simulation of systems. The main
advantage is that it is easy to deal with very expressive process algebras:
we do not have to worry about how to develop symbolical representations.
However, concrete models are mostly uncountably large which makes them
unsuitable for system analysis not based on simulation. In a recent work [22] a
methodology for obtaining finite semantic models from the algebra of [36, 18]
is defined, which is based on symbolic operational semantics. Such semantics
generates symbolical transition systems which abstract from time values by
representing operations on values as symbolic expressions. In this way, for
systems belonging to a certain class, it is possible to derive a GSMP via a
(quite involved) procedure.

– The approach of [29] defines a testing theory for semi-Markov processes.
This is done by using a process algebra which is similar to IGSMP [8, 4],
but where the parallel operator is left out. Tests are processes which do not
include probabilistic delays (just actions and discrete probabilistic choices).

3 A Common Model for Stochastic Timed Systems

The model we introduce in this section considers the ingredients discussed in the
previous section: clock start, clock termination, execution of actions, and proba-
bilistic jumps. All these ingredients are included in only one symbolic transition.
The aim of this model is to encode many formalisms for modelling stochastic
timed systems, hence having a common framework to formally compare exist-
ing approaches. In addition, this model also considers priorities because some
frameworks implicitly include this feature and, moreover, they make it possi-
ble to represent maximal progress and urgency. This model is an extension of
stochastic automata [14, 11] with priorities and probabilistic transitions.

With PDF we denote the set of all probability distributions functions and
with Prob(Ω) we denote the set of all probability spaces with sample space in
a subset of Ω. We let Probd(Ω) denote the subset of Prob(Ω) containing only
discrete probability spaces. We use ρ, ρ′, ρi, . . . to denote discrete probability
spaces and π, π′, πi, . . . to denote probability spaces in general. In both cases,
we will overload the notation and use these letters to represent the probability
measure as well.

Definition 1. A prioritized stochastic automata (PSA) is defined to be a struc-
ture (St,Ck,Distr,Act,−→, s0, C0) where

– St is a countable set of control states with s0 ∈ St being the initial control
state.

– Ck is the set of clock names with C0 ⊆ Ck being the set of clocks to be
started at initialization. For the sake of clarity in technical manipulation,
we assume that Ck is totally ordered, and that if C ⊆ Ck, �C is the vector
induced by this order.

– Distr : Ck → PDF assigns a probability distribution function to each clock.
If f ∈ PDF, we usually name a clock cf ∈ Ck to indicate that Distr(cf ) = f .
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– Act is set of actions partitioned in the following sets:
• Actd, the set of delayable actions and
• Actu, the set of urgent actions

where Actu is ordered according to a priority relation ≺ which is a strict
order with the silent action τ ∈ Actu being the maximum element.

– −→ ⊆ St× 2Ck ×Act× Probd(2Ck × St) is the control transition relation.

We write s
C,a−−−→ ρ if (s, C, a, ρ) ∈ −→ and s

C,a−−−→ if there is a distribution

ρ such that s
C,a−−−→ ρ. If ρ(C ′, s′) = 1 (i.e., ρ is trivial) then we write s

C,a,C′
−−−−−→

s′ instead of s
C,a−−−→ ρ. The meaning of a control transition s

C,a−−−→ ρ is the
following. To trigger the transition, all clocks in set C must terminate, that is,
the transition cannot be executed as long as a clock in C is active. Transitions are
labeled with actions. They can be delayable, meaning that they need to interact
with the environment, or they can be urgent and they will not be allowed interact
with the environment. Urgent actions impose maximal progress and therefore
transitions labeled with actions of this type must be executed as soon as they are
enabled. In addition, if a conflict between two enabled urgent transitions occurs,
it may be solved according to the priority relation on the actions labelling the
control transition provided it is defined (notice that the order may not be total).
In addition, when a transition is executed, a probabilistic branching will take
place according to the probability space ρ. ρ(C ′, s′) is the probability that all
clocks in C ′ are started and the system reaches the control state s′.

Fig. 6 shows a system of three queues with two servers to process certain
classes of job. Jobs arrive to the system according to an unknown rate and they
queue in a buffer. Server A is intended to take jobs from this buffer a soon
as it can and preprocess them. This preprocessing takes some (random) time.
Moreover 1/3 of the outcome will result in a high priority job and the other 2/3 in
a low priority one. As soon as the preprocessing finishes the job is queued in the
high priority buffer or in the low priority one, depending whether it is high or low
priority. Service B is intended to perform some postprocessing on these jobs. As
soon as it can, it takes and process a job from the high priority queue provided
there is any, otherwise it takes a job from the low priority queue. Processing

delayable
action

urgent
immediate w/ preselection

policy

urgent timed urgent
immediate

and prioritised

urgent
timed

1
3

2
3

unknown
arrival

High priority queue

Low priority queue

Service BService A

Fig. 6. A simple queuing network
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takes a (random) time, and as soon as it finishes, the result is output. Notice

that, since all ingredients above are present in control transitions s
C,a−−−→ ρ, the

PSA model allows for the modelling of systems like the queuing network depicted
in Fig. 6.

Let Jobs be the possible set of jobs to be processed in the queuing network
of Fig. 6. Suppose the serving time in A (resp. B) is distributed according to a
distribution FA (resp. FB). Then, the queuing network can be modelled by the
PSA defined as follows:

St = Jobs∗ × Jobs∗ × Jobs∗ × (Jobs ∪ {−})× (Jobs ∪ {−})
Ck = {xA, xB} with Distr(xA) = FA and Distr(xB) = FB

Actd = {input(j) | j ∈ Jobs}
Actu = {get(j),put(j), getHigh(j), getLow(j), output(j) | j ∈ Jobs}

where getLow(j) ≺ getHigh(j′) for every j, j′ ∈ Jobs and the other actions in
Actu are not comparable.

A control state (qI , qH , qL, A, B) saves in qI , qH , and qL the contents of the
input queue, the high priority queue, and the low priority queue, respectively,
and A (resp. B) indicates if server A (resp. B) is processing a job j ∈ Jobs or
it is idling (−). Initially, the system has all its queues empty and the servers
are idling. Therefore s0 = (ε, ε, ε,−,−). Moreover, initially the system is only
waiting for a job to arrive so no timer needs to be set: C0 = ∅. The control
transitions are defined as follows (where j ∈ Jobs).

a job can be input at any time:

(qI , qH , qL, A, B)
∅,input(j),∅−−−−−−−−→ (qIj, qH , qL, A, B)

if server A is idling and qI is not empty it must take a job and begin to
process it (it starts clock xA):

(jqI , qH , qL,−, B)
∅,get(j),{xA}−−−−−−−−−→ (qI , qH , qL, j, B)

when clock xA terminates, server A finishes processing its job and appends
it to qH with probability 1/3, or to qL with 2/3:

(qI , qH , qL, j, B)
{xA},put(j)−−−−−−−−→

{
〈∅, (qI , qHj, qL,−, B)〉 �→ 1

3 ,

〈∅, (qI , qH , qLj,−, B)〉 �→ 2
3

}

if server B is idling and qH is not empty it must take a job and begin to
process it (it starts clock xB), and similarly if qL is not empty:

(qI , jqH , qL, A,−)
∅,getHigh(j),{xB}−−−−−−−−−−−−→ (qI , qH , qL, A, j)

(qI , qH , jqL, A,−)
∅,getLow(j),{xB}−−−−−−−−−−−−→ (qI , qH , qL, A, j)

when clock xB terminates, server B finishes processing its job and outputs it:

(qI , qH , qL, A, j)
{xB},output(j),∅−−−−−−−−−−−→ (qI , qH , qL, A,−)
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The server B prioritizes jobs from the high priority queue because getLow(j) ≺
getHigh(j′) for every j, j′ ∈ Jobs.

The PSA model is obtained by integrating the stochastic automata model [14,
11] with the IGSMP model [6, 8, 4] and it is based on the model used for the
MoDeST language [13].

4 Semantics of PSA

The semantics of PSA is given in terms of probabilistic timed transition systems
(PTTS). As discussed in Section 2.3, there are two possible interpretations. This
is discussed in the following.

4.1 Probabilistic Timed Transition Systems

The PTTS model is an extension of Segala’s simple probabilistic automata [35]
with continuous probability spaces and time labelled transitions.

Definition 2. A probabilistic timed transition system (PTTS) is a structure
(Σ,Act ∪ IR≥0,−→, π0) where

– Σ is a set of states;
– Act is a set of actions like in PSA;
– −→ ⊆ Σ × (Act ∪ IR≥0)× Prob(Σ) is the transition relation; and
– π0 ∈ Prob(Σ) is the probability space that indicates how to select a probable

initial state.

In addition, the following requirements must hold:

1. maximal progress: ∀σ ∈ Σ, a ∈ Actu. σ
a−→ =⇒  ∃t ∈ IR≥0. σ

t−→
2. priority: ∀σ ∈ Σ, {a, b} ⊆ Actu. (a ≺ b ∧ σ

a−→) =⇒ σ
b−→/

Above we use the following notation. σ
a−→ π denotes (σ, a, π) ∈ −→. If there

is a probability space π such that σ
a−→ π, we write σ

a−→; if such π does not
exists, we write σ

a−→/ Moreover, we write σ
a−→ σ′ if σ

a−→ π and π is a trivial
probability space where the atom {σ′} has measure 1.

Transition σ
a−→ π means that when the system is in state σ it may perform

an action a and then move to some state with a probability determined by the
probability space π. π may be a continuous probability space.

As an example, consider a metronome. A metronome is a device that marks
the tempo of a piece of music (i.e. the speed at which it should be played).
Thus, a metronome is a clock that ticks once each given interval of time. Sup-
pose our metronome always plays andante; this would be a tick per second. As
any clock a metronome may not be precise. Our metronome may skew up to
1 millisecond according to a uniform distribution. A possible modelling of the
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metronome’s behaviour in terms of PTTS could be as follows (time is measured
in milliseconds).

