
MODEST: A Compositional Modeling
Formalism for Hard and Softly Timed Systems

Henrik Bohnenkamp, Member, IEEE, Pedro R. D’Argenio, Holger Hermanns, and

Joost-Pieter Katoen, Member, IEEE Computer Society

Abstract—This paper presents MODEST (MOdeling and DEscription language for Stochastic Timed systems), a formalism that is

intended to support 1) the modular description of reactive systems’ behavior while covering both 2) functional and 3) nonfunctional

system aspects such as timing and quality-of-service constraints in a single specification. The language contains features such as

simple and structured data types, structuring mechanisms like parallel composition and abstraction, means to control the granularity of

assignments, exception handling, and nondeterministic and random branching and timing. MODEST can be viewed as an overarching

notation for a wide spectrum of models, ranging from labeled transition systems to timed automata (and probabilistic variants thereof),

as well as prominent stochastic processes such as (generalized semi-)Markov chains and decision processes. The paper describes

the design rationales and details of the syntax and semantics.

Index Terms—Modeling formalism, compositionality, formal semantics, timed automata, stochastic processes.

Ç

1 INTRODUCTION

EMBEDDED software development must be supported from

the design phase by formal methods to achieve strong
results on correctness, performance, cost, and efficiency

from the start. Modeling formalisms are needed that are

easily accessible on the one hand and highly expressive on

the other. In this paper, we present the modeling language

MODEST (MOdeling and DEscription language for Stochas-

tic Timed systems), which is a descendant of well-known

process algebras, such as CSP and LOTOS, and which is

capable of expressing not only functional, but real-time-
related, stochastic, and probabilistic aspects of embedded

software in a parsimonious way.
Background and motivation. Embedded software [30], [46]

is omnipresent: It controls telephone switches and satellites,

drives the climate control in our offices, runs pacemakers, is

at the heart of our power plants, and makes our cars and

TVs work. Traditional software has a rather transforma-

tional nature, mapping input data onto output data.

Embedded software is different in many respects. Most

importantly, it is subject to complex and permanent

interactions with its—mostly physical—environment via

sensors and actuators. Typically, software in embedded

systems does not terminate and interaction usually takes

place with multiple concurrent processes at the same time.
Reactions to the stimuli provided by the environment
should be prompt (timeliness or responsiveness), i.e., the
software has to “keep up” with the speed of the processes
with which it interacts. As it executes on devices where
several other activities may go on, nonfunctional properties
such as efficient usage of resources (e.g., power consump-
tion) and robustness are important. High requirements are
put on performance and dependability, since the embedded
nature complicates tuning and maintenance.

Embedded software is an important motivation for the

development of modeling techniques that, on the one hand,

provide an easy migration path for design engineers and,

on the other hand, support the description of quantitative

system aspects. Classical abstractions of software that leave

out “nonfunctional” aspects such as cost, efficiency, and

robustness need to be adapted to current needs. This has

resulted in various extensions of lightweight formal nota-

tions, such as SDL (System Description Language) and the

UML (Unified Modeling Language), and in the develop-

ment of a whole range of more rigorous formalisms based

on, e.g., stochastic process algebras [36], [38] or appropriate

extensions of automata, such as timed automata [4],

probabilistic automata [55] and hybrid automata [3]. Light-

weight notations are typically closer to engineering techni-

ques but lack a formal semantics; rigorous formalisms do

have such formal semantics, but their learning curve is

typically too steep from a practitioner’s perspective and

they mostly have a restricted expressiveness.
The description language MODEST that we propose in

this paper is intended to have a rigorous formal basis
(i.e., semantics) that incorporates several ingredients from
lightweight notations, such as exception handling,1

812 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 32, NO. 10, OCTOBER 2006

. H. Bohnenkamp and J.-P. Katoen are with the Software Modeling and
Verification Group, Informatik 2, University (RWTH) Aachen, 52056
Aachen, Germany. E-mail: {henrik, katoen}@cs.rwth-aachen.de.

. P.R. D’Argenio is with the Computer Science Group, FaMAF, Universidad
Nacional de Córdoba, Ciudad Universitaria, 5000—Cordoba, Argentina.
E-mail: dargenio@famaf.unc.edu.ar.

. H. Hermanns is with the Dependable Systems and Software Group,
Department of Computer Science, Saarland University, 66123
Saarbrucken, Germany. E-mail: hermanns@cs.uni-sb.de.

Manuscript received 11 Feb. 2005; revised 16 Aug. 2006; accepted 21 Aug.
2006; published online 19 Oct. 2006.
Recommended for acceptance by A. Wellings.
For information on obtaining reprints of this article, please send e-mail to:
tse@computer.org, and reference IEEECS Log Number TSE-0036-0205.

1. Exception handling in formal specification languages has received
scant attention. Notable exceptions are e.g., Enhanced-LOTOS [33] and
Esterel [8].

0098-5589/06/$20.00 � 2006 IEEE Published by the IEEE Computer Society

modularization, atomic assignments, iteration, and simple

data types. MODEST is a descendant of classical process

algebras like CSP and LOTOS and shares their composi-

tional structure. Its semantics enables formal analysis and

provides a solid basis for the development of tool support,

whereas the lightweight ingredients are intended to pave

the migration path toward engineers. The first industrial

case studies [9], [11] with our tool environment [10] confirm

that the rigid approach toward the semantics results in

trustworthy analysis results obtained via discrete-event

simulation. Standard simulation environments are risky to

use instead, as they may yield contradictory results even in

simple case studies [17].
Issues of concern. Important rationales behind the devel-

opment of MODEST have been:

. Orthogonality. Timing and probabilistic aspects can
easily be added to (or omitted from) a specification if
these aspects are of (no) relevance.

. Usability. Syntax and language constructs have been
designed to be close to some other commonly used
languages. The syntax resembles that of the pro-
gramming language C and the modeling language
Promela [39]. Data modularization concepts and
exception handling mechanisms have been adopted
from modern object-oriented programming lan-
guages such as Java. Process algebraic constructs
have been strongly influenced by FSP (Finite State
Processes [43]), a simple, elegant language that is
aimed at educational purposes.

. Practical considerations. The design of the language
and the development of accompanying prototypical
tool support have taken place hand in hand. Con-
siderations about the tool handling of language
constructs have been one of the driving forces behind
the language development.

. Expressiveness. Several concepts—all well studied
and widely accepted in the fields of, e.g., computer-
aided verification and concurrency theory—have
been considered:

1. Action nondeterminism is often used in con-
current system design to leave parts of the
description underspecified or to allow different
reactions to stimuli from the embedding envir-
onment and is an appropriate means to reflect
that the order of events in concurrent executions
is out of the control of a modeler.

2. Probabilistic branching is a way to include
quantitative information about the likelihood
of choice alternatives. This is especially useful to
model randomized distributed algorithms (e.g.,
coin flipping), and to represent (randomized)
scheduling strategies.

3. Clocks are a means to represent real time and to
specify the dynamics of a model in relation to a
certain time or time interval.

4. Delay nondeterminism allows one to leave the
precise timing of events unspecified and only
indicate lower and upper bounds on their
occurrence time.

5. Random variables are used to quantify the
likelihood of an event happening after or within
a certain time interval.

While items 1 and 2 affect the dynamics of a model via the
(discrete) set of next events, items 4 and 5 are means to
affect the model dynamics by the (continuous) elapse of
time. Thus, items 1 and 4 describe two distinct types of
nondeterminism, while items 2 and 5 represent distinct
types of probabilistic behavior. It is our belief that each of
these concepts is indispensable when striving for an
integrated consideration of quantitative system aspects
during the entire system design trajectory.

Organization of the paper. Section 2 introduces the
language ingredients of MODEST by presenting a composi-
tional, tongue-in-cheek model of a soccer match. Section 3
defines stochastic timed automata, a model that allows for
the symbolic (i.e., finite) representation of continuous-time
stochastic phenomena. The semantics of MODEST is pre-
sented in two steps: Section 4 presents the syntax of
MODEST and its operational semantics that associates with
each MODEST process a stochastic timed automaton, and
Section 5 presents the formal interpretation of stochastic
timed automata in terms of probabilistic transition systems.
Section 6 shows how some well-known constructs (like
location invariants of timed automata and while-loops) can
be expressed in MODEST. Section 7 discusses the motiva-
tions for the design decisions that have been made while
developing MODEST. Section 8 concludes the paper. This
paper is an extended and revised version of [26].

2 A GENTLE LANGUAGE PRIMER

This section introduces the core language features of
MODEST by modeling an abstract view of a soccer match.
The purpose of this example is to illustrate the main
language concepts of MODEST and give the reader a feeling
for the language. This is the reason to model a well-known,
although nontrivial situation, rather than introduce and
describe an involved technical subject.

