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Abstract

Partial order reduction has been used to alleviate the
state explosion problem in model checkers for nondeter-
ministic systems. The method relies on exploring only a
fragment of the full state space of a program that is enough
to assess the validity of a property. In this paper, we dis-
cuss partial order reduction for probabilistic programs
represented as Markov decision processes. The technique
we propose preserves probabilistic quantification of reach-
ability properties and is based on partial order reduc-
tion techniques for (non probabilistic) branching tempo-
ral logic. We also show that techniques for (non proba-
bilistic) linear temporal logics are not correct for prob-
abilistic reachability and that in turn our method is not
sufficient for probabilistic CTL. We conjecture that our
reduction technique also preserves mazimum and mini-
mum probabilities of next-free LTL properties.

1. Introduction

Partial order techniques have been successfully used
to tackle the state explosion problem in model check-
ing [20, 8, 16, 7, etc.]. They are based on the obser-
vation that the execution order of concurrent opera-
tions does not usually change the validity of a property.
Hence, fixing a particular order of interleaving opera-
tions helps to reduce the number of states and transi-
tions required to represent the program in the memory
while preserving properties of interest.

The use of partial order techniques has been lim-
ited to the functional analysis of concurrent systems
not including probabilities. Thus reduction algorithms
for reachability analysis [20, 8], LTL and CTL model
checking [16, 7] have been devised. We present, in-
stead, a partial order reduction method for the quantita-
tive analysis of concurrent probabilistic programs. (Con-
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current probabilistic programs are syntactic sugar for
Markov decision processes [17].)

Partial order techniques are based on the selection
of a subset of the operations enabled in each state
that are independent from (i.e. concurrent with) the
other enabled operations. These last operations are re-
moved (or more precisely, not included in the reduced
graph). When the reduction is focused on the analy-
sis of linear properties {e.g. reachability or LTL), any
possible set of operations which is independent of the
rest is candidate to belong to the reduced graph. In-
stead, branching time techniques require a particular
selection of such sets since not all of them preserve the
branching structure of the original graph. Probabilis-
tic programs suffer of a similar problem due to the in-
terplay between non-deterministic branches and prob-
abilistic branches somehow comparable to the inter-
play between existential and universal path quantifica-
tion in CTL [7] or the alternating choices of opponents
in games [10]. We show that the usual constraints for
LTL model checking (adapted to concurrent probabilis-
tic programs) are not correct for quantitative reacha-
bility analysis and give a partial order reduction algo-
rithm that responds to the same constraints of CTL
model checking (adapted to probabilistic programs).

We prove that our algorithm preserves probabilistic
complete forward simulation, a relation that strengthen
probabilistic forward simulation [18] in order to ensure
also preservation of deadlock states. Segala’s execution
correspondence theorem [18] states that probabilistic
forward simulation preserves trace distribution. As a
consequence, our algorithm preserves trace distribu-
tion and hence also mazimum probabilities of reachabil-
ity properties. A variant of the latter theorem for a com-
plete setting (namely, a theorem stating that proba-
bilistic complete forward simulation preserves complete
(i.e. maximal) trace distribution) would imply that
our reductions preserve general quantitative (next-free)
LTL properties. Unfortunately, the authors have no
knowledge of such a result. Nevertheless, we conjec-
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ture its validity and consequently the scope of the cur-
rent reduction scheme for the largest set of quantita-
tive linear time properties one can expect.

Remark that the advantage of partial order reduc-
tion on quantitative model checking goes beyond state
space representation. In order to calculate the proba-
bility of a property it is necessary to solve a linear op-
timization problem [2]. Since each state amounts to a
new variable and each transition to a new inequality in
the system, the reduction of the state space has a di-
rect impact on the size of the optimisation problem.

This article presents the first result on partial order
techniques for quantitative model checking, a discovery
shared with [1] —published also in this volume— that
independently proposed a similar solution.

Related work. Among the non-probabilistic approaches,
our algorithm is closest to that for CTL* in [7]. Both
algorithms share the same type of constraints to de-
fine ample sets and they are basically the same (up to
the consideration of probabilistic branching).

[21] defined a probabilistic variant of Mazurkiewicz
traces. Though we share a similar notion of indepen-
dence (in fact their definition is close to Proposition 1
below), [21] focuses on the language rather than in the
structure of the model. Next, [21] is confined to conflict-
free probabilistic Petri nets which limits the type of sys-
tems one can model (comparing to the richer expres-
siveness of Markov decision processes). Finally, these
Petri-nets rely on weights which can make dynamically
change the probability of a transition.

Quantitative model checking algorithms and tools
have already been devised in the context of concur-
rent probabilistic programs [2, 5, 4, 11, 13, etc.] Quan-
titative model checking for LTL formulas was proposed
in {2, 5]. In particular, [5] presents an automata the-
oretic approach that reduces the property checking
problem to quantitative reachability. This can be com-
bined with the tool RAPTURE [11] which is aimed to the
efficient calculation of quantitative reachability. Our re-
sult could be integrated within this framework.