Σ = IR
Actd = ∅ Actu = {tick}
0 tick−−−→ πU where πU is the probability space in IR with

measure defined from a uniform in [999, 1001]

t + t′ t−→ t′ with t, t′ > 0
π0 = πU

Notice that the metronome satisfies maximal progress since 0 t−→/ for any real
t. Maximal progress requires that when an urgent action becomes available, it
must be executed without letting time pass. (See first requirement in Def. 2.)

To add an on/off button to the metronome, the previous PTTS should be
modified as follows:

Σ = IR ∪ {sys off}
Actd = {on, off}
the transition relation is extended s.t. sys off on−−→ 0,

t
off−−→ sys off, and sys off t−→ sys off for all t ≥ 0

with the rest of the components as before.
Our metronome is not as sophisticated as to include a priority scheme, but if

it did, no state could show a non-deterministic choice between a high-priority la-
belled transition and a low-priority one. This is stated by the second requirement
in Def. 2

We give two different interpretations to PSA in terms of PTTSes, one that
observe the residual lifetime of the clocks to decide the enabling of a transition,
and the other that observe the spent lifetime.

4.2 Residual Lifetime Semantics

In the residual lifetime semantics, when a clock c is started, its termination
time is sampled according to Distr(c). The clock c is active as long as it does
not reach this termination time. Otherwise we say it is terminated. Therefore,
in this context, a control transition s

C,a−−−→ ρ becomes enabled as soon as all
clocks in C are terminated in the sense above. To carry the time value and the
termination value of a clock, we use valuations. A valuation is a partial function
v from Ck in the set IR≥0 of non-negative real numbers. Let Val be the set of
all valuations, and TVal be the set of all total valuations on Ck, i.e. valuations
such that the underlying function is total.

A state in the semantics is a triple (s, v, e) where s is a control state in
the PSA, v is the time valuation, and e is the enabling valuation: both v and
e are total valuations. Therefore, given a clock c, v(c) registers the time that
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has passed since c was started, and e(c) registers its termination time which was
sampled when it was started. Notice that c is active if v(c) ≤ e(c). The difference

e(c)−v(c) is c’s residual lifetime. As a consequence, a control transition s
C,a−−−→ ρ

is enabled in state (s, v, e) whenever v(c) ≥ e(c) for all clocks in C. This is

denoted by the predicate enabled(s
C,a−−−→ ρ, v, e),

Let R(f1, . . . , fk) be the probability space in the k-dimensional real space
with the unique probability measure induced by the probability distribution
functions f1, . . . , fk. For C = {c1

f1
, . . . , ck

fk
} ⊆ Ck, R(Distr(�C)) denotes the

probability space R(f1, . . . , fk).
Besides, we use the following notation. Given a probability space π and p ∈

[0, 1], p · π is the measurable space obtained by multiplying p to the probability
measure of π. Given a denumerable set of probability spaces πi, i ∈ I,

∑
i∈I πi

is the measurable space obtained by appropriately summing the measures of the
different probability spaces. Given a probability space π and a function f defined
on the domain of π, we take f(π) has being the probability space on the range
of f induced from f [4].

Definition 3. Let PSA = (St,Ck,Distr,Act,−→, s0, C0). Its residual lifetime
semantics is defined by the PTTS [[PSA]]r = (Σ,Act ∪ IR≥0,−→, π0) where:

– Σ
def= St× TVal× TVal

– −→ is defined by the following rules:

enabled(s
C,a−−−→ ρ, v, e)

a ∈ Actu =⇒  ∃b ∈ Actu. a ≺ b ∧ enabled(s
C′′,b−−−−→ ρ′′, v, e)

(s, v, e) a−→
∑

s′ ∈ St
C′ ⊆ Ck

ρ(C ′, s′) · samples′,C′
v,e (R(Distr( �C ′)))

(1)

∀t′. 0 ≤ t′ < t =⇒ ∀a ∈ Actu. ¬enabled(s
C,a−−−→ ρ, v + t′, e)

(s, v, e) t−→ (s, v + t, e)
(2)

– π0
def= samples0,C0

v0,v0
(R(Distr( �C0)))

where

– enabled(s
C,a−−−→ ρ, v, e) def⇐⇒ ∀c ∈ C. v(c) ≥ e(c);

– samples,C
v,e (�t) def= (s, v[�C/0], e[�C/�t]); and

– for all c ∈ Ck, v0(c)
def= 0, (v + t)(c) def= v(c) + t, and v[�C/�t](c) def= �t(i)

whenever there is an index i such that c = �C(i), otherwise v[�C/�t](c) def= v(c).

Rule (1) defines the execution of a control transition s
C,a−−−→ ρ requiring,

therefore, that it is enabled. Notice that if a is an urgent action, it is also nec-
essary to check that no control transition with higher priority is also enabled.
In addition, the postcondition of the concrete transition is a random selection
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of a control state together with the set of clocks to be started and a sample
terminating value for this clocks. Function samples′,C′

v,e takes care of appropri-
ately constructing the next state from a tuple of sampled time values. Note
that samples′,C′

v,e is applied to a probability space on tuples of time values, thus
yielding an induced probability space on states.

Rule (2) controls the passage of time. It states that the system is allowed to
stay in the control state s as long as no urgent action becomes enabled. As a
consequence, maximal progress on urgent action is ensured.

Besides, the initial state is determined by the initial control state together
with a sample of terminating values for C0 (clocks not in C0 are considered to
be terminated).

4.3 Spent Lifetime Semantics

In the spent lifetime semantics it is only important to keep track of the time value
of the clock since its termination time is continuously resampled conditioned to
the time that has passed since it was started. As before, a state is a triple (s, v, e)
but now valuations are partial functions. A clock c is active whenever v is defined
in c and, in this case, v(c) is its spent lifetime. Otherwise we say it is terminated.
e(c) is only defined if c is sampled with the smallest time value among the active
clocks and e(c) is that value (note that this may hold true for several active clocks
c). If time passes or an event occurs, this enabling value is resampled among the
clocks which are still active, and function e changes according to this. Therefore,
in this context, a control transition s

C,a−−−→ ρ becomes enabled at state (s, v, e),

denoted enabled(s
C,a−−−→ ρ, v, e), if every clock in C is either terminated in the

sense above or it has been sampled with value 0 (i.e., e(c) = 0).

Definition 4. Let PSA = (St,Ck,Distr,Act,−→, s0, C0). Its spent lifetime se-
mantics is defined by the PTTS [[PSA]]s = (Σ,Act ∪ IR≥0,−→, π0) where:

– Σ
def= St×Val×Val

– −→ is defined by the following rules:

enabled(s
C,a−−−→ ρ, v, e)

a ∈ Actu =⇒  ∃b ∈ Actu. a ≺ b ∧ enabled(s
C′′,b−−−−→ ρ′′, v, e)

(s, v, e) a−→
∑

s′ ∈ St
C′ ⊆ Ck

ρ(C ′, s′) · PSpace(s′, (v − C)[ �C ′/0])
(3)

∀c ∈ dom(e). 0 ≤ t < e(c) ∀a ∈ Actu. ¬enabled(s
C,a−−−→ ρ, v, e)

(s, v, e) t−→ PSpace(s, v + t)
(4)

∀c ∈ dom(e). 0 ≤ t = e(c) ∀a ∈ Actu. ¬enabled(s
C,a−−−→ ρ, v, e)

(s, v, e) t−→ PSpace(s, (v + t)− dom(e))
(5)
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Notice that in rules (4) and (5), if e = ∅ (and v = ∅ as a consequence) then
the precondition holds by emptiness and then (s, v, ∅) t−→ PSpace(s, v + t) for
any t ∈ IR≥0.

– π0
def= PSpace(s0, ∅[ �C0/0])

where

– enabled(s
C,a−−−→ ρ, v, e) def⇐⇒ ∀c ∈ C ∩ dom(v). c ∈ dom(e) ∧ e(c) = 0;

– PSpace(s, v) def= samples
v(R([Distr(c1) | v(c1)], . . . , [Distr(ck) | v(ck)])) pro-

vided dom(v) = {c1, . . . , ck} with samples
v(t1, . . . , tk) def= (s, v, {cj �→ tj |

tj = mini ti})2; and
– v−C is undefined in C and whenever v is not defined, otherwise it takes the

same values as v.

Rule (3) defines the execution of a control transition s
C,a−−−→ ρ and the hy-

potheses are as before: it must be enabled and if a is urgent, no control transition
with higher priority is also enabled. The postcondition of the concrete transition
is a random selection of a control state together with the set of clocks to be
started and a sample terminating value for these clocks. However, in this case,
the sample is taken for all active clocks and conditioned to the time that has
already passed. Function samples

v takes care of appropriately constructing the
next state ensuring that the enabling valuation e is only defined for the clocks
whose sampled value is minimal among all the sampled values.

Rule (4) and (5) control the passage of time. Rule (4) defines the case in
which no clock has reached its termination instant, while rule (5) considers the
other case. Notice that for both cases it is required that no urgent action becomes
enabled before letting time pass. Observe also that after letting time pass clock
termination times are resampled. Besides, rule (5) ensures that terminated clock
are removed from the domain of the time valuation v.

4.4 A Note on the Difference Between the Two Semantics

As it was already noted, residual lifetime semantics samples the clock termina-
tion time only once, namely, when the clock is started, while the spent lifetime
semantics keeps resampling the termination value of the active clocks. This in-
duces two main technical differences between the interpretations [[PSA]]r and
[[PSA]]s.