Soccer is played by two teams of 11 players each. There is
one ball to play with and a referee who occasionally blows
the whistle and keeps track of the total playing time of
90 minutes. The team with the lowest score at the end of the
match or that has suddenly no players left on the field loses
the match. In the following, the potential evolution of a
soccer match is described using MODEST. The description
heavily uses its compositional features. We distinguish the
teams by the numbers 0 and 1.

To start with, in order to keep track of the score and the
number of players left on the field, two arrays of integers
are introduced in Fig. 1a. The array score has dimension 2.
score½0� (score½1�) equals the number of goals made by
team 0 (team 1). In MODEST, newly introduced integers are
set to zero by default. players½0� (players½1�) is the number of
players of team 0 (1). Both fields are set explicitly to 11, the
initial number of players.

One of the main activities of players during a match is

fouling other players. To describe this behavior, the process

FoulP lay is introduced in Fig. 1b. This process describes

that a team tries to foul players of the other team, but the

BOHNENKAMP ET AL.: MODEST: A COMPOSITIONAL MODELING FORMALISM FOR HARD AND SOFTLY TIMED SYSTEMS 813

time between fouls is uniformly distributed over the

interval [2, 5]. To measure this time, MODEST provides

the concept of clocks, real-valued variables which increase

linearly and continuously with time by a constant rate 1. First,

the clock c is reset to zero, and a random sample from a

uniform distribution function on the interval [2, 5] is drawn

and assigned to the float variable delay. Assignments that

are enclosed in f¼ . . . ¼g are executed atomically. The

conditional constructs whenð�Þ and urgentð�Þ are used to

control the sojourn time of a process in a state. The Boolean

expression in a whenð�Þ construct determines when the

process following the construct is allowed to be executed.

The Boolean expression in an urgentð�Þ construct describes

when, at the latest, the process following the construct is

required to be executed. Since Boolean expressions may refer

to clocks, the evaluation of the expressions might change

over time. In the process FoulP lay, the expressions in the

whenð�Þ and urgentð�Þ constructs are the same: c ¼¼ delay.

This means that as soon as c ¼¼ delay holds, the following

process has to be executed with no further delay. The

process action to be executed is the construct throw foul,

which throws the exception named foul. Exceptions signal

certain exceptional conditions in the execution of the

process. An exception may be caught outside the process

in which it was thrown. Exception handling is discussed

below.
The ball, once possessed by the team with number team,

is kicked away, either toward another player or into the
goal. This is described by the process Pass in Fig. 2. Pass
takes one parameter, the integer team, indicating which
team is currently playing the ball. The ball is kicked away,
as indicated by the action kick, and is either passed to
another player (of the own or the opposing team) or goes
into a goal (of the own or the opposing team). Note that,
due to the absence of when and urgent constructs, the action
kick is not restricted in any way; however, it is also not
required to happen. The interpretation is that it is unspeci-
fied when the action happens, if it happens at all. The four
possible outcomes of the kick action are described by means
of the palt construct, which describes a probabilistic choice
between alternatives. The branching probabilities are
implicitly determined by so-called weights, which are
arithmetic expressions (enclosed by colons) that evaluate
to nonnegative values. The probability of a branch being
chosen is given by the weight of this branch divided by the
sum of the weights of all branches of the palt construct.
Since weight expressions are allowed to refer to variables,

the weights, and therefore, the branching probabilities,
might change during the execution. Let

pall ¼ players½team� þ players½1� team�:

In the example, with probability 0:9 � players½team�=pall,
the ball is passed to a player of the own team (indicated
by action self), with probability 0:9 � players½1� team�=pall
to a player of the opposing team (action other). With
probability 0:1 � players½team�=pall, the ball goes into the
goal of the opposing team, and with probability
0:1 � players½1� team�=pall, in the own goal. The probabil-
ities of where the ball eventually ends up vary according
to the number of players on the field. In particular, the
larger the difference between the number of players of the
two teams gets, the smaller the probability for the smaller
team to keep the ball in possession and to score goals.

The described palt in process Pass is embedded in a do
construct. The do construct has in general two purposes:
expressing nondeterminism between different processes
and restarting itself once a chosen process has terminated.
In the case of process Pass, the do indicates that the
probabilistic choice should be repeated indefinitely. This
infinite behavior is aborted when a break construct is
executed. Execution continues then with the process
following the do construct (if any). In our example, this
occurs whenever either the ball is lost to the other team or a
goal is scored.

A team can only pass if it possesses the ball. This is
described by the process Play in Fig. 3a: Whenever action
gotBall is executed, process Pass is invoked. Subsequently,
process Play is invoked recursively. In addition to the do
construct, MODEST, therefore, also allow (tail-)recursion to
specify infinite behavior of a process. Whether to choose
recursion or the do construct is up to the user.

The behavior of a complete team can be described now
as the parallel composition of two processes, as done in
process Team (Fig. 3b): the process Play describing the
handling of the ball, and the process FoulP lay describing
the fouling of the other team. Using parallel composition to
describe the behavior of a team is justified, since usually
only one player can be in possession of the ball, whereas the
others can still foul each other.

The two teams on the soccer field behave basically the
same. However, slight differences in behavior, caused in
essence by the fact that both teams play against each other,
make it necessary to specialize the process Team in two

814 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 32, NO. 10, OCTOBER 2006

Fig. 1. (a) Variable declarations and (b) process FoulP lay.

Fig. 2. Process Pass.

different ways, resulting in processes Team0 and Team1.

These two processes are defined in Figs. 3c and 3d.
The differences between Team0, Team1, and Team are

the following:

1. Some actions are hidden, i.e., they are renamed to
the internal action � . This is the case for actions kick,
self , and goal in processes Team0 and Team1. The
action � is invisible to other (parallel) components
and, thus, cannot be used for synchronization.

2. In both processes, actions are relabeled: In case of
Team0, action other is renamed into 0to1, and
gotBall into 1to0. Similarly, in Team1, other is
renamed into 1to0, and gotBall into 0to1. The
exception foul is renamed into foul0 and foul1,
respectively.

Both processes Team0 and Team1 can now be put

together to describe a complete match as defined by the

process Match in Fig. 4a. The processes Team0 and Team1

are put in parallel inside a par construct. Both processes run

independently from each other but are synchronizing on

actions with the same name. In the cases of Team0 and

Team1, these actions are 0to1 and 1to0. This explains why

action other in process Team0 and action gotBall in Team1

have been renamed to 0to1: Both processes synchronize on

these actions and model the passing of the ball from team 0

to team 1. The same holds for the opposite direction.
The parallel composition forms the try-block of the

enclosing try=catch construct, which handles exceptions.

Exceptions can be caught by an exception handler, which is

introduced by the keyword catch. In the given example,

there are two exception handlers: one for exception foul0,

the other for foul1. In both handlers, the number of players

of the respective opposite team is decremented by one and

the Match process is restarted. Note that, in the given
specification, Team0 always gets the ball first since Team1
is started unconditionally with action other. This is a simple
way of avoiding both teams waiting for their opponent to
pass the ball, although neither of them possesses it.

The process Match describes a soccer match already to a
certain degree; however, two things have to be taken care
of: First, process Match describes a never-ending match.
Second, it is possible for a team to have a negative number
of players. Both aspects are unrealistic. To address these
situations, a process Referee is introduced (Fig. 4b), mon-
itoring the time that has passed so far. It also ensures that
there is always a nonnegative number of players of both
teams on the field. This is again done by means of
exceptions: Exception gameover is raised when 90 minutes
have passed, whereas exception noplayers is thrown if a
team has lost all its players. In our example, the use of the
urgentðÞ construct guarantees that the match is ended as
soon as one of these conditions hold. The first condition
depends on time, i.e., the valuation of the clock variable x
which changes over time. The second condition depends on
data, i.e., the valuation of the array players. Note that, in the
first case, even though the urgency condition allows x � 90,
the exception is thrown exactly at time 90. This is because
the earliest time where an urgency constraint becomes true
is the latest time where the subsequent process (in this case,
throw gameover) can, and therefore must, be executed.
Thus, in this case, the constraint x � 90 is equivalent to
x ¼¼ 90.

Finally, the complete specification of the soccer match, as
given in Fig. 4c, is a parallel composition of the processes
Referee and Match, nested inside a try-catch construct to
take care of the exceptions noplayers and gameover. If no
players are left, the game simply stops. In the case that the

BOHNENKAMP ET AL.: MODEST: A COMPOSITIONAL MODELING FORMALISM FOR HARD AND SOFTLY TIMED SYSTEMS 815

Fig. 3. Process Play and process Team.

Fig. 4. Processes Match, Referee, and the main loop.

game is played to its end, the remaining players exchange
their shirts.