Organisation of the paper. We start by introducing
concurrent probabilistic programs and the associated
notion of independence of operations, which adapts
the standard notion [6] to a probabilistic setting (Sec-
tion 2). Section 3 discusses the algorithm focusing on
the four constraints that guides the state space explo-
ration to construct a valid reduced program. The cor-
rectness of the algorithm is proved in Section 4. After
discussing some issues about independence, we intro-
duce complete forward simulation and devote the rest
of the section to prove that any reduction that satisfy
those four constraints preserves complete forward sim-
ulation equivalence. Section 5 concludes the paper fo-

cusing on further research. We include there a conjec-
ture of the application of our technique to LTL and a
proof that it cannot be applied in general in a quanti-
tative branching time setting.

2. Concurrent Probabilistic Programs

A (discrete) probability distribution on a set X is a
function g : X — [0,1] such that }° .y p(z) = 1.
Probability distributions range on y, ', pi, v, P, ... The
support set of a distribution p is the set supp(u) =
{r e X |pulx) >0} For AC S, u(A) =3 c4u(z)
(the overloading with u(z) is common).

X4 is the characteristic function on set A defined by
xa(z) = if £ € A then 1 else 0. If A = {a} then we
write y,. Notice that x, is the deterministic (or Dirac)
distribution on a (but x4 is not a distribution in gen-
eral). We use the A-notation to write unnamed func-
tions: the term AZ.e represents the function f such that
f(Z) = e, where e is an expression with variables on Z.

A (concurrent) probabilistic program is a structure
P=(S,ini,L, T) where S is a set of states (ranging on
s,7,¢,s',..) containing the initial state ini; L : S —
§(AP) is a proposition labelling that assigns to each
state, a set of atomic propositions valid on it; and T is
a set of operations (ranging on «, 8, ¢/, ..) s.t. every op-
eration a € T has associated the following elements:

1. ne > 0 is the arity of ¢,

2.ty : S = S™ is a partial function represent-
ing the transition defined by a st. Vs € S :
ta(s)[i} = ta(s)lj] = i =, and

3. pa € (0,1]7=, with 37, po[i] = 1, is the probabil-
ity associated to a.

We let en(s) = {a € T | s € dom(t,)}, for all s € 5. We
write s — u if « € en(s) and for all s’ € S, u(s') =
if (3i:to(s)[i] = ¢') then p,[i] else 0.

Definition 1. A symmetric and reflexive relation D C
T x T is a dependency relation if for all (o, 8) ¢ D, and
s € S the following two conditions hold

l.a€en(s) = (Been(s) <= (Vi:1<i<ny:
B € en(ta(s)[i])))
2. a,f€en(s) => Vi,j:1<i<n,1<j<ng:
ta(ta(s)EDI] = talts(s)IDL]-
The independence relation I is defined by (a,8) €
I < (a,p)¢D.

The independence relation in the usual non-proba-
bilistic setting [6] is related to the existence of “dia-
monds” like the one depicted on the left-hand side of
Figure 1 (which represents the process af|3). It is de-
fined with two properties, so called forward stability

TEEE ':a

COMPUTER
SOCIETY

Proceedings of the First International Conference on the Quantitative Evaluation of Systems (QEST'04)
0-7695-2185-1/04 $ 20.00 IEEE

Authorized licensed use limited to: UNIVERSIDAD CORDOBA. Downloaded on December 2, 2008 at 14:15 from IEEE Xplore. Restrictions apply.



Figure 1. An illustration of independence

and commutativity. Forward stability states that inde-
pendent operations do not disable one another. In a
probabilistic setting this amounts to requiring that an
operation remains enabled in all probabilistic branches
of its independent counterpart. This is stated by prop-
erty 1 in Definition 1. Commutativity states that ex-
changing the execution order of two independent op-
erations from a given state leads to the same state.
A probabilistic operation may lead to more than one
state. The equivalent probabilistic property would then
require that the execution order of two independent
probabilistic operations from a given state leads to the
same state with equal probability. Property 2 in Defini-
tion 1 ensures this, though in a structural manner. (See
Proposition 1 for a pure semantic characterisation of in-
dependence). The right-hand side of Figure 1 shows a
“probabilistic diamond” where both operations a and
B have arity 2 (numbers on the arrow correspond to
the indexes of the probabilistic branches).

Proposition 1 gives a semantic characterisation of in-
dependence.

Proposition 1. Forall (a,8) €  ands €S,

(a) ifs 25 Pthen(s 2+ <= P(dom(t)) = 1) (no-
tice that s € dom(tg) iff B € en(s)); and

(b) ifs -5 P, and s =2 P, then for alls' € S,
Yo Pura)-Pi(s)= Y. Pu(re)- Pi(s)

(ra,B8,P))E(=) (ro,a,PLYE(—)
3. Algorithm

The reduction algorithm simply prunes operations
of the original probabilistic programs. It is hence vi-
tal that the pruned operations do not change the prop-
erties of the systems. Therefore we define the following
notion of invisibility on probabilistic programs:

Definition 2. We say that an operation « is invis-
ible if for all s, a € en(s), and i, 1 < ¢ < ng,
L(s) = L{ta(s)[iD)-

In other words: only operations that change the state
properties of the systems can be observed.

Like usual algorithms for partial order reduction [8,
16, 7], this one is also based on a modified depth-first
search algorithm. Rather than exploring through all en-
abled operations at the current state s, only operations
in the so called ample set of s are used to generate the
SUCCessors.