A first notorious difference is that timed transitions in [[PSA]]r, i.e. transitions
labelled with a real number, are trivial (namely, of the form σ

t−→ σ′), while this
is not the case in [[PSA]]s. Here, transitions have the form σ

t−→ ρ where ρ is
a probability space representing the resampling of all active clocks conditioned
that t units of time have passed. To notice the difference compare rule (2) in
Def. 3 with rules (4) and (5) in Def. 4.

2 [f | t] is defined by [f | t](t′) def= P (T ≤ t + t′|T ≥ t) where T is a random variable
with distribution f .
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The other difference lies in the form of the state, more precisely, in the val-
uations. Given a state (s, v, e) of [[PSA]]s, dom(v) contains exactly all active
clocks at this state, while dom(e) ⊆ dom(v) contains those clocks that have
been sampled as the clocks next to terminate (which may vary if time passes).
In [[PSA]]r, valuations are total functions. In this case, given (s, v, e), c is active
if e(c)− v(c) ≥ 0, i.e. if the elapsed time since c was activated did not reach the
enabling value. As a consequence, predicate enabled has to be accommodated to
this difference. Also rule (5) has to accommodate the fact that clocks in dom(e)
are terminated.

5 Bisimulations

In this section, bisimulation relations are defined both on the symbolic model and
the concrete model. We use bisimulation as our correctness criteria. At the end of
this section, the relation between the bisimulation on PSA and the bisimulation
on both its semantics is stated.

The definition of the symbolic bisimulation is a straightforward modification
of probabilistic bisimulation [26] in order to fit clocks.

Definition 5. Given a PSA, a relation R ⊆ St×St is a (symbolic) bisimulation
on PSA if the following statements hold:

1. R is an equivalence relation, and

2. whenever 〈s1, s2〉 ∈ R and s1
C′,a−−−−→ ρ1, there is a probability space ρ2 such

that
(a) s2

C′,a−−−−→ ρ2 and
(b) ρ1(S) = ρ2(S) for every equivalence class S ∈ (Ck× St)/RCk induced by

the relation RCk
def= {〈(C, s1), (C, s2)〉 | C ⊆ Ck, 〈s1, s2〉 ∈ R}.

Two control states s1 and s2 are bisimilar, notation s1 ∼ s2, if there is a bisim-
ulation R such that 〈s1, s2〉 ∈ R. Two PSA, PSA1 and PSA2 are bisimilar,
notation PSA1 ∼ PSA2, if C1

0 = C2
0 and s1

0 ∼ s2
0 in the disjoint union of PSA1

and PSA2.

The definition of the concrete bisimulation is a little more involved since it
must deal with continuous probability spaces (see e.g. [36, 11, 4]). In particular,
we follow the definition given in [4]. We first give some necessary definitions.

Let (Ω,F , µ) and (Ω′,F ′, µ′) be two probability spaces. We say that they are
equivalent (notation (Ω,F , µ) ≈ (Ω′,F ′, µ′)) if (a) for all A ∈ F , A∩Ω′ ∈ F ′ and
µ(A) = µ′(A∩Ω′), and (b) for all A′ ∈ F ′, A′ ∩Ω ∈ F and µ′(A′) = µ(A′ ∩Ω).

Given an equivalence relation R on a set Σ and a set I ⊆ Σ, we define the
function ECI,R : I → Σ/R which maps each state σ ∈ I into the corresponding
equivalence class [σ]R in Σ.

Definition 6. Given a PTTS, a relation R ⊆ Σ×Σ is a bisimulation on PTTS
if the following statements hold:
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1. R is an equivalence relation, and
2. whenever 〈σ1, σ2〉 ∈ R and σ1

a−→ π1, there is a probability space π2 such
that
(a) σ2

a−→ π2 and
(b) ECΣ1,R(π1) ≈ ECΣ2,R(π2) where Σi is the sample space of πi.

Two states σ1 and σ2 are bisimilar, notation σ1 ∼ σ2, if there is a bisimulation
R such that 〈σ1, σ2〉 ∈ R. Two PTTS, PTTS1 and PTTS2 are bisimilar, notation
PTTS1 ∼ PTTS2, if ECΣ1,∼(π1

0) ≈ ECΣ2,∼(π2
0) in the disjoint union of PTTS1

and PTTS2.

Symbolic bisimulation on PSAs is preserved by both residual lifetime seman-
tics and spent lifetime semantics in the following sense.

Theorem 1. Given two PSA, PSA1 and PSA2 such that PSA1 ∼ PSA2, then
[[PSA1]]r ∼ [[PSA2]]r and [[PSA1]]s ∼ [[PSA2]]s.

Proof (Sketch). It is routine to prove that if R is a symbolic bisimulation, then
{〈(s1, v, e), (s2, v, e)〉 | 〈s1, s2〉 ∈ R, v ∈ TVal, e ∈ TVal} is a bisimulation in the
residual lifetime semantics, and similarly, changing TVal by Val, for the spent
lifetime semantics. ��

6 Model Embeddings

In this section, three different stochastic formal models are encoded into PSA.
Therefore, PSA is a reasonable framework that captures the characteristics of
each one of them, and hence, this hints that those models are not so distant in
expressiveness. Adequacy of these encodings are also given.

6.1 IGSMP and PSA

In [8, 4], an extension of generalized semi-Markov process [16] is presented in
order to allow for compositional description of concurrent systems.

It considers three different types of transitions: standard action transitions,
representing action execution, clock start transitions, representing the event in
which a clock becomes active, and clock termination transition, representing
the event of clock termination. This is different from PSA in which all these
ingredients are integrated in only one control transition.

Clock start transitions allow for preselection policy, therefore they are also
labelled with a weight. They have the form s1

<c,w>−−−−−→ s2 where c is a clock name
and w ∈ IR>0 is the weight of the transition. Therefore, if there is another clock

start transition s1
<c′,w′>−−−−−−→ s3, the probability of taking the first one is w

w+w′ .

When s1
<c,w>−−−−−→ s2 is performed, the clock c starts and continues its execution

in every state traversed by the IGSMP. Whenever the clock c terminates, the

IGSMP executes a termination transition of the form s′
1

c−
−−→ s′

2. In particular,
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since each active clock c must continue its execution in each state traversed by
the IGSMP, all such states must have an outgoing c− transition. Like in PSA,
simultaneously active clocks in an IGSMP must have different names so that the
event of termination of a clock c− is always related to a start event <c, w> of
the same clock (for some w). IGSMP treats this in a particular manner: clock
names have the form 〈f, i〉 where f is its distribution and i ∈ IN is a number to
differentiate from other clocks 〈f, j〉 with the same distribution function. Besides,
this natural number is used to dynamically name clocks in an ordered fashion.

An IGSMP has four different kind of states:
– silent states, enabling invisible action transitions τ and (possibly) visible ac-

tion transitions only. In such states, the IGSMP performs a non-deterministic
choice among the τ transitions and may interact with the environment
through one of the visible actions but it is not allowed to idle.

– probabilistic states, enabling <c, w> transitions and (possibly) visible action
transitions only. In such states, the IGSMP performs a probabilistic choice
among the clock start transitions and may interact with the environment
through one of the visible actions but it is not allowed to idle.

– timed states, enabling c− transitions and (possibly) visible action transitions
only. In such states, the IGSMP is allowed to idle as long as no active clock
terminates. The clock that terminates first determines the transition to be
performed. Note that IGSMP is defined under the assumption that clocks
cannot terminate at the same instant, therefore, only one clock terminates
before the other ones. While the IGSMP sojourns in these states, it may
interact with the environment through one of the outgoing visible action
transitions.

– waiting states enabling standard visible action transitions only or no transi-
tion at all. In these states, the IGSMP sojourns indefinitely or, at any time,
it may interact with the environment through one of the outgoing visible
action transitions.

Formally, an IGSMP is defined as follows.

Definition 7. An Interactive Generalized Semi-Markov Process is a structure
IGSMP = (St,Ck,Distr,Actd ∪ {τ},−→, s0) where St, s0, Actd, and τ are as in
Def. 1, and

– Ck = PDF× IN is the set of clock names;
– Distr : Ck → PDF assigns a probability distribution function to each clock

such that for all 〈f, i〉 ∈ Ck, Distr(〈f, i〉) = f ; and
– −→ ⊆ St× (Ck+ ∪Ck− ∪Actd ∪ {τ})× St is the control transition relation,

where
• Ck+ = Ck × IR>0 is the set of events indicating the start of a clock;

for <c, w> ∈ Ck+, w gives the weight that determines the probability of
starting clock c; and

• Ck− = {c− | c ∈ Ck} is the set of events denoting the termination of a
clock;

and satisfies
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1. ∀s ∈ St. s
τ−−→ =⇒ ∀θ ∈ Ck+ ∪ Ck− : s

θ−→/
2. ∀s ∈ St. (∃θ ∈ Ck+. s

θ−→) =⇒ ∀c− ∈ Ck−. s
c−
−−→/

3. exists S : St→ 2Ck, the active clock function , such that for all s ∈ St,
(a) S(s0) = ∅
(b) · ∀a ∈ Actd ∪ {τ}. s

a−→ s′ =⇒ S(s′) = S(s)
· ∀<c, w> ∈ Ck+. s

<c,w>−−−−−→ s′ =⇒ S(s′) = S(s) ∪ {c}
· ∀c− ∈ Ck−. s

c−
−−→ s′ =⇒ c− ∈ S(s) ∧ S(s′) = S(s)− {c}

(c) ∀<〈f, i〉, w> ∈ Ck+.

s
<〈f,i〉,w>−−−−−−−→ =⇒ i = min{j | j ∈ IN, 〈f, j〉 ∈ S(s)}

(d) c ∈ S(s) ∧ s
τ−−→/ ∧ (∀θ ∈ Ck+. s

θ−→/ ) =⇒ s
c−
−−→

4. ∀s ∈ St. (∃θ ∈ Ck+. s
θ−→ s′) =⇒ act(s′) ⊆ act(s) (with act(s) = {a ∈

Actd ∪ {τ} | s a−→ })

The constraints over the transitions guarantee that each state in IGSMP
belongs to one of the four kind of states mentioned above. In particular, the
first requirement says that if a state can perform τ actions, it cannot perform
clock starts or clock terminations. Such a property derives from the assumption
of maximal progress. The second requirement, says that if a state can perform
clock start events then it cannot perform clock termination events. Such a prop-
erty derives from the assumption of urgency of delays: clock start events cannot
be delayed but must be performed immediately, hence they prevent the execu-
tion of clock termination transitions. The third requirement checks that clock
starting and termination transitions are consistent with the set of clocks that
should be active in each state. This is done by defining a function S that maps
each state onto the expected set of active clocks. In particular, such a set is
empty in the initial state. The fourth requirement implements the following con-
straint: The unique role of clock start transitions in an IGSMP must be to lead
to a time state where the started clocks are actually executed; therefore, the
execution of such transitions cannot cause new behaviours to be performable by
the IGSMP.