3 STOCHASTIC TIMED AUTOMATA

The semantics of MODEST is defined using an operational
model which is based on timed automata [4], [13], a well-
studied and tool-supported symbolic model for real-time
systems, and stochastic automata [21], [27]. Timed
automata extend labeled transition systems with 1) clocks
to measure time elapsed, 2) guards (that possibly refer to
clocks) to specify when an action is enabled, and 3)
urgency constraints to force actions to happen at some
ultimate time instant. As timed automata do not have
means to support probabilistic branching, such mechan-
isms have to be incorporated for our purposes. To
accommodate random delays, samples from probability
distributions can be assigned to variables. By comparing
clocks to such variables, actions can be delayed by a
random amount of time. This section defines the opera-
tional model, called stochastic timed automata, and justifies
the main differences with some existing models. We start
by defining expressions and assignments. We distinguish
the following syntactic categories:

1. Var is the set of (typed) variables ranged over by x, y,
and z. It is sometimes convenient to distinguish the
subset Ck � V ar of clock variables, i.e., the variables
of type clock that are used to measure the elapsing of
time.

2. Exp is the set of expressions containing variables (in
Var). It is ranged over by e. We distinguish the
following subcategories of expressions:

. Sxp � Exp is the set of sampling expressions of the
form sampleðF Þ, with the intended meaning that
it samples a value for a distinguished (random)
variable � =2Var according to distribution F .
Formally, F is a function on � (and possibly
variables in Var) such that for every instance of
variables in Var, F is a distribution function on
�. For example, if x is a variable and

Fxð�Þ ¼
0 if � < x;
ð� � xÞ=3 if � 2 ½x; xþ 3�;
1 if � > xþ 3;

8<
:

then sampleðFxÞ samples a random value uni-
formly distributed in the interval ½x; xþ 3�.

. Bxp � Exp is the set of Boolean expressions,
ranged over by b, d, and g. These expressions
do not contain sampling expressions. For exam-
ple, expression players½0�¼¼0 _ players½1�¼¼0 is
a Boolean expression.

. Axp � Exp is the set of arithmetic expressions,
ranged over by w. These expressions do not
contain sampling expressions. An example of an
arithmetic expression is ðteamþ 1Þ%2.

3. Asgn is the set of assignments ranged over by A. An
assignment is a (type respecting) partial function that
maps variables onto expressions (in Exp). Through-
out the paper, we use the simultaneous assignment

notation f¼ x1 ¼ e1: . . . ; xn ¼ en ¼g, where all xi are
different. Formally, it denotes the unique assignment
A 2 Asgn defined by AðxiÞ ¼ ei (for 0 < i � n), and
undefined otherwise. Other (more involved) ways to
represent assignments are discussed in Section 7. For
instance, the assignment that appears in the soccer ex-
ample, f¼ score½team�þ ¼ 1; players½team�� ¼ 1 ¼g
(in particular, score½team�þ ¼ 1 is a shorthand for
score½team� ¼ score½team� þ 1).

4. Act is a set of action names ranged over by a.

Variables, assignments, and expressions serve the usual
purpose. Variables may occur in expressions and evalua-
tions of expressions may be assigned to them. Sample
expressions are used to draw samples from distributions
and are used to model random delays. For modeling
convenience, some standard probability distribution func-
tions such as EXPðrateÞ and NORMALðavr; dev stndrÞ are
supported. For instance, UNIFORMðx; xþ 3Þ is a shorthand
for sampleðFxÞ with Fx as above. Boolean expressions are
used in guards and urgency constraints. Actions play the
same role as in labeled transition systems.

The model. A stochastic timed automaton consists of
control states, called locations, that are connected by edges.
For ease of understanding, let us first assume that there is
no probabilistic branching. In this simple case, edges are
labeled by four attributes:

1. an action a to be performed,
2. a guard g specifying when the edge is enabled,
3. an urgency constraint d specifying when the edge

ultimately must be executed (if at all), and
4. a set A of assignments to be carried out atomically.

The edge �!a;g;d;A
in location s is enabled whenever the system

is in control state s and guard g holds given the current

values of the variables—including the clocks. If, in addition,

urgency constraint d holds, then the system is obliged to

take the edge �!a;g;d;A
before time progresses. Thus, time may

progress in location s as long as no urgency constraint of

one of its outgoing edges holds. On “executing” s �!a;g;d;A
s0,

action a is performed, the assignments in A are carried out

atomically, and the system moves to control state s0. Note

that, by means of this mechanism, variables may be tested

(in a guard) and updated (in an assignment) in a single

atomic step. This test-and-set mechanism is, for instance,

useful for modeling locks and semaphores (see, e.g., [7,

p. 43]). Notice also that no special condition is imposed on

deadlines (as opposed to timed automata with deadlines

[13], where the deadline d is required to imply guard g) in

case a time-lock occurs if d holds but no guard (in particular

g) leaving control state s is true.2

In order to deal with probabilistic branching, the

situation is somewhat more complicated. The target of an

edge is not just a location anymore, but rather a probability

distribution over locations or, more precisely, a probability

816 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 32, NO. 10, OCTOBER 2006

2. A time-lock or time-deadlock is a situation in which time cannot progress
and no action can be executed either. This means that the lifetime of the
modeled system has reached its end. Time-lock is normally an error in the
(model of the) system, and is usually catastrophic in safety critical systems.

distribution over pairs hA; si of assignments and locations.

This is because different probabilistic branches may trigger

different assignments and successor control states in one

edge. The actual probability for each such pair is deter-

mined by weights. Suppose s can either move to control

state s0 (with weight w0) or to s00 (with weight w00), where

s0 6¼ s00, while performing assignment A0 and A00, respec-

tively. If weights w0 and w00 are just constants, the

probability to “move” to hA0; s0i equals w0

w0þw00 , and the

probability to move to hA00; s00i is w00

w0þw00 . In this case, the

likelihoods can be determined easily. As we support

weights that are expressions containing variables—possibly

even clocks—the situation is a bit more complicated. Rather

than working with constant weights, weight expressions are

used. Intuitively speaking, these are a kind of symbolic

probability distribution over pairs of assignments and

(target) control states. On taking the edge s �!a;g;d W, where

W is a weight expression, the system moves to control

state s0 assigning values according to assignment A0 with a

probability that is determined by WðhA0; s0iÞ. For the above

example with two possible successor control states, this

probability is vðw0Þ
vðw0Þþvðw00Þ for control state s0 (and similar for

s00), where vðwÞ denotes the value of w after instantiating the

variables occurring in w given the current variable valua-

tion v, i.e., the valuation in control state s (see Section 5 for

the formal definition). In the following, Wxp denotes the set

of all weight expressions (on pairs of assignments and

control states) and let W, W0, W1, . . . range over Wxp.

Formally, a weight expression W is a mapping from an

assignment and a control state onto an arithmetic expres-

sion (in Axp) and it only makes sense in valuation v if

vðWðA; sÞÞ � 0 for all A and s, and vðWðA; sÞÞ > 0 for some

A and s. Notice the difference between “weight expres-

sions” and “weights.” The former is a function W that,

when applied to a pair, ðA; sÞ returns a weight w (i.e., an

arithmetic expression) such that w ¼ WðA; sÞ.
Since a weight expression is a symbolic form of a

measure, we extend weight expressions to range over sets
and products in the same way measures would do. We lift a
weight expression W to any set B 2 Asgn	 Loc of pairs of
assignments and locations byWðBÞ ¼

P
ðA;sÞ2BWðA; sÞ. The

product of two weight expressionsW1 andW2 is defined by

ðW1 	W2ÞðhA1; s1i; hA2; s2iÞ ¼ W1ðA1; s1Þ � W2ðA2; s2Þ;

for all assignments A1 and A2 and locations s1 and s2. We
lift ðW1 	W2Þ to sets of pairs, just like we did for weight
expressions.

Definition 1. A stochastic timed automaton (STA, for short)
is a triple (Loc, Act, !Þ, where Loc is a set of locations and
!� Loc	 ðAct	 Bxp	 BxpÞ 	Wxp is the edge relation.

Example 1. Fig. 5 depicts a stochastic timed automaton
representing the behavior of process Playð0Þ of the
soccer example. It contains seven locations. The auto-
maton has a distinguished initial location indicated by an
incoming arrow without source. Empty assignments,
true guards, and false urgency constraints are omitted

from edges. Most edges lead to trivial weight expres-
sions, where only one pair of assignment and location
gets probability 1 assigned. On the occurrence of action
kick, a probabilistic choice appears with four branches,
indicated by the arc connecting the weighted alternatives
of assignments and locations. For the time being, ignore
assignments to variable tPlay and assume it has value 0 all
along the figure. Later we explain the precise STA for
Playð0Þ that is obtained by means of the formal
semantics given in Section 4.2 (see Example 2); then,
the use of tPlay will be apparent.