The algorithm generates a reduced probabilistic pro-
gram Ppreg = (Sred,ini, L, Treq) where S;eq € S is the
subset of states reachable from ini only via operations
in ample sets, and T,.4 contains the same operations
as T only that s € dom(t,) iff @ € amp(s). For each
state s, amp(s) is the ample set associated to s such
that the following restrictions are satisfied:

C1. No operation @ € T — amp(s) that is dependent
on an operation in amp(s) can be executed in the
original graph before an operation from amp(s) is
executed.

C2. For every cycle in the reduced graph, at least for
one state s in the cycle amp(s) = en(s), i.e. s is
fully expanded.

C3. If amp(s) # en(s) then every a € amp(s) is invisi-
ble.

C4. Either amp(s) = en(s) or |amp(s)| = 1.

Condition C1 enforces that any finite sequence of
operations leaving s that does not contain an opera-
tion from amp(s) can be extended with such an oper-
ation. This is the only condition that is concretely re-
lated to the notion of (in)dependence. Condition C2
ensures that enabled independent operations are even-
tually taken. Notice that without C2 there may exist a
cycle on which operation « is enabled on every state s
along the cycle but not in the ample set amp(s). Usu-
ally C2 is strengthened in the algorithm to require that
only the last explored state in the cycle is fully ex-
panded. This allows a much simpler implementation.
C3 ensures that traces that are removed are observa-
tionally equivalent to those that remain.

Conditions C1, C2, and C3 are sufficient to guar-
antee that the reduced program preserves validity of
LTL properties in non-deterministic systems [16]. How-
ever they do not suffice to guarantee preservation of
the measures on probabilistic programs. Take, for ex-
ample, program P depicted in Figure 2.(a)!. There, the
arity of a is 2 and the arity of all other operations is 1.
Take pa[l] = pa[2] = 0.5. © and @ are the only atomic
propositions and they are valid on the indicated states.
Therefore, a, 3, and +y are invisible operations. Accord-
ing to conditions C1-3 both {a} and {3,~} are good
candidates to be amp(ini). Choosing ampini = {3, v}

1 Examplesin Figures 2 and 4 are based on similar examples re-
ported in [15] for non-probabilistic settings.
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Figure 2. (a) Original program (b) Incorrect reduction (c) Correct reduction

leads to the reduced program P’ in Figure 2.(b). No-
tice however that it does not preserve the probability
of reaching ©. The maximum probability of reaching ©
in P is 1 (by choosing first a and then § after branch 1
of a, or - after branch 2 of ). It is instead .5 in P’ (in-
dependently of the choice between 8 and v).

This effect has an analogy with that of branching
time temporal logic. The interplay between nondeter-
minism and probabilism is comparable to that of exis-
tential and universal quantifications of branches. What
we observed in Figure 2.(b) is an early optimising de-
cision that will be jeopardized by a parallel compo-
nent. Notice, instead, that choosing « first postpones
the real nondeterministic decision between 5 and . As
a consequence we adopt condition C4 which ensures
that the interplay between nondeterministic and proba-
bilistic choices is preserved: either the unique nondeter-
ministic choice is safe (and hence |amp(s)| = 1) or all
branching is preserved (amp(s) = en(s)). Figure 2.(c)
shows a reduction that satisfies conditions C1—4.

The algorithm is a slight modification of the one
presented in [7]. Conditions C2—4 are explicitly con-
sidered in the algorithm. Instead, there are static tech-
niques that allow for an efficient checking of C1 [9].

4. Correctness of the Algorithm

In the following, we prove that any reduced program
that satisfies conditions C1-4 is complete forward sim-
ulation equivalent to the original graph. This is stated
in Theorem 3 at the end of the section. Since the algo-
rithm ensures the satisfaction of conditions C1-4 by
the output reduced program, its correctness is hence
guaranteed.

The section is organised as follows. The first part,
which extends until and including Lemma 2, discusses
the behaviour of independence. We define the notion of
forming paths which are executions that preserve condi-
tions C1, C3, and C4, and have the ability to commute
with independent operations. Next, we introduce com-
plete forward simulation which is the aim of the proof.
However the proof is focused on an auxiliary relation R
that contains the necessary structure to link the sim-

ulation relation to the four conditions. In fact, form-
ing paths are the building blocks of R. R relates states
in the original paths with (distributions on) forming
paths that inevitably lead such a state (back) to some
state belonging to the reduced graph.

‘R is constructed inductively using an auxiliary weak
transition =, which is guaranteed to exists due to con-
dition C2 (Lemma 4). After discussing the character-
istics of =>, in Lemmas 3 to 5 and Theorem 1, we
give the formal definition of R and discuss its struc-
ture (Lemma 6 and Theorem 2). Lemma 7 anticipates
in R the simulation relation which is then defined (in
terms of R) and proved in Theorem 3.

A path in a program P is a finite sequence
solay,t1)s1{a2,%2)82 - - Sn_1{Cp,in)sp s.t. for all
0<k<n,ar € en(sk) and Sg4+1 = ta,.+1(3k)[ik+1]-
Notice that, because of determinism on operations?,
the path is uniquely determined by the sequence of op-
erations p = (a1,%1)(@2,%2) - - (@n,in) and its source
state so. Then, we can write so ~» sn. Let alp de-
note that a pair (o,i), with 1 < i < n,, occurs in
sequence p.