The semantics of IGSMPs has been defined in [4] in terms of the so called in-
teractive stochastic timed transition systems (ISTTS following the spent lifetime
model. Basically, ISTTSs are a particular form of PTTSs. We redefine IGSMPs
semantics in terms of PTTS without altering the original definition3.

Recall that IGSMP is defined under the assumption that clocks cannot ter-
minate at the same time. That is, the probability that two different clocks take
the same value is 0. Let Termk = {(t1, . . . , tk) | ∃i, j.1 ≤ i < j ≤ k∧ ti = tj} and
R(f1, . . . , fk) = (IRk,F , P ). Define R̆(f1, . . . , fk) to be the probability space

(ĬR
k
, F̆ , P̆ ) where,

3 It is straightforward to see that the new semantics preserves bisimulation with re-
spect to the original one in terms of ISTTS.
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Table 1. Semantics of IGSMPs

∃θ ∈ Ck− ∪ Ck+. s
θ−→

(s, v, −) �−→ P (s, v, −)

where P is defined by the following rules

(∃c− ∈ Ck−. s
c−−−→ ) dom(v) = {c1, . . . , ck}

P (s, v, −) def= samples
v(R̆([Distr(c1) | v(c1)], . . . , [Distr(ck) | v(ck)]))

(∃<c, w> ∈ Ck+. s
<c,w>−−−−−→ ) Pr = {(〈c, s′〉, w/TW (s)) | s

c,w−−−→ s′}
P (s, v, −) def=

∑
{w/TW (s) · P (s′, v ∪ {(c, 0)}, −) | s

<c,w>−−−−−→ s′}

with
• TW (s) =

∑
s

<c,w>−−−−−→s′ w

• samples
v(t1, . . . , tk) = (s, v, (cj , tj))

provided tj = min{t1, . . . , tk} and dom(v) = {c1, . . . , ck}

0 ≤ t′ < t

(s, v, (c, t)) t′−−→ (s, v + t′, −)

s
c−−−→ s′ c− ∈ Ck−

(s, v, (c, t)) t−→ (s, (v − {c}) + t, −)

t ≥ 0 ∀θ ∈ Ck− ∪ Ck+. s
θ−→/ s

τ−−→/
(s, ∅, −) t−→ (s, ∅, −)

s
a−→ s′ a ∈ Actd ∪ {τ}

(s, v, −) a−→ (s′, v, −)
s

a−→ s′ a ∈ Actd

(s, v, (c, t)) a−→ (s′, v, −)

1. ĬR
k

= IRk − Termk,
2. F̆ = {E ⊆ ĬR | E ⊆ F}, and
3. P̆ (E) = P (E) for all E ∈ F̆ .

Definition 8. The semantics of IGSMP is defined by the PTTS [[IGSMP]] =
(Σ,Act ∪ IR≥0,−→, π0) where:

– Σ
def= St×Val× ({−} ∪ (Ck× IR>0)),

– Act = Actd ∪Actu with Actu = {τ, �},
– π0(s0, ∅,−) = 1, and
– −→ is defined according to the rules in Table 1.

In addition to the control state s, a state (s, v, (c, t)) contains (i) the set
of active clocks together with its spent lifetimes (represented by the partial
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valuation v), and (ii) a pair (c, t) containing the time value sampled by the
winning clock and the name of this clock. The latter field is set to “−” whenever
active clocks of the IGSMP still have to be sampled. The sampling (s, v,−) �−→
P (s, v,−) leads to states where starting clocks are associated to a spent lifetime
0, active clocks in dom(v) (except those that were re-started) preserve their value,
and the winning clock and its sampled value are indicated. All the work lies on
function P which aggregates probabilities of the preselection policy on clock
start transitions together with the sampling of the values of all active clocks.
To define P two auxiliary functions are required. Function TW : St → IR>0 in
Table 1 computes the overall weight of the clock start transitions leaving a state
of an IGSMP. Function samples

v maps a tuple (t1, . . . , tk) of time values sampled
by active clocks in dom(v) into the corresponding state (s, v, (cj , tj)) where j is
the index of the clock which sampled with the least value.

Notice that, for all states (s, v, e) of any interpretation [[IGSMP]] the following
statements hold,

1. (s, v, e) τ−−→ implies (s, v, e) �−→/ and (s, v, e) t−→/ for any t ∈ IR≥0;
2. (s, v, e) �−→ implies (s, v, e) t−→/ for any t ∈ IR≥0;
3. Either (s, v, e) τ−−→, (s, v, e) �−→, or there is a t ∈ IR>0 such that (s, v, e) t−→

ISTTS considers separately probabilistic transitions and non-deterministic
transitions (the latter are used both for action transitions and time transitions).
We tried to preserve this characteristic. Observe in Table 1 that only transitions
(s, v,−) �−→ P (s, v,−) are not trivial which would correspond to the probabilistic
transition of ISTTS.

An IGSMP can be encoded in terms of a PSA as follows.

Definition 9. Let IGSMP = (St,Ck,Distr,Actd∪{τ},−→, s0). Its interpretation
in terms of PSA is given by PSA(IGSMP) def= (St,Ck,Distr,Act,−→, s0, ∅) where
Act = Actd ∪ Actu; Actu = {τ,−} ∪ {w̄|w ∈ IR>0} with ≺ the least priority
relation satisfying α ≺ τ for every α ∈ Actu−{τ} and − ≺ w̄ for every w ∈ IR>0;
and −→ is defined by the following rules:

s
a−→ s′ a ∈ Actd ∪ {τ}

s
∅,a,∅−−−−→ s′

s
c−
−−→ s′

s
{c},−,∅−−−−−−→ s′

∃<c, w> ∈ Ck+. s
<c,w>−−−−−→

ρ(C, s′) = if (C = {c}) then
∑{w/TW (s) | s <c,w>−−−−−→ s′} else 0

s
∅,TW (s)−−−−−−→ ρ

where TW is as in Table 1.

The encoding is quite simple: each of the three type of transitions in IGSMP
is encoded in a PSA control transition containing the only ingredient it repre-
sents. However, clock start transitions deserve particular attention. Since weights
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determine a probabilistic jumps, all clock start transitions emanating from one
state should be encoded in a unique probabilistic transition. Thus, for instance, if
s0

<c1,1>−−−−−→ s1 and s0
<c2,2>−−−−−→ s2 are the only two clock start transitions leaving

s0, then s0
∅,3−−−→ {〈c1, s1〉 �→ 1

3 , 〈c2, s2〉 �→ 2
3}. Label 3 is kept for compositional

matters. (Weights do not behave in the same way as probability values.) This
will become more apparent in Section 7.1.

The following theorem states the adequacy of the translation of IGSMPs into
PSAs. The notion of bisimulation on IGSMPs has been defined in [4].

Theorem 2. Given IGSMP1 and IGSMP2 the following statements hold:

1. IGSMP1 ∼ IGSMP2 if and only if PSA(IGSMP1) ∼ PSA(IGSMP2).
2. [[PSA(IGSMP1)]]s ∼ [[PSA(IGSMP2)]]s implies [[IGSMP1]] ∼ [[IGSMP2]].

Proof (Sketch).

1. It is routine to prove that the same relation R is a bisimulation on IGSMPs
if and only if it is a bisimulation on their translation.

2. Let R be a bisimulation relation such that [[PSA(IGSMP1)]]s∼ [[PSA(IGSMP2)]]s
Define R′ by

R′ def= {〈(s1, v1,−), (s2, v2,−)〉 | 〈(s1, v1, e), (s2, v2, e
′)〉 ∈ R}

∪ {〈(s1, v1, (c1, t1)), (s2, v2, (c2, t2))〉 |
〈(s1, v1, {c1 �→ t1}), (s2, v2, {c2 �→ t2})〉 ∈ R

∧ ∀i ∈ {1, 2}. ∀c, c′ ∈ dom(vi). vi(c) = vi(c′) =⇒ c = c′}

It can be proved that R′ is a bisimulation. ��
Notice that, although bisimulation is preserved forth and back at symbolic

level, these is not the case at concrete level. The direct interpretation of IGSMP
is weaker in the sense that more states are equated. In fact, the semantics of
IGSMP makes an aggregation of the sampling transitions (those labelled with
�) while this is not present in the semantics of PSA.

6.2 Stochastic Automata and PSA

Another extension to generalized semi-Markov process which allows for composi-
tional description of concurrent systems was introduced in [14, 11]. Rather than
splitting actions, starting clocks, and terminating clocks in three different tran-
sitions, this model includes this three ingredients in only one symbolic transition
just like PSA.