It is worthwhile to emphasize that STA provides a
symbolic framework to represent stochastic timed (and
real-time) behavior in much the same way as timed
automata represent real-time behavior in a symbolic
manner. Whereas the semantics of timed automata is
typically described by (infinite) timed transition systems,
the interpretation of a stochastic timed automaton is
defined in terms of (infinite) timed probabilistic transition
systems. This is further explained in Section 5. In
particular, this second level of semantics defines exactly
what the (probabilistic) interpretation of sampling is and
how weight expressions are interpreted probabilistically.
As a second remark, we would like to emphasize that
STA have been developed to provide semantics to
MODEST. These automata are closed under all operators
of the language, most notably, parallel composition (with
synchronization).

4 FORMAL DEFINITION OF MODEST

In the following, we define the language MODEST. We first
introduce the formal syntax (Section 4.1) and briefly discuss
the behavior of several language constructs, in particular,
those not so commonly seen. The semantics of the language
is given in two steps. We first give a structural operational
semantics that maps a MODEST term onto an STA
(Section 4.2). This STA gives a symbolic semantics, in the
sense that actual states and actual probabilistic transitions
are abstracted with variables, assignments, and expressions
perhaps containing sample expressions. The concrete
semantics of that MODEST term is then the interpretation
of the derived STA in terms of probabilistic transition systems,
which will be considered in Section 5.

BOHNENKAMP ET AL.: MODEST: A COMPOSITIONAL MODELING FORMALISM FOR HARD AND SOFTLY TIMED SYSTEMS 817

Fig. 5. Stochastic timed automaton representing the behavior of Playð0Þ.

When designing MODEST, we made many decisions in
choosing the form of MODEST operations. We mostly omit
discussion of these decisions in this section and postpone it
until Section 7.

4.1 Syntax

This section formally defines the syntax of MODEST. We
assume that the set of actions Act is partitioned into a set
PAct of patient actions, a set IAct of impatient actions, a set
Excp of exception names, the unhandled error action ?, the
break action [, and the unobservable (or silent) action � .
A patient action is an action that, when it intends to
synchronize, will wait for its synchronizing partner,
disregarding its urgency requirements until synchroniza-
tion is possible. An impatient action, on the contrary, is not
willing to wait for its synchronizing partner and, if its
urgency condition becomes true, it will not let time
progress. This may cause a time-lock situation. The
difference between patient and impatient actions becomes
clear when defining the semantics of parallel composition.
Exception names are distinguished actions that are used for
raising exceptions. Action [is used to break out of a loop,
and � is the unobservable action that is standard in most
process calculi to model internal computations.

We distinguish processes and process behaviors. A
process is defined by

process ProcNameðt1 x1; . . . ; tk xkÞ fdcl Pg;

where xi2Var ð0 < i � kÞ are different variables, each ti is
the type of xi, dcl is a sequence of declarations possibly
including process definitions, ProcName is a process
name, and P is a process behavior. For convenience, we
will not dwell upon the syntax of declarations and write
process ProcNameðx1; . . . ; xkÞfPg instead in the following.

Process behaviors are defined as follows: Let wi 2 Axp,
ei 2 Exp (for 0 < i � k), b 2 Bxp, and asgni be an assign-
ment of the form f¼ x1 ¼ e1; . . . ; xn ¼ en ¼g. Furthermore,
let act 2 PAct [IAct [f�g be an action as in standard
process calculi (i.e., neither an exception, nor [, nor the
unhandled error ?), H � PAct [IAct be a set of observable
actions, and excp, excpi 2 Excp be exception names (for
0 < i � k). Finally, let I and G be vectors of equal length
which have elements in Actnf[;?g such that all elements in
I are pairwise different and not equal to � . The intention is
that the mapping IðjÞ 7! GðjÞ, for 0 � j < #I, defines a
relabeling function.

A process behavior P is constructed according to the
grammar given in Fig. 6.

4.2 Operational Semantics

The operational semantics of behavior P is defined in terms
of the stochastic timed automaton (Loc, Act,!), where Act
is the set of actions occurring in P , Loc is the set of
behaviors that are derivable from P—locations are thus
MODEST terms—using the edge relation ! , and ! is the
smallest relation that is defined by the inference rules
defined in the remainder of this section. Inference rules are
given following the structured operational semantics style
(SOS) in which the semantic of an operation is defined in
terms of the semantics of its operands (see, e.g., [53], [54]).

Let DðA; sÞ denote the deterministic weight expression
defined by DðA; sÞðA; sÞ ¼ 1 and DðA; sÞðA0; s0Þ ¼ 0 for all
ðA0; s0Þ 6¼ ðA; sÞ. Intuitively speaking, the assignments A and
target location s are chosen with probability 1.

Basic processes. Behavior stop does not perform any
activity and, thus, does not produce any transition.

abort is a process that indicates an unhandled error by
persistent executions of action ?. No assignments are
executed. Its inference rule reads

abort �!?;tt;ff Dð
; abortÞ:

Action ? is always enabled, as the guard is true, and is not
forced to occur at any time, as the urgency constraint is
false. We recall that assignments are partial functions and,
hence, here, ; means the empty assignment (no variable
changes its value).

break can perform the break action [without restriction
and then successfully terminates. We use the symbol

p
to

denote the successfully terminated process. Like stop, this
process (which cannot be specified syntactically) does not
have any transition, but it is used in other inference rules to
distinguish successfully terminated processes from non-
terminated ones. The inference rule for break reads

break �!b;tt;ff Dð
;pÞ:

Process act performs action act with no restriction and then
successfully terminates. No assignments are executed:

act �!act;tt;ff Dð
;pÞ:

Actions indicate a particular activity a process intends to
perform. If the action act is visible, it may be used for
synchronization purposes.

Conditions. whenðbÞ P restricts the first activity of P to
be performed only whenever b holds. As a consequence,
guards from every edge leaving location P are strength-
ened with b:

P �!a;g;d W

whenðbÞ P �!a;b^g;dW
:

Recall that W denotes a weight expression, i.e., a “sym-
bolic” probability distribution.

urgentðbÞ P enforces the first activity of P to be urgent
whenever b holds. It imposes an extra urgency constraint b

818 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 32, NO. 10, OCTOBER 2006

Fig. 6. Grammar of MODEST.

on the initial step of P . So, if d is the urgency constraint of
an edge leaving P , the new urgency constraint is d _ b, i.e.,
either the transition becomes urgent because it was required
to become urgent in P , or because of the new requirement b.
The inference rule reads

P �!a;g;d W

urgentðbÞ P �!a;g_b;dW
:

Process instantiation. Let

process ProcNameðx1; . . . ; xkÞfPg

be a process that is part of the current specification. For each
instance of process ProcName, we assume variable names
x1 through xk are unique in the whole system. That is, a
second (different) instance of process ProcName will be
assumed to be defined by

process ProcNameðx01; . . . ; x0kÞfP 0g;

where x01; . . . ; x0k are new variables (and, hence, different
from x1; . . . ; xk) and P 0 is just like P , where all x1; . . . ; xk
were respectively replaced by x01; . . . ; x0k.

3 The process
invocation ProcNameðe1; . . . ; ekÞ behaves like P , where
variables x1; . . . ; xk are instantiated with the values of
expressions e1; . . . ; ek under the current valuation of the
variables.

To accomplish this call-by-value approach, just before
executing ProcNameðe1; . . . ; ekÞ, the assignments

x1 ¼ e1; . . . ; xk ¼ ek
are performed atomically.4 Operationally speaking, all
incoming edges of a process invocation are equipped with
the assignments to the parameters of the (possible) next
process invocation. Since ProcNameðe1; . . . ; ekÞ may occur
within another statement, e.g., as an alternative in an alt or a
do statement, a function A is used to collect all such necessary
assignments (see Table 1). This function A is not used in the
inference rule of process instantiation but is necessary for
edges that may lead to a process call; see the inference rules
for palt, exception handling, and sequential composition
further on in this section. We point out that AðP Þ is a well-
defined assignment; that is, it is indeed a partial function.
Notice that unions in Table 1 are guaranteed to be disjoint
unions because of the uniqueness of variable names. To make
this point clear, consider process

Q ¼ altf::PNPNðe1Þ ::PNPNðe2Þg;

where process PNPNðxÞfPg. Then,

AðQÞ ¼ fy ¼ e1g [AðP ½x=y�Þ [fz ¼ e2g [AðP ½x=z�Þ;

provided y and z do neither appear in P nor in the context
of process Q, and P ½x=y� and P ½x=z� are the same P , where

x is changed by y and z, respectively. Then, the well-
definedness of A is guaranteed inductively.