A set of operations A satisfies condition C1 in state
s if it satisfies C1 when replacing amp(s) by A. That
is, A is a “C1l-candidate” to be an ample set on s. The
following lemma states that if {a} is a C1-candidate in
s, it remains a Cl-candidate after any other operation
enabled in s was performed.

Lemma 1. Ifa € en(s) such that {a} satisfies condi-
tion C1 from s and o # 3 € en(s), then {a} satisfies C1
fromtg(s)[i] for alll <i < ng.

Proof. By C1, (a,8) € I. By definition of indepen-
dence a € en(tz(s)[i]) for all 1 < ¢ < ng. Any path
that starts with tg(s)[j] (for some j) that invalidates
C1 can be extended by affixing s(8, 7)t3(s)[j] in front
of it. This contradicts the fact that {a} satisfy condi-
tion C1 from s. |

2 Probabilistic programs are non deterministic in the sense that
more than one operation can be enabled in one state, but de-
terministic on operations because different enabled operations
cannot share the same name.
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Figure 3. lllustration of Lemma 2

A forming path is a path so(ai,1)81{q2,92)s2 - 5,
s.t. for all k, 0 < k < n, a4 is invisible and {ax} satis-
fies condition C1 from state sx_.

Notice that a forming path does not only ensure con-
dition C1, but also C3 (o must be invisible) and C4
(it goes only through singleton set).

Forming paths enjoy the property that they can be
replicated after an independent operation is performed.
This is stated in Lemma 2.1 below. Lemma 2.2 is the
variation on which the performed operation is also per-
formed in the forming path. The result of Lemma 2 is
illustrated in Figure 3.

Lemma 2. Ifs S r, with p defining a forming path, and
B € en(s), then

1. =(B{p) implies B € en(r) and for alli,1 <i < ng,
tz(s)[i] s tg(r)[i] with p defining a forming path.
2. Blp implies there exist p1, p2, and j, 1 < j < ng,

such that ~(BLp1), p = p1(B,5)p2, and ts(s)[j] 5
r with p1 p2 defining a forming path.

Proof. 1. By induction on the length of p. For the base
case, p = €. Then s = r and the lemma holds.

So, suppose p = p'(a, 7). Hence, 8 # a and —(8lp').
Then, there is 7’ s.t. s % 7' and t,(r')[j] = r. Clearly,
p' also defines a forming path from s. By induction,
B € en(r') and for all i, 1 < i < ng, tz(s)[i] & t5(r')[i]
with p' defining a forming path.

Because {a} satisfies C1 from r’, using Lemma 1,
{a} satisfies C1 from tg(r’)[i]. Moreover, (o, ) € I.
Hence B € en(r) (since to(r')[j] = r) and for all 4,
1<i<ng, to(ta(r)[iDij] = ta(r)[i]. As a consequence,
tg(s)[s] % tg(r)[i] with p defining a forming path.

2. Follows as a corollary of the previous case. O

Lemmas 1 and 2 as well as the notion of forming
path are borrowed and adapted from [7].

The correctness proof of the algorithm is granted by
finding a (probabilistic weak) complete forward simu-
lation. We first define weak transitions. Next, we de-
fine complete forward simulation and give an intuition
behind it. Finally, we introduce and dive into the cor-
rectness proof.

r 2 7 B is invisible
Vr' € supp(p) : ' == v
r = Pt esupp(u) HT') - Ve

Table 1. Probabilistic weak transition

o
T— i

r== p

Table 1 introduce probabilistic weak transitions.
(The definition style is borrowed from [19].) So r == u
if there is a “probabilistic tree” with root on the start-
ing state r, such that u is the probability of reaching
its “leaves” (i.e. the end states) and the last transi-

tions in this tree are labelled with o. Then r == p iff
(e is invisible and p = x,) or r == p.

The definition of simulation relies on weight func-
tions [14, 12] that take care of appropriately match-
ing the probabilistic transitions. Given a relation R C
X x Y define CrC Dist(X) x Dist(Y) by: px Cr py
iff there is a weight function w: X x Y — [0,1] s.t.

L.VzeX:3 oywi(z,y) = px(z),
2. VyeY: 3, xw(z,y) = py(y), and
3. V(r,y) e X XY :w(z,y) >0 = (z,y) € R.

Definition 3. S is a complete forward simulation if for
all (s,@Q) € S, the following transfer properties hold:
1. s = p; implies

(a) for all r € supp(Q), I, : ¥ == r, and

(b) exists uh € Dist(Dist(Sreq)) with 1 Cs ub,

st Lresupp(@) Q) - r = 2gresupp(uy) H2(Q') - Q.

2. if r € supp(Q) and r =5 p for some a and p, then
s 25 v for some B and v.

We say that two concurrent probabilistic programs
P and P’ with initial states ini and ini’, respectively, are
complete forward simulation equivalent if there are two
simulation relations S and &' such that (ini, ;) € S
and {(ini’, xini) € S'.

This simulation is strictly stronger than the proba-
bilistic forward simulation of [18] in two senses: (i) we
require completeness, i.e. the simulating process stops
only if the simulated one does, and (ii) weak transi-
tions are not convex combination of non deterministic
transitions. Instead it is incomparable to the proba-
bilistic simulation of [12] since (i) probabilistic simula-
tion does not covers completeness, and (ii) it is a re-
lation from states to states rather than from states to
distribution of states.