A stochastic automata (SA) [14, 11] is a PSA (St,Ck,Distr,Act,−→, s0, C0)

such that for all s
C,a−−−→ ρ, ρ is a trivial distribution function. Following nomen-

clature in [14, 11], if Actu = ∅, we say that the SA is open, that is, it represents
a system that cooperates with the environment or is intended to be part of a
larger system. If Actd = ∅, the SA is closed, i.e., it represents a system that
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is complete by itself and no external interaction is required. In this last case
there is a flat order in Actu (i.e., actions in Actu cannot be compared with each
other).

As a matter of fact, in its original definition, a control transition in a SA
had the form s

C,a−−−→ s′ and there was a clock resetting function κ that took a
control state and returned the clocks that should be started at the moment of
reaching the state. The translation to this setting is straightforwardly given by

s
C,a,κ(s′)−−−−−−−→ s′. We stick to the definition of SA given above since the difference

does not give any sensible insight.

6.3 Stochastic Bundle Event Structures and PSA

Stochastic bundle event structures (SBES) were introduced in [9, 23]. They
present a true concurrency framework rather than an interleaving one like PSA,
IGSMP, or SA. We also present an encoding of this model in terms of PSA.

We briefly recall the definition of SBESs.

Definition 10. A bundle event structure (BES) is a structure (E,�,�, l, Act)
where E is a set of events, � ⊆ E × E is the asymmetric conflict relation,
�⊆ 2E × E is the bundle relation, and l : E → Act is the action-labelling
function, such that � is irreflexive, and for all X ⊆ E, e ∈ E, if X � e then
for all e′, e′′ ∈ X, e′ = e′′ implies e′� e′′.

A stochastic bundle event structure (SBES) is a triple 〈E ,F ,G〉 where E is a
bundle event structure (E,�,�, l, Act), and F : E → PDF and G : �→ PDF
are two functions that associate distribution functions to events and bundles,
respectively.

Bundle event structures are variation of event structures [37], a well known
causal based model and inherently different to the kind of model we have seen
so far. Bundles indicate cause: if X � e, one event of X must occur before e.
Moreover, e can only occur if exactly one event of each of its bundles have already
occurred. Besides, there are events whose occurrence prevent the occurrence of
other events. This is indicated by the asymmetric conflict relation: if e� e′, then
e cannot occur after e′.

A SBES is a BES decorated with stochastic information indicating the time
in which actions are allowed to occur. Function F indicates that the occurrence
time of an event e since the beginning of the execution is distributed according to
F(e). G(X � e) is the distribution of the time elapsed between the occurrence
of X’s only executed event and e.

In a causal based model such as event structures, executions are not rep-
resented by a total (linear) order such as a trace or a sequence of transitions
(as it is the case in automata based models). In order to represent the inde-
pendence of occurrence of concurrent events, the execution is defined in terms
of partial orders. A partial execution is called a configuration and is defined as
follows.
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Definition 11. Given a BES, a configuration of it is a set Cf ⊆ E such that
there is a strict total order ≺ in Cf where for all e ∈ Cf,
1. X � e implies X ∩ {e′ ∈ Cf | e′ ≺ e} = ∅ (intuitively: every bundle that

causes e was already visited), and
2. for all e′ ≺ e, e� e′ does not hold, i.e. e is not in conflict with its predeces-

sors.

≺ is an order that determines that Cf is a configuration.
We say that a configuration Cf is right before a configuration Cf∪{e} (e /∈ Cf)

if whenever ≺ is an order that determines that Cf is a configuration, ≺ ∪(Cf ×
{e}) determines that Cf ∪ {e} is a configuration.

The notion of “right before” makes it possible to obtain a notion of transition:

Cf
l(e)−−−→ Cf ∪ {e} if Cf is right before Cf ∪ {e}. This notion is central to the

translation of SBES into PSA.

Definition 12. Given SBES = 〈E ,F ,G〉 with E = (E,�,�, l, Act), its inter-
pretation in terms of PSA is given by PSA(SBES)def= (St,Ck,Distr,Act,−→, s0, C0)
where
– St is the set of all configurations in E, with s0 = ∅, the empty configuration;
– Ck = E ∪� with C0 = E;
– Distr = F ∪ G;
– −→ is the least relation satisfying

Cf is right before Cf ∪ {e}
Cg = {e} ∪ {(X, e′) ∈�| e′ = e} Cs = {(X, e′) ∈�| e ∈ X}

Cf
Cg,l(e),Cs−−−−−−−→ Cf ∪ {e}

If Actd = Act and Actu = ∅ we say that the interpretation PSA(SBES) is
open; if Actd = ∅ and Actu = Act, we say it is closed.

The translation is rather simple. Since in a SBES timing is associated to
bundles (with G) and to events (with F), we take Ck = E ∪�. F(e) associates
the distribution of the time elapsed since the system starts. Therefore all “clocks
e ∈ E” are started at initialization, that is, C0 = E. “Clocks in �” indicates time
between two control transitions, then they are set on some control transition.

The control transition is obtained from the same transition of the BES Cf
l(e)−−−→

Cf ∪ {e} which is decorated with the stochastic information obtained from the
SBES. Therefore Cg contains the clocks that enable event e, that is all bundles
that cause it. In addition it contains “clock e” which was set at initialization. On
executing this transition, all bundles caused by e must start counting time. Then
(X, e′) ∈� will start if and only if e ∈ X. Notice that PSA(SBES) is infinite if
SBES is infinite.

Unfortunately, no equivalence relation is actually provided for SBES. We
could imagine that equivalences on event structure can be lifted up to SBES.
In this case, the translation PSA(SBES) would only be adequate for interleaving
based equivalences such as bisimulation relations, since any causal information
is lost in the translation.
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7 Semantics of Stochastic Process Algebras

Stochastic process algebras are extensions of traditional process algebras [21,
31, 2] with some mean of representing stochastic time delay and occasionally
probabilistic jumps. The syntax of a classic (non-stochastic) process algebra is
defined by the following grammar:

P ::= 0 | X | a.P | P + P | P/L | P [φ] | P ||
S

P | rec X.P (6)

where a ∈ Act is an action name, X is a process variable, L, S ⊆ Act − {τ},
φ : (Act− {τ})→ (Act− {τ}).

Intuitively, their interpretation is as follows. 0 is a process that does not do
anything. The prefix a.P first performs the action a and then behaves as P . The
choice P + Q provides the possibility of executing one out of two possible be-
haviours P and Q. Though usually the choice is resolved non-deterministically, it
can also be resolved depending on the stochastic information, which very much
depends on the language choices of every stochastic process algebra. P/L behaves
like P except that actions in L are hidden to the environment. P [φ] behaves like
process P but actions are renamed according to φ. P ||

S
Q defines the parallel

composition. It describes a process that executes P and Q in parallel forcing
synchronization of actions in the set S. Other actions can be executed indepen-
dently of the partner process. rec X.P defines the recursion on the variable X
in the usual way.

In the remaining of this section we give semantics to several stochastic process
algebras in terms of PSA and show that their semantics are equivalent to the
originally given in terms of their original models.

7.1 The Calculus of IGSMP and PSA

The calculus for IGSMP [8, 4] extends traditional process algebra with a prefix
operation that makes it possible to represent stochastic time delay and proba-
bilistic jump. Its full syntax is given by adding the delay prefix <f, w>.P to that
of the classic calculus (6), where w ∈ IR>0 is a weight, and f ∈ PDF is a distri-
bution function. Given <f, w>.P , w determines the probability of actually exe-
cuting this process (this probability depends on the context), and f determines
the probability of the waiting time before executing P in case this process has
been selected to be executed. Therefore, in a process like <f, 1>.P + <g, 2>.Q,
one third of the times the system waits a random time depending on f and then
behaves like P , and the other 2/3, it waits for a random time according to g and
then behaves like Q.

IGSMP semantics has to make possible the distinction of, e.g., the time
event on the left-hand side of || from the one in the right-hand side in process
<f, 1>.0 || <f, 1>.0. The most problematic part is to keep the relation between
start and termination events (i.e. the problem of expressing ST semantics, see
Section 2.5). To do so IGSMP semantics uses a dynamic technique to name
clocks (well-naming rule). When a new f -distributed time event appears, a fresh
name 〈f, i〉 is generated. i ∈ IN is the least index not yet used by other active
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delays with distribution f . Since start events and termination events are repre-
sented in different control transitions, IGSMP requires an additional operator
f−

i .P , which is associated to the termination of a clock meaning that clock 〈f, i〉
should terminate before executing P .

Since the problem of clock naming occurs because of parallel composition, to
define IGSMP semantics, it needs an additional parameter: P ||

S,M
Q extends

the parallel composition with a set M ⊆ Ck × ({ri | i ∈ IN} ∪ {li | i ∈ IN}).
M records the association between the name 〈f, i〉, generated according to the
well naming rule for identifying f at the level of P ||

S,M
Q, and the name 〈f, j〉,

generated according to the well naming rule for identifying f at the level of P
(or Q). In this way, when afterwards such a delay f terminates in P (or Q), the
name 〈f, j〉 can be remapped to the correct name 〈f, i〉 at the level of P ||

S,M
Q

by using the information recorded in M . More precisely, in a tuple (〈f, i〉, lj),
M records that the event 〈f, i〉 in P ||

S,M
Q is actually named 〈f, j〉 in P (“l”

stands for left). In a tuple (〈f, i〉, rj), M records that the event 〈f, i〉 comes from
an event named 〈f, j〉 in Q (“r” is for right). In this context, P ||

S
Q is defined

to be P ||
S,∅ Q.

Let IGSMPsg be the set of all strongly guarded processes defined with this
new operations f−

1 .P and P ||
S,M

Q.
The semantics of this calculus in terms of IGSMP is given in [8, 4]. Its se-

mantics in terms of PSA is as follows.