The inference rule for process instantiation is

P �!a;g;d W

ProcNameðe1; . . . ; ekÞ �!
a;g;d W

;

if process ProcNameðx1; . . . ; xkÞfPg:
Choice. alt is the usual alternative composition. In case

several alternatives in altf:: P1 . . . :: Pkg are enabled, one of
these alternatives is chosen nondeterministically. In fact,
choice is resolved as in CCS:

Pi �!
a;g;d Wi ð0 < i � kÞ

altf::P1 . . . ::Pkg �!
a;g;d Wi

:

Sequential composition. P ; Q executes P until it success-
fully terminates. When P terminates, it continues with the
execution of Q:

P �!a;g;d W

P ; Q �!a;g;d W �M�1
;

;

where

M;ðA;P 0Þ ¼def hA;P 0; Qi if P 0 6¼ p

hA [AðQÞ; Qi if P 0 ¼ p:

�

The assignments that are carried out if P successfully
terminates are those that P performed on terminating
together with AðQÞ. The latter assignments are necessary
whenever one of the possible initial behaviors of Q is a
process invocation. This is used to realize a call-by-value
approach as discussed before. Notice that A [AðQÞ is a
well-defined assignment since names in the domain of
AðQÞ are ensured to be new fresh names. The inverse of M;

is used inW �M�1
; to retrieve the weight expression for the

sequential composition from the weight expressions as-
signed by W to the first component of a sequential
composition.

Loop. Behavior dof::P1 . . . ::Pkg repeatedly chooses an
alternative Pi in the same nondeterministic manner as alt. It
terminates whenever one of the processes Pi executes a

BOHNENKAMP ET AL.: MODEST: A COMPOSITIONAL MODELING FORMALISM FOR HARD AND SOFTLY TIMED SYSTEMS 819

3. This can always be established by means of renaming, which can be
achieved statically if all recursions are tail recursions, or dynamically
otherwise. We do not provide a treatment of renaming as techniques for
consistent renaming can be found elsewhere (see, e.g., [2])

4. It is important to realize that a call-by-name strategy is inadequate for
MODEST—unlike the more traditional process algebra like CCS, CSP, and
LOTOS—due to the presence of shared variables. Using a call-by-name
paradigm would lead to unintended read-write interferences.

TABLE 1
The Assignment Collecting Function

break action ð[Þ. The semantics of do is defined using the

auxiliary operator auxdo which has two arguments: the

actual behavior and the behavior that needs to be resumed

on successful termination of the loop body behavior. We

have

dof::P1 . . . ::Pkg ¼def

auxdofaltf::P1 . . . ::Pkggfaltf::P1 . . . ::Pkgg:

Behavior auxdofPgfQg behaves like P as long as no break

actions are performed and terminates successfully if P

performs a break (i.e., [). If, however, P successfully

terminates, behavior Q is resumed.

In a nonprobabilistic setting, where transitions have

behaviors—rather than (symbolic) probability distributions

—as targets, the intuitive behavior above would be encoded

by the three inference rules given in Fig. 7. The first rule

represents the break of the loop; as soon as the body loop

executes a break action, the loop terminates successfully.

The other two inference rules represent the execution

within the loop. In particular, the last rule states that, once

the loop body terminates its execution successfully, it

should be resumed from the beginning. Notice, then, that

the second argument in auxdof gf g is only used to save a

copy of the original process to be reexecuted when the body

of the loop ends.
In a probabilistic setting, it may happen that the loop

body successfully terminates with probability p or it

continues doing something else with probability 1� p. In

this sense, the last two rules from above are combined

into only one that considers these two cases in one

probability distribution. In our case, probabilities are

represented symbolically by weight expressions. The

inference rules are

P �![;g;d W

auxdofPgfQg �!�;g;d Dð
;pÞ
;

P �!a;g;d W ða 6¼ [Þ

auxdofPgfQg �!a;g;d W �M�1
do

;

where

MdoðA;P 0Þ ¼def hA; auxdofP 0gfQgi if P 0 6¼ p

hA; auxdofQgfQgi if P 0 ¼ p:

�

The first inference rule corresponds to the loop break. The

second inference rule applies to the occurrence of an action

of P that differs from [. It is the obvious generalization of

the two nonprobabilistic rules. It states that the loop

behaves as auxdofP 0gfQg, whenever P evolves into P 0,

unless P 0 6¼ p. If, instead, P successfully terminates, the

loop resumes from its beginning, auxdofQgfQg.

As Q in auxdofPgfQg is a well-defined MODEST process,
it cannot be a successfully terminating process (i.e., it must
do an action before terminating); hence, the semantics of
auxdofPgfQg (and so that of do) is well defined.

Relabeling. The semantics for relabeling is as in traditional
process algebra. Let

Q � relabelfa1; . . . ; akg by fa01; . . . ; a0kg P:

Q behaves like P except that every observable action or
exception ai is renamed to the corresponding a0i:

P �!a;g;d W f ¼ ½a1=a
0
1; . . . ; ak=a

0
k�

Q �!fðaÞ;g;dW �M�1
rel

;

where

MrelðA; P 0Þ ¼def hA;Qi if P 0 6¼ p

hA;pi if P 0 ¼ p:

�

Alphabet extension. Let Q � extendfa1; . . . ; akg P . extend just
extends the alphabet of process P (see Table 2) and might
affect behavior only if it appears within the context of a par
operator:

P �!a;g;d W

extend fa1; . . . ; ak0g P �!
a;g;d W �M�1

ext

;

where

MextðA; P 0Þ ¼def hA;Qi if P 0 6¼ p

hA;pi if P 0 ¼ p:

�

820 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 32, NO. 10, OCTOBER 2006

Fig. 7. Nonprobabilistic inference rules for auxdo.

TABLE 2
Alphabet of a MODEST Term

Exception handling. An exception excp 2 Excp is raised by
the simple behavior throwðexcpÞ:

throwðexcpÞ �!excp;tt;ff Dð
; abortÞ:

Let Q � tryfPg catch excp1fP1g . . . catch excpkfPkg. Q be-

haves like P as long as P does not raise an exception

excpi ð0 < i � kÞ. If P raises exception excpi, it continues

behaving as Pi, i.e., Pi is the exception handler of excpi.

Unhandled exceptions are not handled by any Pi and, thus,

propagate outside Q (where they might be handled):

P �!a;g;d W ða =2 fexcp1; . . . ; excpkgÞ

Q �!a;g;d W �M�1
try

;

where

MtryðA;P 0Þ ¼def hA;Qi if P 0 6¼ p

hA;pi if P 0 ¼ p:

�

The inference rule for the case in which an exception is
handled is

P �!excpi;g;dW ð0 < i � kÞ

Q �!�;g;d DðAðPiÞ; PiÞ
:

Note that, although raising the exception excpi results in an
unhandled error (see the inference rule for throw), the
resulting behavior of the entire expression is Pi, the handler
of excpi.

Probabilistic prefix. Let

Q � act palt f:w1 :asgn1; P1 . . . :wk :asgnk; Pkg:

Q performs action act without restriction, randomly selects
an alternative i according to the weights w1; . . . ; wk, per-
forms an assignment according to asgni, and evolves into Pi.

Weights are arithmetic expressions (not containing

sampling expressions) requiring particular treatment. A

probability distribution is obtained by dividing a given

weight by the sum of all weights in the palt construct, i.e.,
wi

w1þ���þwk is the probability of performing asgni while

evolving into Pi—provided there is no index j 6¼ i with

the same assignments and evolving behavior. Therefore, wi
must be nonnegative and w1 þ � � � þ wk must be nonzero.

Since weights may contain variables, these conditions are

checked at “runtime,” i.e., in the concrete semantics (see

Section 5).
We define the predicates neg �

Wk
i¼1 wi < 0 and

zero �
Xk
i¼1

wi ¼ 0:

The inference rule covering the normal situation is

Q -----------------------

act;:ðneg_zeroÞ;ff

W;

with W being the weight expression

Wðasgni [AðPiÞ; PiÞ ¼def
Xk

j¼1
Iði; jÞ � wj;

where Iði; jÞ ¼def
1, if

asgni [AðPiÞ ¼ asgnj [AðPjÞ ^ Pi ¼ Pj;

and 0 otherwise. The guard :ðneg _ zeroÞ ensures that the

weights are legal.

Note that, besides the assignments asgni, the (possible)

assignments introduced by process instantiation in Pi are

also performed. Each asgni [AðPiÞ is a well-defined assign-

ment, since the domain of AðPiÞ contains only fresh names.
The two abnormalities that might happen during

execution are that one of the weight expressions evaluates

to a negative number or that the sum of all weights is zero.

The following two axioms deal with these situations:

Q -----------------------

neg weight;neg;ff

Dð
; abortÞ; and

Q -------------------------

neg weight;zero;ff

Dð
; abortÞ:

The labels neg_weight and no_weight are predefined excep-

tions. It is therefore possible to catch them and handle the

abnormal situations, if necessary.