Forward simulation allows to implement one single
probabilistic operation by several probabilistic opera-
tions. Consider for instance the program P depicted
in Figure 4 (left) together with a reduced program
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P.cq (right) (where a and 8 are invisible operations).
Operation a from ini in P has no direct match in P,.q4.
Our choice is, however, to let P,.4 execute both 8 and o
and relate states in P with distributions on states P,eq-
This leads to pairs (2, P2) and (6, Ps) where P>(1) = 0.9
and P2(3) = 0.1, and Ps(7) = 0.9 and Ps(5) = 0.1.
When P executes operation 8 from, e.g., state 2, Preq
does not perform any operation, but “offers” states 1
and 3 with probabilities 0.9 and 0.1, respectively (which
match to states 1 and 3 in P, resp.). Hence, P, and Ps
record probabilistic choices that have already been re-
solved in P,.q but not yet in P. (It is like an account-
ing of the probabilities that P “owes” to P,.q.) There-
fore, a forward simulation is a subset of S x Dist(S).

Like in (7], forming paths are in the back bone of
our proof. Rather than giving directly a forward simu-
lation between P and P,.q (for any P), we give a rela-
tion R C SxDist((T xIN)* xS) between states in P, and
distributions on pairs of paths (in P) and states in P,.4.
In fact whenever (s, P) is an element on such relation,
and (p,r) is in the support set of P, s % r with p defin-
ing a forming path. Moreover, P(p, r) is the probability
of executing p from s. In our example, we would rather
have the pairs (2, P;) and (6, P}) (instead of (2, P») and
<6a Pﬁ)) where PZI((:B7 1)) 1) = 0.9, P2I((ﬁ1 2)7 3) =01,
P{((8,1),7) = 0.9, and P{((8,2),5) = 0.1 (where the
indexes next to § are the obvious ones). From R, we
then construct the forward simulation § by abstract-
ing the forming paths.

The benefits of defining R is that it records not only
the probabilities “owed” by P but also the operation se-
quence that P “owes” Pr.q (which need not be “paid”
in the same order as long as independence permits.)

The construction of R is inductive with the trans-
fer property of the forward simulation in mind. So let
(p,7) = 1 be defined inductively by rules in Table 2
(p',7') s in the support of p if p’ extends p with a form-
ing path in the reduced program and amp(r') = {a}.
Thus (p,r) =, u is a weak probabilistic transition
that surely leads r to pairs containing states for which
{a} is an ample set and recording the way that each
state is reached. Lemmas 3, 4, and 5, and Theorem 1

W1 a € amp(r)
(p,r) =a X(p,r)
B # a € en(r) # amp(r) = {8}
wy LS5 <ne s (p(8,) o)) =

(p:7) =>a 352, pali] - 1
Table 2. Auxiliary weak transition (to define R)

ensure these properties.

Lemma 3. If (p1,71) =>o p and (p2,72) € supp(p)
then there exists ps s.t. p» = p1ps and ry L3 ro with p3
defining a forming path.

Proof. By induction on the proof tree of =,. The base
case applies to rule W1 and is immediate. For the in-
ductive case, suppose (p2,r2) € supp(z 2. p8lj] - pj)-
Then, there exists ¢, 1 < 72 < ng, s.t. (pg,Tz) € Ui
Notice that i is unique. By induction, there is p3 s.t.
p2 = p1(B,)ps and ta(r)[i] £ ry with ps defining a
forming path. Take p§ = (8,%)ps. Then

1. p2 = p1p3, and

2. r B ry with ph defining a forming path, since
{8} = amp(r;) and therefore it is invisible and
satisfies C1 in ry. 0

Lemma 4. Ifa € en(r) then,Vp: 3u: (p,7) = o b-

Proof. Suppose this is not the case. From W1 o ¢
amp(r). From W2, taking into account Lemma 1,
we deduce that there must be an infinite path r =
ro(an,i1)ri{ag,iz)re--- st. foralli > 0, ay1 #a €
en(r;) # {@iy1} = amp(r;) which contradicts C2. O

Lemma 5. If(p,r) =>4 p and (p',r') € supp(p) then
a € amp(r').

Proof. Straightforward induction on the proof tree. [
The following theorem completes the idea that =,
is well defined. The proof is omitted here.

Theorem 1. If(p,r) =>4 p then (i) 1 is a distribution,
and (it) if v is in the reduced program, for all (p',r') €
supp(u), v’ is a state in the reduced program.

R C S x Dist({T x IN)* x S) is defied to be the least
relation satisfying rules in Table 3. Rule R1 is obvi-
ous. R2 performs the inductive construction. When-
ever (s,P) € R, an operation « enabled in s and a
probabilistic branch i from such operation induce a
new pair in R between the state reached from s af-
ter such probabilistic branch and a probability distri-
bution P} constructed from P as follows.