Definition 13. Let −→ be the least relation satisfying rules in Tables 2, 3,
and 4. The interpretation of an IGSMP process P is given by PSA(P ) def=
(StP ,Ck,Distr,Act,−→, P, ∅) where

– Ck, Distr, Actd and Actu are as in Definitions 7 and 9, and
– StP is the subset of IGSMPsg such that (a) P ∈ StP , and (b) if Q ∈ StP ,

Q
C,a−−−→ ρ and ρ(C ′, Q′) > 0, then Q′ ∈ StP .

Rules in Table 2 are standard in process algebra. Rules in Table 3 define
the clock start transitions. Notice that τ transitions are taken into account in

Table 2. Standard rules for the IGSMP calculus (a ∈ Act ∪ {τ})

a.P
∅,a,∅−−−−→ P

P
∅,a,∅−−−−→ P ′

P + Q
∅,a,∅−−−−→ P ′

Q + P
∅,a,∅−−−−→ P ′

P
∅,a,∅−−−−→ P ′ a ∈ L

P/L
∅,τ,∅−−−−→ P ′/L

P
∅,a,∅−−−−→ P ′ a /∈ L

P/L
∅,a,∅−−−−→ P ′/L

P
∅,a,∅−−−−→ P ′

P [φ]
∅,φ(a),∅−−−−−−→ P ′[φ]

P{rec X.P/X} ∅,a,∅−−−−→ P ′

rec X.P
∅,a,∅−−−−→ P ′

P
∅,a,∅−−−−→ P ′ a /∈ S

P ||S,M Q
∅,a,∅−−−−→ P ′ ||S,M Q

Q ||S,M P
∅,a,∅−−−−→ Q ||S,M P ′

P
∅,a,∅−−−−→ P ′ Q

∅,a,∅−−−−→ Q′ a ∈ S

P ||S,M Q
∅,a,∅−−−−→ P ′ ||S,M Q′
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Table 3. Rules for start moves in the IGSMP calculus

<f, w>.P
∅,w̄,{〈f,1〉}−−−−−−−−→ f−

1 .P

P
∅,w̄−−−→ ρ Q

∅,w̄′
−−−→ ρ′

P + Q
∅,w+w′−−−−−−→ ( w

w+w′ .ρ + w′
w+w′ .ρ

′)

P
∅,w̄−−−→ ρ Q

∅,w̄′
−−−→/ Q

∅,τ−−−→/
P + Q

∅,w̄−−−→ ρ

Q + P
∅,w̄−−−→ ρ

P
∅,w̄−−−→ ρ Q

∅,w̄′
−−−→ ρ′

P ||S,M Q
∅,w+w′−−−−−−→ ( w

w+w′ .ρ ||P,Q

S,M

w′
w+w′ .ρ

′)

P
∅,w̄−−−→ ρ Q

∅,w̄′
−−−→/ Q

∅,τ−−−→/
P ||S,M Q

∅,w−−−→ (ρ ||P,Q

S,M
null)

Q ||S,M P
∅,w−−−→ (null ||Q,P

S,M
ρ)

P
∅,w̄−−−→ ρ ∀a ∈ L. P

∅,a−−−→/
P/L

∅,w̄−−−→ ρ/L

P
∅,w̄−−−→ ρ

P [φ]
∅,w̄−−−→ ρ[φ]

P{rec X.P/X} ∅,w̄−−−→ ρ

rec X.P
∅,w̄−−−→ ρ

where

(ρ ||P,Q

S,M
ρ′)(R) def=

⎧
⎪⎨

⎪⎩

ρ({〈f, i〉}, P ′) if R ≡ ({〈f, n(Mf )〉}, P ′ ||
S,M∪{(〈f,n(Mf )〉,li)} Q)

ρ′({〈f, i〉}, Q′) if R ≡ ({〈f, n(Mf )〉}, P ||
S,M∪{(〈f,n(Mf )〉,ri)} Q′)

0 otherwise

null(P ) def= 0

(ρ/L)(C, Q) def=
{

ρ(C, P ) if Q ≡ P/L
0 otherwise (ρ[φ])(C, Q) def=

{
ρ(C, P ) if Q ≡ P [φ]
0 otherwise

and

Mf = {i ∈ IN | ∃j ∈ IN. ∃d ∈ {rj , lj}. (〈f, i〉, d) ∈ M}
n(Mf ) = min{j ∈ IN | j /∈ Mf}

rules for summation and parallel composition in order to ensure their priority
over delays. A similar consideration is taken in the rule of hiding for actions in
set L. Since weights define a probabilistic choice, clock start transitions need to
be combined appropriately in a summation or a parallel composition. Suppose
the left operand is willing to perform a clock start transition with weight w
and the right operand is willing to perform a clock start transition with weight
w′. Then, the left-hand side processes will be performed with probability w

w+w′

and the right ones, with probability w′
w+w′ . These factors are henceforth used to

construct the new distribution. Besides, the new transition carries the weight
of both operands, that is w + w′. Finally, we address the attention to auxil-
iary function (ρ ||P,Q

S,M
ρ′). Apart from appropriately distributing measures, it has

the duty to extend set M . Notice that M is extended with (〈f, n(Mf )〉, li) (or
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Table 4. Rules for termination moves in the IGSMP calculus

f−
i .P

{〈f,i〉},−,∅−−−−−−−−→ P

P
{〈f,i〉},−,∅−−−−−−−−→ P ′ ∀a ∈ L.P

∅,a−−−→/
P/L

{〈f,i〉},−,∅−−−−−−−−→ P ′/L

P
{〈f,i〉},−,∅−−−−−−−−→ P ′

P [φ]
{〈f,i〉},−,∅−−−−−−−−→ P ′[φ]

P
{〈f,i〉},−,∅−−−−−−−−→ P ′ Q

∅,w̄′
−−−→/ Q

∅,τ−−−→/
P + Q

{〈f,i〉},−,∅−−−−−−−−→ P ′

Q + P
{〈f,i〉},−,∅−−−−−−−−→ P ′

P{rec X.P/X} {〈f,i〉},−,∅−−−−−−−−→ P ′

rec X.P
{〈f,i〉},−,∅−−−−−−−−→ P ′

P
{〈f,i〉},−,∅−−−−−−−−→ P ′ (〈f, j〉, li) ∈ M Q

∅,w̄′
−−−→/ Q

∅,τ−−−→/
P ||S,M Q

{〈f,j〉},−,∅−−−−−−−−→ P ′ ||
S,M−{(〈f,j〉,li)} Q

Q
{〈f,i〉},−,∅−−−−−−−−→ Q′ (〈f, j〉, ri) ∈ M P

∅,w̄′
−−−→/ P

∅,τ−−−→/
P ||S,M Q

{〈f,j〉},−,∅−−−−−−−−→ P ||
S,M−{(〈f,j〉,ri)} Q′

(〈f, n(Mf )〉, ri)) if the left (or right) process performs 〈f, i〉; the term n(Mf ) is
in charge of choosing the least j ∈ IN such that 〈f, j〉 is not yet used in M .

Rules in Table 4 define the clock termination transitions. They also take into
account the priority of τ transitions over delays but, in addition, they take into
account the priority of clock start over clock terminations. In particular, notice
the rules for P ||

S,M
Q. When P terminates clock 〈f, i〉, clock 〈f, j〉 associated to

li in M terminates at the level of the parallel composition (and hence eliminated
from M). A similar mechanism takes place if Q terminates clock 〈f, i〉.

The following theorem states that the semantic of the IGSMP calculus in
terms of PSA is equivalent to the original semantics in terms of IGSMPs.

Theorem 3. For any IGSMP process P , PSA(P ) ∼ PSA(IGSMP(P )), where
IGSMP(P ) is the IGSMP semantics of P as defined in [4].

Proof (Sketch). More precisely, PSA(P ) and PSA(IGSMP(P )) are identical. It
can be proved using structural induction that the identity function is an isomor-
phism. ��

7.2 and PSA

(read “spades”) extends traditional process algebras with two new operations:
one that makes it possible to start a clock and the other that waits for its
termination. ’s full syntax is given by adding the clock setting operation {|C|}P
and the clock triggering operation C �→ P to that of the classic calculus (6),
where C ∈ Ck. Process {|C|}P behaves just like P except that initially it starts
clocks in C and sample their termination value from their respective distribution
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given by function Distr. Process C �→ P waits for all clocks in C to terminate
and then executes P .

Unlike IGSMP, clock naming in is a syntactic issue. Semantic rules assume
terms are already well named. Processes P ||

A
Q and P + Q are well named if

bounded clocks in P (i.e. those clocks in C of a subterm {|C|}P ′ of P ) do not
occur in Q and those bounded in Q do not occur in P . Then {|x|} {x, z} �→
a;0 ||

a {|y|} {y, z} �→ a;0 is well named, while {|x|} {x} �→ a;0 ||a {|x|} {x} �→ a;0
is not. All guarded terms are α-congruent to some well named processes [11].

The semantics of in terms of SA has been defined in [14, 11] and, up to
some minor notational changes, it is the same as the one we give here.

Definition 14. Let κ be the least function satisfying equations in Table 5. Let
−→ be the least relation satisfying rules in Table 6. The semantics of P ∈ is
given by the SA PSA(P ) def= (StP ,Ck,Distr,Act,−→, P, κ(P )) where:

– StP is the subset of such that (a) P ∈ StP , and (b) if Q ∈ StP , Q
Cg,a,Cr−−−−−−→

Q′, then Q′ ∈ StP ;
– Ck and Distr are just like in ; and
– if Actd is the same set as the set of action names, and Actu = ∅ we say

that the semantics is open, if instead Actd = ∅ and Actu is the set of
action names, we say that the semantics is closed

Function κ(P ), given in Table 5, defines the set of clocks that needs to be
started before executing P . For instance, in process {|x|} {x} �→ a; Q, clock x has
to be started in order to wait for it to terminate and then enables the execution
of a. Then, κ({|C|}P ) has to include C and those clocks that are started in P (it
could be that P ≡ {|C ′|}Q for some C ′ and Q). P + Q needs to start all clocks
started by both P and Q and similarly for P ||

A
Q. Function κ is used to define

the clocks to be set in a control transition and to define the clocks to be started
at initialization.