Example 2. To illustrate the STA semantics of the palt

construct, we resume Example 1. Fig. 5 presents the STA

derived for Playð0Þ. We have taken tPlay to be the unique

variable that replaces variable team in the definition of

PlayðteamÞ, and similarly, tPass in the definition of

PassðteamÞ. Next to the initial transition, we wrote the

value of AðPlayð0ÞÞ. Even when this is not formally part of

the STA, it gives the idea that, whatever might be the

incoming arrow, it should include the assignment

tPlay ¼ 0. The � transition is obtained as a consequence of

the breaking of the loop in process Pass. The assignment

tPlay ¼ tPlay on this transition is a residual of the recursion

of Play. Since this is a tail recursion, the same variable

becomes fresh again and, hence, it can be reused.

Parallel Composition. Let Q � parf::P1 . . . ::Pkg. In Q,

P1; . . . ; Pk run concurrently, while synchronizing on their

shared actions, thus allowing for multiway synchroniza-

tion. The alphabet of a process P is the set �ðP Þ �
PAct [IAct of all actions P recognizes (see Table 2). To

define the semantics of MODEST parallel composition, we

resort to the auxiliary operator kB, with B � PAct [IAct,

that behaves like CSP or LOTOS parallel composition

[12], [40]. The operator par is defined by

parf::P1 . . . ::Pkg ¼def ð. . . ððP1kB1
P2ÞjjB2

P3Þ . . .ÞkBk�1
Pk;

with Bj ¼ ð
Sj
i¼1 �ðPiÞÞ \ �ðPjþ1Þ. Note that

Bj � IAct [PAct;

i.e., Bj contains only observable actions. The special actions

?, [, � , and exception names do not belong to it. The

behavior of kB is formally defined in the following: Action

a =2 B (which is not intended to synchronize) can be

performed autonomously, i.e., without the cooperation of

the other parallel component:

BOHNENKAMP ET AL.: MODEST: A COMPOSITIONAL MODELING FORMALISM FOR HARD AND SOFTLY TIMED SYSTEMS 821

P1 �!
a;g;d W ða =2 BÞ

P1 kBP2 �!
a;g;d W �M�1

parP2

;

P1 �!
a;g;d W ða =2 BÞ

P1 kBP2 �!
a;g;d W �M�1

parP1

;

with MparP ðA;P 0Þ ¼def hA; P 0kBP i, where
pkB
p ¼ p. Note

that a parallel composition successfully terminates when-

ever all its components do so.

MODEST provides two synchronization modes which

depend on the action type. An action can be either patient or

impatient. A process that wants to synchronize on a patient

action always waits for its partner to be ready. Accordingly,

its urgency constraint needs to be relaxed to the require-

ments of the partner. As a consequence, an urgency

constraint in a patient synchronization is met whenever all

the components meet their respective urgency constraints

(i.e., the synchronization meets the conjunction of the

urgency constraints):

P1 �!
a;g1;d1 W1 P2 �!

a;g2;d2 W2 ða 2 B \ PActÞ

P1 kBP2 -----------------

a;g1^g2;d1^d2 ðW1 	W2Þ �M�1

par

:

However, a process that intends to synchronize on an
impatient action is not willing to wait for the partner.
Therefore, an urgency constraint in an impatient synchro-
nization should be met as soon as one of the synchronizing
components meets its urgency constraints, i.e., the synchro-
nization meets the disjunction of the urgency constraints:

P1 �!
a;g1;d1 W1 P2 �!

a;g2;d2 W2 ða 2 B \ IActÞ

P1 kBP2 -----------------

a;g1^g2;d1_d2 ðW1 	W2Þ �M�1

par

:

The difference between synchronization of patient and

impatient actions is only given by the way the urgency

constraints are related, while the guard of the resulting

transition is the conjunction of the guards of its constitu-

ents. In both cases, ðW1 	W2Þð�1; �2Þ ¼def W1ð�1Þ � W2ð�2Þ,
for all �1 and �2—corresponding to the product of two

probability spaces—and

MparðhA1; P
0
1i;hA2; P

0
2iÞ

¼def

if A1 [A2 is not a function then

h
; throwðinconsistentÞi
else hA1 [A2; P

0
1 kB P 02i;

8><
>:

where, as before,
pkB
p ¼ p. Function Mpar determines the

continuation after the synchronization. Note that, during

synchronization, an inconsistency of assignments may arise

due to different write accesses to the same variable, i.e., if

A1ðxÞ 6¼ A2ðxÞ for some variable x. We treat this situation by

raising the predefined exception inconsistent and not per-

forming any assignment.

5 CONCRETE SEMANTICS

The semantics of a timed automaton can be given as an

infinite-state labeled transition system in which transitions

are either labeled with actions or with delays (i.e., real

numbers). In a similar way, the semantics of a stochastic

timed automaton is defined using timed probabilistic

transition systems. These transition systems are infinite-

state and are a generalization of timed transition systems, as

the target of a transition is not simply a state but a

probability distribution over states. In this section, we first

introduce probabilistic transition systems (PTS) and its

timed variant. Next, we define several notations, mostly

related to the instantiation of the different structures that an

STA with a particular valuation deals with (namely,

expressions, sample expressions, and assignments). They

form the basis for the construction of the probability

distribution associated to the transitions in the semantics.

Subsequently, we define the semantics of an STA in terms

of timed PTSs. We end the section discussing bisimulation,

which is a semantic relation intended to equate behavior.

Timed probabilistic systems. We start by recapitulating

some standard measure theory [56]. A probability space is a

tuple ð�;F ;PÞ, where � is the sample space, F � 2� is a

�-algebra on � (i.e., a set containing � and closed under

complement and denumerable union), and P is a probability

measure on F (i.e., a function P : F ! ½0; 1� such that

Pð�Þ ¼ 1 and Pð
U
i�0 BiÞ ¼

P
i�0 PðBiÞ, where fBigi�0 is a

disjoint denumerable family of sets in F). The pair ð�;FÞ is

called measurable space.

We only consider Borel measurable spaces. A Borel

measurable space is the smallest measurable space contain-

ing all open sets of a topology, which, in our case, are

basically multidimensional spaces on the set IR of real

numbers. We denote by Bð�Þ the Borel �-algebra on sample

space �. Let Probð�Þ denote the set of all probability

measures on Bð�Þ.
Definition 2. A probabilistic transition system (PTS, for

short) is a triple ð�;L;!Þ, where � is a set of states, L is a set

of labels, and ! � �	 L	 Probð�Þ is the (probabilistic)

transition relation.

We write �!‘ P whenever h�; ‘;Pi 2! . A probabilistic

transition �!‘ P is said to be trivial if its probability

measure P is deterministic, i.e., a measure such that

Pðf�0gÞ ¼ 1 for a given �0 2 �. In this case, we write �!‘ �0.
In a timed PTS, transitions are labeled either with an action

(as before) or with a real number indicating the amount of

elapsed time. The latter transitions, also called timed

transitions, have a single target state with probability 1.

Definition 3. A timed probabilistic transition system is a

PTS ð�;L;!Þ such that

1. L is the disjoint union of a set Act of actions and the

set IR>0 of delays, and
2. every transition labeled with t 2 IR>0 is trivial and

satisfies [60]

. time additivity: � �!tþt
0
�0()�!t �00 !t

0
�0 for

some �00, and
. time determinism: �!t �0 and �!t �00 imply

�0 ¼ �00.

822 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 32, NO. 10, OCTOBER 2006

When defining the interpretation of stochastic timed

automata, a state in a timed PTS consists of a location

indicating the state of control and a valuation indicating the

current values of all variables. Valuations are defined as

follows:

Valuations. A valuation is a function that, to each variable

in Var, assigns a value of its type. Let V al be the set of all

valuations ranged over by v, v0, v1, and so forth. Let F ½v� ¼def

��:vðF ð�ÞÞ denote the instantiation of the sampling expres-

sion F with valuation v. F ½v� is a distribution function on

variable �. For example, consider function Fx in Section 3,

which describes a uniform distribution in the interval

½x; xþ 3�, for whichever value x may take. Then, if v is such

that vðxÞ ¼ 5, Fx½v� is the uniform distribution in the interval

½5; 8�. That is,

Fx½v�ð�Þ ¼
0 if � < 5;
ð� � 5Þ=3 if � 2 ½5; 8�;
1 if � > 8:

8<
:

Valuations are extended to expressions as follows: vðeÞ,
for expression e 2 Exp, is obtained by replacing each

variable x in e by vðxÞ and by replacing each sample

expression sampleðF Þ by a unique random variable (name)5

X with distribution F ½v�. Uniqueness means that each

occurrence of sampleðF Þ in expression e is replaced by a

distinct random variable and, hence, sampled with possibly

different values. Notice that vðeÞ is an expression whose

variables are random variable names. Moreover, notice that,

due to uniqueness, every random variable occurs at most

once in the expression vðeÞ.
Example 3. Let

e � ðx � sampleðEXPzÞÞ þ ðsampleðEXPzÞ � sampleðEXPyÞÞ;

where EXP� is the function

EXP�ð�Þ ¼
0 if t < 0
1� e�ð��Þ if t � 0;

�

that is, EXP� is the negative exponential distribution

with rate �. Suppose that v is a valuation such that

vðxÞ ¼ 12, vðyÞ ¼ 5, and vðzÞ ¼ 18. Then,

vðeÞ ¼ ðvðxÞ �XÞ þ ðY � ZÞ ¼ ð12 �XÞ þ ðY � ZÞ;

where X, Y , and Z are different random variable (names)

with distributions EXP18, EXP18, and EXP5, respec-

tively, (since EXPz½v� ¼ EXP18 and EXPy½v� ¼ EXP5).