For every pair (p,r) € supp(P) in which o does
not appear in p, the enabled a’s closest to r are
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R1 sis in the reduced program

(37 X(s,s)) €ER

R2 (s,P)eR
Vc € supp(P) : c = (p,7) :

a € en(s)

1<5< N

Pp = Ecesupp(P) Pe Ve

(m(edp) A c=sa p A vi=po (AP, r").(0 ta(r)E)) ™! A pi = P(c))

=ﬂ£2)

V (=(adpr) A p=pi(a,i)p2 A VE= X(orppr) N Do = 0
V (=(alpr) A p=pi(a,j)p2 A j#i A v.=Az.0 A p. =0)

(ta()la), Pp) ER
Table 3. Rules defining R

found with the weak transition (p,r) =>4 p. For pairs
(o', ") € supp(p), p’ extends p until reaching an en-
abled a € amp(r') (ensured by Lemmas 3 and 5). As
a consequence, operations in the extension are “owed”
to Preq. Operation a through branch i is then real-
ized from 7' and pair (p',t.(r')[i]) added to P5 (us-
ing function (A(p',7").(p",ta(r')[i]))!) with the new
“owed” probability P(p,r)-pu(p',r') (which is the same
35 (B}, 1y Vi) (0Ll i)

If instead (¢, ) occurs in p before any other occur-
rence of , then it is removed (it is “paid back” by the
original program P) and the probability p,[i] is dis-
counted (the new probability is %ﬁ{r)). Notice that in
this case P,.q does not perform any operation.

If the first occurrence of & in p was through a differ-
ent probabilistic branch j, then (p,r) is discarded since
it does not belong to the current run.

Lemma 6 and Theorem 2 ensure that R enjoys the
properties previously described. In particular, Theo-
rem 2 states that R is well defined.

Lemma 6. For all (s, P) € R and (p,r) € supp(P),
s % 7 with p defining a forming path.

Proof. We proceed by induction on the proof tree of
(s, P) € R by case analysis on the proof rules.

Case R1. Obvious.

Case R2. Let (ta(s)i],P) € R and (p,7) €
supp(Pp). Then (p,r) € supp(vi) for some
c=(p',r") € supp(P). Two subcases arises

Subcase —~(alp'). Then, ¢ =, p and exists (p,r") €
supp(p) s.t. 1 = to(r")[i]. By Lemma 3, exists £ s.t.

p=p'€andr L ¢ with £ defining a forming path.
By induction, s I r' with p’ defining a forming path.
Then s % " and p = p'¢ defines a forming path. By
Lemma 2.1, t4(s)[i] % to(r")[i] (i.e. ta(s)[i] & r) and
p defines a forming path.

Subcase alp’. Then, p' = p1(a,i)p2, r =1 and p =
p1p2 with =(alp;). By induction, s £s r with p’ defin-

(p,7) = p

c=(p,7")ANa € amp(r'):
He = pa © (Mi.(p, ta (r)[i])) !
(p,7) = 2c€supp(#) p(c) - pe

Table 4. Aucxiliary weak transition

V¢ € supp(p) :

ing a forming path. By Lemma 2.2, t,(s)[s] % r and p
defines a forming path. O

Theorem 2. If (s, P) € R then (i) P is a distribution,
and (i) if (p,r) € supp(P), r is in the reduced program.

Transition (p,r) =>4 p leads (p,r) to the “thresh-
old” of the execution of a (see Lemma 5). Transition
(p,7) = v (defined in Table 4) has this only one
step further in which «a is executed. By Lemma 3, if
(p,7) =>4 1, there exists v such that (p,r) == v.

Lemma 7 states the characteristics of R and an-
nounce the complete forward simulation relation which
is later defined and proved in Theorem 3.

Lemma 7. If(s,P) € R then
1. s 1 implies
(a) for allc € supp(P), ¢ = (p,r), either
- e i ¢ = pe, or
- 3p1, 02,0 1 ~(adpr) Ap = pr(esi)p2 @ pe =
X(p1p2,r), 014
(b) exzists py € Dist(Dist((T x IN)* X Speq)) withpy Cr
3
s.t. Zcésupp(P) P(C) “He = ZP’esupp(ué) :u‘IZ(P,) i
2. if (p,r) € supp(P) andr == u for some a and p,

thens 2 v for some 8 andv.

Proof. Let (s,P) € R and s —=» u;. Then, by
Lemma 6, for all ¢ € supp(P), ¢ = (p,7), s 4 r with P
defining a forming path.

Since & € en(s), one of the following two cases holds:
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1. =(alp) and hence ¢ € en(r) by Lemma 2.1. By
Lemma 4, there is p, s.t. ¢ =>4 p... Therefore, for
all (p',7') € supp(u,), @ € amp(r') by Lemma 5,
and hence, by WT, ¢ = p, with

pe= 3. Hel(d1") (Pa 0 (i ta(r)) )

(p’,r")Esupp(pl)
(1)

2. alp from which there are p;, p2, and ¢, s.t.
—(alp1), p = p1(a,i)p2, and

He = X(p1p2.1)- (2)

Define gy by ph(Ph) = pali] for all i, 1 < 4 <
Ng, and ph(Q) = 0 otherwise. Let w be defined by
w(ta(s)[i], Pb) = pali] for all i, 1 < i < n,, and
w(z,y) = 0 otherwise. It is easy to check that w is
a weight function which ensures that p; Cg p5.