Rules in Table 6 define the control transition. a.P can perform action a
at any moment; therefore it does not wait for any clock to terminate. When
this transition is executed all clocks in κ(P ) are started. C �→ P performs any
activity P does but after all clocks in C are terminated. Notice that {|C|}P
proceeds exactly like P . The behavioural difference lies in the clocks to start at
initialization. Rules for P + Q and P ||

A
Q are quite standard except the rule

for synchronization. In a synchronizing action a ∈ A in P ||
A

Q, both P and
Q should be ready to perform it, so all clocks controlling a in P and all clocks
controlling a in Q have to terminate. Moreover, when the transition is executed
it starts all clocks that P and Q would have started independently.

Rules for the other operators follow the usual definitions. Notice, in partic-
ular, that the hiding operation is hiding to a silent action τ̃ ∈ Act which is not
the same action τ considered as the maximum of Actu in Def. 1. does not
impose maximal progress on the silent step. In this sense, it is not different from
any other action. However, the silent step cannot synchronize and cannot be
renamed.
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Table 5. Clock resetting function in

κ(a.P ) = κ(0) = ∅ κ(P + Q) = κ(P ||S Q) = κ(P ) ∪ κ(Q)

κ({|C|}P ) = κ(P ) ∪ C κ(C �→ P ) = κ(P/L) = κ(P [φ]) = κ(rec X.P ) = κ(P )

Table 6. Rules for

a.P
∅,a,κ(P )−−−−−−→ P

P
Cg,a,Cr−−−−−−→ P ′

{|C|}P
Cg,a,Cr−−−−−−→ P ′

P
Cg,a,Cr−−−−−−→ P ′

C �→ P
C∪Cg,a,Cr−−−−−−−−→ P ′

P
Cg,a,Cr−−−−−−→ P ′

P + Q
Cg,a,Cr−−−−−−→ P ′

Q + P
Cg,a,Cr−−−−−−→ P ′

P
Cg,a,Cr−−−−−−→ P ′ a /∈ S

P ||S Q
Cg,a,Cr−−−−−−→ P ′ ||S Q

Q ||S P
Cg,a,Cr−−−−−−→ Q ||S P ′

P
Cg,a,Cr−−−−−−→ P ′ Q

C′
g,a,C′

r−−−−−−→ Q′ a ∈ S

P ||S Q
Cg∪C′

g,a,Cr∪C′
r−−−−−−−−−−−−→ P ′ ||S Q′

P
Cg,a,Cr−−−−−−→ P ′ a ∈ L

P/L
Cg,τ̃ ,Cr−−−−−−→ P ′/L

P
Cg,a,Cr−−−−−−→ P ′ a /∈ L

P/L
Cg,a,Cr−−−−−−→ P ′/L

P
Cg,a,Cr−−−−−−→ P ′

P [φ]
Cg,φ(a),Cr−−−−−−−−→ P ′[φ]

P{rec X.P/X} Cg,a,Cr−−−−−−→ P ′

rec X.P
Cg,a,Cr−−−−−−→ P ′

7.3 GSPA and PSA

Katoen et al. [9, 23] introduced a generalized stochastic process algebra (GSPA)
and gave semantics to it in terms of SBES. GSPA introduces a stochastic timed
action prefix (f)a.P which replaces the action prefix in the classic calculus (6).
(f)a.P , where f ∈ PDF, executes action a after waiting an amount of time
sampled according to f , and then it behaves like P .

Notice that SBESs do not contain clocks. Instead, distributions are associated
to each causal link (i.e. either bundles or the execution starting time). So clock
naming was not a problem in GSPA’s original semantics. However, since each
execution of an action is considered a different event in this setting, event naming
had to be considered with care [23].

In order to give semantics to GSPA in terms of PSA, we use a static clock
naming technique explained in the following. First, define an auxiliary term
〈f, i〉a.P , with 〈f, i〉 ∈ PDF × IN. This term is a particular clock naming of
the distribution f governing the delay of (f)a.P and it is assigned according
to function π defined in Table 7. More precisely, π is a function that looks for
the set of clocks to be started on arriving to P , activates them and assigns
them a name: given a GSPA process P and a set C of already active clock
names, it returns an appropriately named process P ′ together with the new
set of active clock names (which extends C) and the set of clocks that it has
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activated. Then, if GSPA′ is the set of all terms in this extended syntax, π :
(GSPA′ × 2Ck) → (2Ck × (GSPA′ × 2Ck)). In particular, π((f)a.P, C) returns
process 〈f, i〉a.P provided 〈f, i〉 /∈ C; then C ∪ {〈f, i〉} is the new set of active
clock names and 〈f, i〉 is the only clock that needs to be set on arriving to
〈f, i〉a.P . Compare this with π(〈f, i〉a.P, C) = (∅, (〈f, i〉a.P, C)). Since 〈f, i〉 is a
clock name, no new clock has to be created. Moreover, no clock has to be set on
arriving to 〈f, i〉a.P in this case, since it was already set when 〈f, i〉 was created.
Notice that π defines indeed a static naming: to name clocks for Q in P ||

A
Q or

P + Q, π “looks” how clocks were named on P (first line in Table 7). In fact,
P ||

A
Q and Q ||

A
P have associated different semantics objects (and similarly for

P + Q and Q + P ). This does not happen under a dynamic technique (compare
to IGSMP).

The interpretation of a GSPA process in terms of PSA is given in the follow-
ing.

Definition 15. Let π be the least function satisfying equations in Table 7. Let
−→ be the least relation satisfying rules in Table 8. The semantics of the GSPA
term P in terms of PSA is given by PSA(P ) def= (StP ,Ck,Distr,Act,−→, (P ′, C), C)
where:

– StP ⊆ GSPA′ × Ck such that (a) (P ′, C) ∈ StP , and (b) if (Q, C) ∈ StP ,

(Q, C) Cg,a,Cr−−−−−−→ (Q′, C′), then (Q′, C′) ∈ StP ;

– Ck = PDF× IN is a set of clocks, and Distr is defined by Distr(〈f, i〉) = f ;

– P ′, C, and C are such that π(P, ∅) = (C, (P ′, C)); and

– if Actd is the same set as the set of GSPA action names, and Actu = ∅ we
say that the semantics is open, if instead Actd = ∅ and Actu is the set of
GSPA action names, we say that the semantics is closed

States in PSA(P ) are pairs (Q, C) where Q is an extended GSPA process
and C is the set of active clock names. GSPA does not have preselection policy;
therefore it does not include probabilistic jump and transitions are trivial. Hence
PSA(P ) is a stochastic automata.

Rules in Table 8 define the transition relation. There is no rule for (f)a.P
since clocks are not named. The rule for the auxiliary prefix states that whenever
the system is in control state (〈f, i〉a.P, C) (for any C ∈ Ck), it can perform action
a provided clock 〈f, i〉 has terminated; afterwards, it sets clocks in CP and moves
to (P ′, CP ) where P ′ is the clock named version of P , CP is the new set of active
clocks (notice that 〈f, i〉 was removed from the set of active clocks), and CP

is the set of clocks that becomes active in P ′. For the other operators, rules
are very similar to , except synchronization that needs special care on clock
naming: notice that the set of active clocks for the source of Q transition is the
set of active clocks for the target of P transition (namely, CP ). Besides, like in

the silent step τ̃ ∈ Act is not action τ ∈ Actu. It is only special in the sense
that it cannot synchronize neither be renamed.
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Table 7. Defining the clocks to set and the next state in GSPA

Provided

π(P, C) = (CP , (P ′, CP )) and π(Q, CP ) = (CQ, (Q′, CQ))

we define

π(0, C) = (∅, (0, C))

π((f)a.P, C) = ({〈f, i〉}, (〈f, i〉a.P, C ∪ {〈f, i〉}))
with i = min{j ∈ IN | 〈f, j〉 /∈ C}

π(〈f, i〉a.P, C) = (∅, (〈f, i〉a.P, C))

π(P + Q, C) = (CP ∪ CQ, (P ′ + Q′, CQ))

π(P ||A Q, C) = (CP ∪ CQ, (P ′ ||A Q′, CQ))

π(P/L, C) = (CP , (P ′/L, CP ))

π(P [φ], C) = (CP , (P ′[φ], CP ))

Table 8. Rules for GSPA

π(P, C − {〈f, i〉}) = (CP , (P ′, CP ))

(〈f, i〉a.P, C)
{〈f,i〉},a,CP−−−−−−−−−→ (P ′, CP )

(P, C)
Cg,a,Cr−−−−−−→ (P ′, C′)

(P + Q, C)
Cg,a,Cr−−−−−−→ (P ′, C′)

(Q + P, C)
Cg,a,Cr−−−−−−→ (P ′, C′)

(P, C)
Cg,a,Cr−−−−−−→ (P ′, C′) a /∈ S

(P ||S Q, C)
Cg,a,Cr−−−−−−→ (P ′ ||S Q, C′)

(Q ||S P, C)
Cg,a,Cr−−−−−−→ (Q ||S P ′, C′)

(P, C)
Cg,a,Cr−−−−−−→ (P ′, CP ) (Q, CP )

C′
g,a,C′

r−−−−−−→ (Q′, CQ) a ∈ S

(P ||S Q, C)
Cg∪C′

g,a,Cr∪C′
r−−−−−−−−−−−−→ (P ′ ||S Q′, CQ)

(P, C)
Cg,a,Cr−−−−−−→ (P ′, C′) a ∈ L

(P/L, C)
Cg,τ̃ ,Cr−−−−−−→ (P ′/L, C′)

(P, C)
Cg,a,Cr−−−−−−→ (P ′, C′) a /∈ L

(P/L, C)
Cg,a,Cr−−−−−−→ (P ′/L, C′)

(P, C)
Cg,a,Cr−−−−−−→ (P ′, C′)

(P [φ], C)
Cg,φ(a),Cr−−−−−−−−→ (P ′[φ], C′)

In the following we state that the translation to PSA of the process, or
the translation to PSA of its semantics in terms of SBES is the same up to
bisimulation of its interpretations.
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Theorem 4. Let P be a GSPA process. Then [[PSA(P )]] ∼ [[PSA(ES [[P ]])]] both
in the open and closed interpretation.