We defined assignments to be partial functions, but,
within this section, we will assume that they are total. A
(partial) assignment A would therefore be interpreted to be
the total function A0 defined by A0ðxÞ ¼ AðxÞ if A is defined
in x, and A0ðxÞ ¼ x otherwise.

Valuation v is extended to assignment A by v �A, where
it is required that random variables are unique among the

assigned expressions. That is, ðv �AÞ is a function from Var

to expressions on random variables such that, for all
x 2 Var, ðv �AÞðxÞ ¼ vðAðxÞÞ and, if random variable X

occurs in ðv �AÞðxÞ and x 6¼ y, then X must not occur in
ðv �AÞðyÞ. Let RVarðv �AÞ be the set of random variables
appearing in v �A. Formally,

RVarðv �AÞ
¼ fX j 9x 2 Var : X occurs in ðv �AÞðxÞg:

Note that RVarðv �AÞ is finite. Let

RVarðv �AÞ ¼ fX1; . . . ; Xng

and let Fi be the probability distribution of random

variable Xi (for 0 < i � n). Let BðIRnÞ be the Borel algebra
on the n-dimensional real space and Pv

A be the unique
probability measure on BðIRnÞ induced by F1; . . . ; Fn in the
respective positions. As there is a trivial bijection between

functions RVarðv �AÞ ! IR and IRn, we identify u with the
element ðuðX1Þ; . . . ; uðXnÞÞ 2 IRn.

Interpretation of a stochastic timed automaton. A state in the

behavior of an STA is completely identified by the location

in which the system is located and the value of all its

variables. Let �Loc ¼def
Loc	 V al be the set of states and

Bð�LocÞ be the Borel algebra with sample space �Loc.
Weight expression W is a proper weight expression in

valuation v if

: 9A; s : v W hA; sð ið Þð Þ< 0ð Þ _
X
hA;si

v W hA; sið Þð Þ

0
@

1
A¼ 0

0
@

1
A

0
@

1
A

holds, i.e., WðhA; siÞ does not take a negative value in v for
any pair hA; si in the domain of W, and

P
hA;si WðhA; siÞ

does not evaluate to 0 in v. If W is proper in v, �vW denotes

the discrete distribution function derived from the weight
expression evaluated in v, i.e.,

�vWðhA; siÞ ¼
def vðWðhA; siÞÞP

hA;si vðWðhA; siÞÞ
;

for every pair hA; si. If it is not proper, �vW is not a (discrete)

distribution and, hence, Pv
W (in Definition 4) would not be a

probability measure.
As for the semantics of timed automata, there are two

inference rules that determine the transition relations: one
that corresponds to taking an edge in the stochastic timed

automaton, and one that controls the advance of time.

Definition 4. The semantics of stochastic timed automaton (Loc,

Act,!) is the timed PTS (�Loc, Act [IR>0,! , where! is

the smallest relation satisfying the following inference rules:

s �!a;g;d W vðgÞ holdsW is proper in v

hs; vi !a Pv
W

; ð1Þ

where

Pv
WðBÞ ¼

def
X

s2Loc;A2Asgn

�vWðhA; siÞ � ðPv
A � ðFv

hA;siÞ
�1ÞðBÞ

BOHNENKAMP ET AL.: MODEST: A COMPOSITIONAL MODELING FORMALISM FOR HARD AND SOFTLY TIMED SYSTEMS 823

5. A random variable is a function. The term “random variable name” is
used to distinguish between the symbol and the function. In the remainder
of this paper, we will not dwell upon this distinction.

and

Fv
hA;si : ðRVarðv �AÞ ! IRÞ ! �Loc

is defined by Fv
hA;siðuÞ ¼

def phs; ðu � v �AÞi.6

For the timed transitions, we have

8 t0 < t : ðvþ t0ÞðtpsÞ holds

hs; vi !t hs; vþ ti
; ð2Þ

where tps ¼
def :

W
fd j s �!a;g;d Wg is the time progress condi-

tion, and ðvþ tÞðxÞ ¼def
vðxÞ þ t if x 2 Ck and vðxÞ otherwise.

Inference rule (1) defines the execution of a control

transition s �!a;g;d W. It requires that the guard g holds in

valuation v (enabledness) and W is proper (so that Pv
W is

well defined). If this is the case, action a can be performed

and the next state is selected randomly according to

probability measure Pv
W . That is, Pv

W defines the probability

with which new locations and new valuations are selected.

This can be seen as a three-step process: 1) sample the target

location s0 together with the assignments A according to

distribution �vW , 2) sample function u (recall that u is also

a vector in IR#RVarðv�AÞ) from random variables in

RVarðv �AÞ—this is done by Pv
A—and 3) determine the

new state hs0; ðu � v �AÞi—which is done by function Fv
hA;s0i.

s0 is the new location and u � v �A is the new variable

valuation.

We show that Pv
W is a (well-defined) probability measure

on Bð�LocÞ.7 By definition, Pv
A is a probability measure on

BðIR#RVarðv�AÞÞ. We assumed that Fv
hA;si : IR#RVarðv�AÞ ! �Loc

is measurable (see footnote 6). This guarantees that Pv
A �

ðFv
hA;siÞ

�1 is a probability measure on Bð�LocÞ. Moreover,

since W is proper, �vW is a discrete probability distribution

on Loc	Asgn. Therefore, the linear combination Pv
W ¼P

s2Loc;A2Asgn �
v
WðhA; siÞ � ðPv

A � ðFv
hA;siÞ

�1Þ is a probability

measure on Bð�LocÞ.
Note that the semantics of the palt construct guarantees

that, for every MODEST term P and every valuation v, if

P �!a;g;d W and vðgÞ holds, W is indeed proper in v.

Inference rule (2) controls the passage of time. It states

that idling for t time units in state hs; vi is allowed as long as

no urgency constraint is violated within this period. When

t time units have elapsed in valuation v, the value of every

clock x 2 Ck is increased by t units, while the value of other

variables remains unchanged.
Applying the inference rules of Section 4 to a MODEST

specification yields a stochastic timed automaton. Subse-
quently, Definition 4 yields the timed probabilistic transi-
tion system that corresponds to the MODEST specification.

Bisimulation. When studying the behavior of systems, it is
important to be able to check whether two systems behave
in the same manner. For instance, this is useful to determine
whether the model of a system implementation conforms to
its specification. This is typically done with equivalence
relations such as bisimulation [51]. Another reason is that
whenever two systems show equivalent behavior, one can
be replaced by the other as part of a larger system. This
requires the equivalence relation to be a congruence for the
operators of the modeling language at hand.

Bisimulation has been defined for PTSs with continuous
probability [14], [16], [21], [29]. Nevertheless, it is not a
congruence for MODEST operations. This is due to the use of
deadlines. (This has already been observed for the case of
timed automata with deadlines [13] and stochastic auto-
mata [21], [27] which are submodels of STA.) Recently,
however, a variant of bisimulation (called r-bisimulation)
has been shown to be a congruence for parallel composition
and urgent constraints in the setting of timed automata with
deadlines [23], [24]. Extending this relation to include
continuous probability should be straightforward.

6 USEFUL SHORTHANDS

This section elaborates on specifying location invariants and
some other common notations by direct encoding in
MODEST.