Now, we calculate

> w(P)-P =) pali] - Pp (Def. of )
i=1

P'esupp(py)
Z i
Dc - Ve

= Zpa [} - (Def. of P)
i=1 c€supp(P)

Define A = {(p',r") € supp(P) | ~(alp’)}, and for all
i,1 < i < na, Bi = {(p/,7") € supp(P) | 3p1,p2 :
“(adpr) Ap' = pr{a,i)p2}.

= 3" palil- (X PO (60 AP, tar D))

c€EA

P(c)
+ § : ) [z] 'X(Plpzn"))
c€Bj, ~(akpy) T O
e=(p1(a,k)pa,r")

(Def. of p, and v})

Ta

= "P(c)- Y _pali]- ST wele ") X et
c€EA =1 (o' ,7")Esupp(ul)
+2 2
i=1 ceB;, ~(alpy)
e=(p1{a,k)pz,v')

Na
=D "P(e) > wele ) D palil X tatrih

P(c)- X(p1p2.7") (Arithmetics)

cEA (o' ;7" )Esupp(pl) i=1
Na
+ Z P(c)- § x5 (c) - X(p1p2,m")
c€(supp(P)—A), ~(alpy) =1

e=(p1(a,k)pz,r")

(Arithmetics and definition of x5, (¢))

Noticethat ¢ € (supp(P)—A)impliesc € B; forsomes.
Moreover, sets B;,1 < i < nq, are pairwise disjoint. As
a consequence, if ¢ € (supp(P)— A),> "2, x8;(c) = 1.

STPE) Y s ) (pao (M ta (P TT)

c€EA (p',7’)Esupp(u)

+ >
c€(supp(P)—A), ~(alpy)

e=(p1(e,k)p2,')
(Arithmetics and previous observation)

P(c) - X(p1p2.7")

:ZP(C)'[LC + Z P(c) - pe
ceA c€(supp(P)—A)
(Properties of p., see (1) and (2))
= Y PO pe
c€supp(P)

This proves the item 1 in the theorem. For the sec-
ond item, by Lemma 6, ensures that for all (s, P) € R

and (p,r) € supp(P), s Sr.lfptes £, v for some
v provided 3 is the first operationin p. If p =€, s =7.
In any case, item 2 holds. (|

Lemma 8 relates the weak transition for pairs of
paths and states defined in Table 2, and the weak tran-
sition for states defined in Table 1. The proof (which
we omit) uses induction on the proof tree of =,.

Lemma 8. If(p,r) = pina (reduced) programP then
r= po (Ao, r)r") L inPe.
Voila! The main theorem:

Theorem 3. P and P,.q are complete forward simula-
tion equivalent.
Proof. Let S = {(s,P o (A\(p,r).7)7Y) | (5,P) € R}.
Since (ini, X(e,ini)) € R, (ini, Xini) € S. In the following,
we show that S is a complete forward simulation.

Let (s,Q) € S and s -%» ;. Then there is (s, P) €
R with Q = P o (A(p,7).r)7!). By Lemma 7.1,
(a) for all ¢ € supp(P), ¢ = (p,r), either

i . :ie== v, or
ii. 3p1,p2,5 : —(adp) Ap = pr{at)pe 2 ve =
X(p1pz2,7)) and
(b) exists v} € Dist(Dist({T x IN)* xS,.q4)) with 11 Cr
v,

s.t. EcEsupp(P) Plc) -ve = EP'esupp(u;) vi(P')- P,

Let r € supp(Q). Then there is p such that (p,r) €
P. If (a)i is the case for (p,r), then r == pu, with
pr = V(pr) © (A(p',7").r") "1 by Lemma 8. If (a)ii is the
case, o must be invisible since p induces a forming path.
Hence r == p, with g, = Xr = v, 0 (A(p',7").r") 7L

Let ph be defined for all Q' € Dist(S) by

#2(Q") = X gr=pro(a(er .-t V2 (F)-

If w is the weight function that determines
u1 Cr vh, let w' be defined by w'(s,Q') =
Y oQi=Pro(A(pry.ey—1 W(s's P'). Notice that w' en-
joys the properties of a weight function for S:
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1. Let s’ € S then
> W(s,Q) =

Q' €Dist(S)

Z Z w(s', P")

Q' EDIst(S) Q'=P'o(M(p’,7').r")"1

= Z w(s', P") = m(s)

P! eDist((TxIN)* x5)

2. Let Q' € Dist(S) then

Z 'LUI(S', Ql) Z Z w(s', P/)

s'€S s’ €S Q=Plo(A(p’,r').r)"1

> D uls', P)
I:PIO()\(pI’rI)J.I)—I s'€S
= > va(P) = p2(Q)

"=Plo(M(p!,r).r") )

]

3. Let w'(s', Q") > 0. Then, w(s', P') > 0 for some P’
such that Q' = P'o(A(p’,r').7") 1. Since {s', P') €
R because w is a weight function, (s’,Q’) € S by
definition of S.