The proof of this theorem makes use of the definition of symbolic bisimulation
given in [11]. We omit it here as it requires some technical knowledge of both [23]
and [11]. Nevertheless we observe that bisimulation (as defined in this paper) of
PSA(P ) and PSA(SBES(P )) is not possible as it can be seen in the next example.
Consider the GSPA process P = (f)a.0 ||

a
(g)a.0. Then

1. PSA(P ) initially sets clocks 〈f, 1〉 and 〈g, 1〉 and contains the only transition:

(〈f, 1〉a.0 ||
a 〈g, 1〉a.0, {〈f, 1〉, 〈g, 1〉}) {〈f,1〉,〈g,1〉},a,∅−−−−−−−−−−−→ (0 ||a 0, ∅)

2. According to [23], the interpretation of P in terms of SBES is given by
SBES(P ) where E = {(el, er)}, � = ∅, �= ∅, l(el, er) = a, F(el, er) =
max(f, g), and G = ∅. That is, the synchronization of two events el and er

is given by a new event (el, er) that couples them, and whose time delay
is given by a random variable which is the maximum of the random vari-
ables associated to each synchronizing event. Hence, according to Def. 12,
PSA(SBES(P )) initially sets the only clock (el, er) and has the only transition

∅ {(el,er)},a,∅−−−−−−−−−→ {(el, er)}.
The structures of PSA(P ) and PSA(SBES(P )) are clearly different and not bisim-
ilar. Still, though so different in structure, it is not difficult to notice that their
stochastic behavior is the same: both processes will have to wait some time which
will be the maximum of two values, one sampled according to f , and the other
sampled according to g.

8 Notes and Discussions

Recall that a control transition s
C,a−−−→ ρ in PSA performs four activities:

1. waits for termination of timers, that is, it waits for clock in C to terminate,
hence enabling the transition,

2. executes an action, in this case action a, as part of the transition to a new
state,

3. start timers as part of a probabilistic jump (recall that ρ is a distribution
on 2Ck × St), and

4. probabilistically selects the next state according to the distribution ρ.

Let us analyze how each of this issues are treated by different frameworks in-
cluding those above discussed.

IGSMP and its calculus. The four ingredients are present in this framework.
IGSMP provides three different kind of transitions: one to start a timer, another
to wait for its termination, and the last one to show the execution of an action.
The probabilistic jump is provided together with the start transition, and only
at this level a probabilistic selection is possible. Action transitions are selected
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non-deterministically and termination transitions are selected in the moment
their clocks terminate. In this sense, we could say that start transitions provide
preselection policy, while termination transition provide a race selection policy.

Though the calculus provides the action prefix operation a.P which relates
to action execution, the other three ingredients provided by PSA are gathered in
only one operation: the delay prefix <f, w>.P which is given an ST-like seman-
tics. Still the calculus provides auxiliary separated operations for clock start and
clock termination. This auxiliary operations are used in order to achieve a sound
and complete axiomatization of bisimulation, and to provide an expansion law.

SA and . As transitions in SA are PSA transitions with a trivial probabilistic
jump, the fourth ingredient is missing in this framework. The rest is treated as
in PSA. Therefore SA and do not provide preselection policy.

provides the same three ingredients in three different basic operations:
{|C|}P , C �→ P , and a.P . Again, the separations of concern makes it possible to
achieve a sound and complete axiomatization of the algebra, and to obtain an
expansion law.

SBES and GSPA. Rather than an interleaving model, Katoen et al. decided to
pursue a true concurrency approach dropping, therefore, the idea of having an
expansion law and any sensible axiomatization. Hence, parallel composition is
considered a basic operation. From this viewpoint, there is no need to separate
the different issues in different ingredients. Notice that in SBES clock start and
termination are hidden and associated to bundles that enable events. Similarly,
GSPA provides the clock start and termination, and action execution in only
one prefix operation (f)a.P . Like SA and , this framework does not provide
preselection policy since there is no probabilistic selection.

Strulo’s spades. spades [36, 18] is one of the earliest stochastic process algebras
with generally distributed delays. Its design is such that the process algebra is di-
rectly mapped in the concrete model (similar to our PTTS) and no intermediate
symbolic model is defined. Contrarily to the process algebras discussed above,
spades provides a considerably larger variety of basic operations including four
different prefix operations, a non-deterministic choice and a probabilistic choice
(which allows for preselection policy).

Among the prefix operations, we encounter the action prefix a.P , a sampling
prefix R[t ← f ].P , which samples a value according to distribution f , saves
it in variable t and executes P , and a delay operation (t).P which delays the
amount of time indicated by variable t. This separation of concerns is different
for the one proposed by and IGSMP. Notice that, (t).P involves both start and
termination of a timer, but its sampling is explicitly done in a separate operation
R[t ← f ].P . As a consequence it cannot be encoded in PSA. Besides, the fact
that start and termination of a timer is not separated in different operations
prevents to decompose the parallel composition by means of an expansion law.
So, strictly speaking, parallel composition should also be considered a basic
operation as a general expansion law is not possible in this framework. As a
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consequence, though a large set of sound laws have been given for spades, finding
a complete axiomatization is not easy.

NMSPA. NMSPA [28] has semantics in a particular kind of model that com-
bines both symbolic and concrete views. Probability measures are not explicit.
Rather, it labels the transition with a random variable. Besides, transitions are
also labelled with a non-negative real value indicating passage of time. As a
consequence, the semantic object associated to a process is uncountably large.

Some further remarks. For most of the algebras, a decision was taken to separate
action execution, timer start, and timer termination in different operations. Such
a design choice was made specially to achieve a solid algebraic framework, and
therefore to facilitate the syntactic manipulation of the language. However, at
the moment of modelling a system, the stochastic timed action prefix of GSPA
seems to be enough.

A remark that holds in general is that race policy is present in all the pre-
viously discussed frameworks. In most of them, it can be simply present in a
choice operation. The calculus for IGSMP requires a little of encoding but it is
still present as the underlying model (the IGSMP) allows it.

Other process algebras that we have not explicitly discussed but is worth to
mention are TIPP [17], stochastic π calculus [32], and GSMPA [6], among oth-
ers. The first two were given semantics on infinite symbolic transition systems
(i.e. based on distributions and not on real valued transitions) that required to
carried conditional distribution function in a similar manner that we do in the
spent lifetime semantics. Besides, expansion laws were not possible in these con-
texts. GSMPA can be regarded as a variant of IGSMPs which is based strictly
on ST semantics as IGSMPs, but where names are generated statically (instead
of dynamically) according to syntactic locations of delays w.r.t. to parallel com-
position operators in the algebraic term. Notably in [6] a definition of symbolic
bisimulation equivalence based on clock associations is defined which accounts
for probabilistic choices.

9 Conclusion

We thoroughly discussed the characteristics of stochastic process algebra with
general distributions and presented a unifying setting, namely PSA. We could
map several well known stochastic formal frameworks on PSA and see that their
differences are not that significant. This says that, as far as the methodology
for representing general distributions is concerned, the expressiveness of all the
existing stochastic process algebras and their respective semantic models is basi-
cally the same. That is, stochastic action prefix (like in GSPA) non-deterministic
choice, parallel composition, renaming (and hiding), and recursion constitute a
“core” algebra that will suffice for representing general distributions in concur-
rent systems at, basically, the same expressive level as in all such algebras. The
only one exception is probabilistic choice that turns to be a useful operator and
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is not present in all algebras. It appears in spades and in IGSMP when two
weighted delayed prefixes are involved, e.g., in a choice.

Though residual and spent lifetime semantics were studied in different con-
texts, they are actually orthogonal to the original symbolic model. This is shown
by the fact that PSA can be interpreted under both viewpoints.

Finally, it is worth to mention that the different frameworks were designed
with some different objectives in mind. For instance, the true concurrent ap-
proach of SBES was originally pursued to propose an alternative semantic view
of the cumbersome interleaving models for general distributions of its time. The
design of GSMPA/IGSMP, instead, was strongly based on a conceptual study
of the kind of semantics needed for a process algebra with general distributions,
ending up with ST semantics (see [4]). On the other hand, the design of SA is
related to that of timed automata with the idea that SA could be model checked
at least in a stochastically abstracted setting (see [1, 12, 25]).

We finish with a brief note on open problems. An important development of
the work on stochastic systems would be to understand how to develop an equiv-
alence notion which equates different patterns of generally distributed delays as
follows. In the definition of [31] the internal computations of processes are stan-
dard “τ” actions. In an algebra with generally distributed delays we can see also
a delay as an internal computation (a timed “τ”). Therefore the idea is to ex-
tend the notion of bisimulation in such a way that it can equate, e.g., a sequence
of timed τ with a single timed τ provided that distribution of durations are in
the correct relationship. For example a sequence (or a more complex pattern) of
exponential timed τ could be equated by a phase-type distributed timed τ . It is
worth noting that the possibility of extending the notion of bisimulation in this
way strictly depends on the fact that we can express delays with any duration
distribution (in languages expressing exponential distributions only there is not
such a possibility). This is desirable because it would lead to a significant state
space reduction of semantic models. See [30] for a solution of this problem in the
context of semi-Markov processes, i.e. in the absence of a parallel composition
operator.
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