As a consequence py Cg pb. Finally, we calculate:

Eresupp(Q) Q(T) T Hr
= Xresupp(@)

(Po(A(p,r).r) " N() - (Wp,ry © (AP, 7)) )
(Def. of @ and pr)

= (E(p,r)ésupp(P) P(p,r)- V(p,r)) o (A(p/,r")r")!
= (ZP’esupp(v;) llé(P’) ) PI) ° (A(/],vr’)""l)_1
(Def. of R)
= ZP’Gsupp(ué) Ué(P,) . (P, ° ()‘(plvr,)‘rl)_l)
= ZQ'GSUPP(H’IQ)
EQ’:P’O()\(p’,r’).r’)‘l) Vé(Pl) " (PI ° (/\(ply TI)'Tl)'l)
= Yo esupp(uy) H2(Q) - Q' (Def. of 1)

This proves the first transfer property of Definition 3.
Since (s,Q) € S implies that (s,P) € R and Q =
P o (Xp,r).r)"!, the second transfer property follows
immediately by Lemma 7.2. This shows that S is a
complete forward simulation from P to P,eq4.

Since P,.q is a reduction of P, there is an obvious
injective homomorphism from P,.4 to P. Such a mor-
phism defines the other complete forward simulation
(the proof is routine). a

A concurrent probabilistic program P determines a
trace (a standard trace, not a Mazurkiewicz trace) by
collecting the sequence of sets of atomic propositions
L(s) of each state s that is traversed by the execution,
but only up to visibility (i.e. consecutive equal sets are
omitted). A trace distribution is a probability measure
1 on traces. Trace distributions can be retrieved from
P by resolving the nondeterminism, e.g. by using ad-
versaries [22]. Therefore, a probabilistic program P de-
fines a set TD(P) of distributions on traces. (A formal
definition of trace distribution can be found in [18].)

Since complete forward simulation is strictly
stronger than forward simulation which in turns pre-
serves trace distributions [18], we have:

Corollary 1. For all concurrent probabilistic program
P, TD(P) = TD(Pyeq)-

As a consequence the reduction technique proposed
in this paper preserves the maximum probability of
reaching a particular property.

5. Further Discussions

Probabilistic linear temporal logics. De Alfaro showed
that quantitative LTL model checking can be reduced
to a quantitative reachability problem using an au-
tomata theoretic approach [5]. This enables the use
of our technique for LTL model checking. However,
states to be reached are those enclosed within so called
strongly connected stable sets (SCSS) [5]. Unfortu-
nately, finding SCSS may require to construct first the
complete graph (in contrast to obtaining the reduced
graph directly from the model specification). While the
reduction may still be useful to produce smaller linear
optimisation problems, this make our approach less ap-
pealing.

Instead, it would be desirable to avoid the construc-
tion of the complete graph as a whole and to directly
obtain the reduced one from the syntactic specification
of the model as it is done in non-probabilistic partial
order reduction. For this, however, it would be neces-
sary that the reduction algorithm preserves the proba-
bilistic measures of LTL properties.

LTL formulas are only measurable (that is, they only
make sense) in complete trace distributions. (Weak
or stuttering) complete trace distribution equivalence
preserves the maximum and minimum probabilities of
next-free LTL properties (i.e., LTL formulas not includ-
ing the next operator). Corollary 1, which states that
reduction preserves (non-complete) trace distributions,
is a consequence of Segala’s execution correspondence
theorem [18, Ch. 8]. This theorem states that proba-
bilistic forward simulation preserves probabilistic exe-
cutions (but not necessarily complete executions), and
therefore trace distributions. Because of Theorem 3, a
variant of the execution correspondence theorem in a
complete setting would ensure that our reduction pre-
serves complete trace distribution and hence quantita-
tive next-free LTL properties. Unfortunately, the au-
thors are not aware of such a theorem. Nevertheless,
we conjecture its validity and consequently the preser-
vation of next-free LTL properties by the reduction.

Probabilistic branching time analysis. The algorithm we
propose does not suffice to model check probabilistic
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branching time temporal logics. In fact, it cannot be
used even to check the subset of PCTL without existen-
tial modalities nor negations except in front of atomic
propositions.: Formula AF> 9 AF> g © is not satisfied
by the program in Figure 4 (left) but it does by the re-
spective reduced program in Figure 4, right.

The obvious question is then: which is (are) the ex-

tra condition(s) required for partial order reduction on
model checking branching time probabilistic temporal
logics?
About implementations. We have not yet worked in
an actual implementation of the reduction algorithm.
However we expect to obtain reductions comparable to
those for branching time logics (see [7]).

Notice that the approach in this paper is orthogo-

nal to the refinement techniques of [3, 4] for stepwise
approximation of quantitative reachability properties
as well as with bisimulation quotienting. Therefore,
partial order reduction can be incorporated in RAP-
TURE [11] as follows. First apply partial order reduc-
tion to obtain the reduced program, since (i) it relies
on the syntactic structure (to check C1), and (ii) it
on-the-fly constructs the reduced program. Next, re-
finement techniques can be applied in the smaller pro-
gram to successively approximate the actual probabil-
ity value of the property.
Conclusion. We presented a partial order reduction
algorithm for concurrent probabilistic programs. We
stated the correctness of the algorithm by exposing a
complete forward simulation relation from the origi-
nal program to the reduce one. As a consequence, re-
duction preserves maximum probabilities of reachabil-
ity properties.

However, Theorem 3 presents a result significantly
stronger than the needed to ensure upper bounds for
quantitative reachability. We do hope this result can
also ensure preservation of maximum and minimum
probabilities of next-free LTL properties.

A final question that arises after our result is how
could it be applied to other quantitative analysis such
as steady state analysis, and to which extend it can
also be used on the analysis of Markov reward deci-
sion processes {17].
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