Location invariants. While we use urgency constraints for
imposing urgency, location invariants, as in safety timed
automata [35], are more common. Location invariant b on
process (i.e., location) P specifies that P can perform an
initial activity as long as b holds. Once b becomes false,
however, P is stuck and cannot perform any initial activity
anymore (and forbids time to advance). This construct can
be defined in MODEST as

invariantðbÞ P ¼def
altf :: whenðbÞ P

:: urgentð:bÞ whenðffÞ
throwðinvariantÞ

g;

where invariant is an exception that is not used in the rest of
the MODEST specification. There is no behavioral difference
if invariant is replaced by any other exception, even if it is
used elsewhere in the specification. The preference for a
fresh name is that it allows us to easily identify the
invariants in the derived STA for further manipulation as,
for example, to translate it to a timed automata that can be
input in a model checker.

invariant ðbÞP behaves like P but, due to the alternative
with urgency constraint :b, it disallows the progress of time
beyond the validity of b. Note that the alternative in which
the exception invariant is raised is never executed as the
guard does not hold. Note also that it is indeed necessary to

824 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 32, NO. 10, OCTOBER 2006

6. Note that Fv
hA;si must be a measurable function. This strictly depends

on A. Recall that A : Var! Exp; then, AðxÞ is an expression that contains
parameterized sample expressions and, hence, vðAðxÞÞ, when defined,
defines a probability measure on the product space obtained from all
random variables appearing in vðAðxÞÞ. In other words, �x:vðAðxÞÞ should
be a random variable on the domain of x. Precisely, Fv

hA;si is a measurable
function whenever, for all x 2 Var, vðAðxÞÞ is defined. For example, if
AðxÞ ¼ sampleðEXPð1=yÞÞ, then Fv

hA;si will not be defined if vðyÞ ¼ 0.
7. We will use here two well-known results in measure theory. The first

one states that, if ð�;F ;PÞ is a probability space, ð�0;F0Þ is a measurable
space, and if f : �! �0 is a measurable function, then P � f�1 is a
probability measure on F0. The second one states that if fPigi2I is a
countable family of probability measures on F and � is a discrete
probability distribution on I, then the linear combination

P
i2I �ðiÞ �Pi is

also a probability measure on F . See, e.g., [56] for further details.

use an alt construct in order to define invariants. In fact, the
naive solution invariant0ðbÞP ¼def

urgentðÞ:bP does not work
in parallel compositions, as can be seen in the following
example: Consider processes P ¼ invariant0ðx � 2Þa; b and
Q ¼ invariant0ðx � 5Þc; a, where a, b, and c are actions. The
expected invariant of process R ¼ parf:: P :: Qg is x �
2 ^ x � 5 (therefore, R can only idle while x � 2). However,
this is not the case. According to the MODEST operational
semantics, the only transition from R is

R ------------

c;tt;:ðx�5Þ

;

since a is a common action and, hence, both P and Q must
synchronize on it. As a consequence, R would be allowed to
idle while x � 5, i.e., beyond the intended invariant x � 2.

A second issue is the guarding of P with the invariant

condition b by the alternative :: whenðbÞP in the above

invariant encoding. The reason for this is that urgency

constraints only have effect on edges and not on locations,

as is the case for invariants in safety timed automata. If on

entering a location an urgency constraint is false, it only

limits the execution of its respective transition (apart from

time progress), but not the execution of any other transition

whose guard is valid. In safety timed automata, however,

false invariants indicate impossible situations and, hence,

no further execution is allowed. To illustrate the necessity of

the guarding, consider the timed automaton in Fig. 8a,

where the Boolean formulas below locations indicate

invariants. The MODEST process T ðÞ defined in Fig. 8b

represents this timed automaton, and its semantics is given

by the STA in Fig. 8c. Notice that action b in the second edge

cannot be executed (in any of the two automata). However,

if the edge from s2 to s3 in the STA were not guarded with

the invariant ðx � 1Þ, the b-transition could be executed as

soon as location s2 is reached (see rule 1 in Definition 4).
The definition of invariantðÞ provides the expected

compositional behavior. Let predicate

invðP Þ ¼def
^
f:d j P ------------------

invariant;g;d
g:

Here, we assume
V
; ¼ tt. Intuitively speaking, predicate

invðP Þ is the time invariant of process P . It follows:

Proposition 1. invðP Þ can be recursively defined as in Table 3.

Proof. We only show the case for P of the form

parf::P1 . . . ::Pkg. The other cases follow in a similar

manner. Let

invðPiÞ ¼
^
f:di j Pi --------------------invariant;gi;di
g

for 0 < i � k. Since exceptions—in particular invariant

—are not subject to synchronization, it directly follows

from the inference rules of parallel composition that

invðP Þ ¼
^

f:d1 j P1 --------------------

invariants;g1;d1g

�

[. . .

[f:dk j Pk --------------------

invariants;gk;dkg

�
:

By simple logic calculation, we obtain

invðP Þ ¼
k̂

i¼1

invðPiÞ:

tu

BOHNENKAMP ET AL.: MODEST: A COMPOSITIONAL MODELING FORMALISM FOR HARD AND SOFTLY TIMED SYSTEMS 825

Fig. 8. A timed automaton, its MODEST description, and corresponding STA.

TABLE 3
The Invariant Function

Time advances in P as long as no urgency constraint

becomes true, i.e., as long as predicate tpP ¼ :
W
fd j P �!a;g;dg

holds (see Definition 4). Clearly, tpP ¼
V
f:d j P �!a;g;dg, and

hence, invðP Þ is the part of tpP that controls the time

progress by only invariant-labeled transitions. If, in a

MODEST specification, only the invariant construct is used,

it follows that tpP ¼ invðP Þ. In this case, stochastic timed

automata correspond to safety timed automata.
Further shorthand notations. The following shorthands are

included in MODEST. Both the alt- and do-construct allow

an else alternative as in Promela [39], derivable as follows:

altf::whenðb1Þ P1 . . .::whenðbkÞ Pk ::else Qg

¼def
altf::whenðb1Þ P1 . . . ::whenðbkÞ Pk

::whenð:
_k

i¼1
biÞ Qg:

In a probabilistic alternative, either assignments or pro-

cesses (but not both) can be omitted. Concretely, this means

that act paltf: 1 : f¼ y ¼ 3 ¼g : 2 : PNð4Þg should be inter-

preted as act paltf: 1 : f¼ y ¼ 3 ¼gp : 2 : f¼ ¼gPNð4Þg.
Strictly speaking, however, the latter process is not a legal

MODEST expression since
p

is not a language construct (but

only a semantic one). In a similar line, conventional

assignements like y ¼ 3; are to be read as f¼ y ¼ 3 ¼g; .

Other useful standard programming constructs, such as

while-loops can be defined as usual:

whileðbÞ fPg ¼def
dof::whenðbÞ P ::else breakg:

Hiding as in hidefact1; . . . ; actkgP is a particular form of

relabeling in which act1 to actk are all mapped to silent � .

7 DESIGN RATIONALES

After having introduced the language and its semantics, we

are now in a position to provide a deeper discussion of the

design decisions that led us to set up MODEST and the

model of STA in precisely the way we decided to. This

section is intended to allow readers to distinguish optional

and mandatory choices in the language setup.

Probabilistic branching. The attentive reader has realized

that, in MODEST, each occurrence of a construct must be

guarded by an action. This choice avoids the typical

problems of parallel composition of probabilistic processes

(see [25], [58] for a discussion), and allows for defining a

sound and elegant composition of STA. It is, therefore, is

one of the pillars of our compositional semantics. The

restriction originates from the work of Segala and Lynch

[55] but is extended here by allowing for weighted

expressions instead of probabilities.

For self-contained reasons, we briefly mention why this

choice is superior to two commonly found alternative

design choices (see [25], [28] for details):

1. to invert the order of our choice by first probabil-
istically selecting an action and then executing it
(both steps performed in one atomic transition), or

2. to split (i.e., break the atomicity) between the
performing of an action and the probabilistic choice.

The first of these choices involves unclear or too restrictive

decisions when interacting in parallel composition or

synchronization. For instance, a synchronization would

require a (not always) desirable normalization (to “redis-

tribute” the probability lost on missynchronization), and an

interleaving may need fictitious probabilistic parameters to

resolve a second-level nondeterminism that occurs “be-

tween” the probabilistic choice and the selection of the

action (i.e., within a transition!). The second choice can

already be represented in MODEST by explicitly breaking

the atomicity and using a �-labeled palt construction to

represent the probabilistic selection. Besides, it is more

restrictive. (Think of rolling two dice as two synchronizing

actions: This choice of operations would not allow one to

represent atomically the usual uniform distribution on the

values of the pair of dice.)
Clocks and distribution sampling. As in timed automata [4],

[13], clocks play a prominent role in MODEST. For modeling

soft real-time systems in particular, the distinction between

the setting of clocks (i.e., sampling from a general

probability distribution) and the completion of a random

delay is essential to obtain so-called expansion laws, as in

process calculi [51]. This allows (in its simplest form) for the

reduction of independent parallelism to alternative and

sequential composition and is of crucial importance for

process algebraic verification purposes. This concept

originates from [21], [27] and is also adopted (in a slightly

different form) in stochastic process algebras that support

general distributions such as [15].

Patience and impatience. MODEST distinguishes patient

and impatient actions. This feature has been introduced in

order to provide a language that encompasses composi-

tional modeling means for hard as well as soft real-time

systems. Impatient actions can only synchronize as long as

none of their urgency constraints turn true. That is to say,

once an urgency constraint of one of the participants

becomes true, the synchronization should happen. A real-

life application scenario would be that a meeting of some

managers must finish (via a synchronization) by the time

the first participant needs to leave. Patient actions instead

may synchronize as long as at least one of the urgency

constraints is still false. A typical example of such

synchronization in the manager context is that the meeting

can only start (via a synchronization), once all participants

are present. It is important to realize that patience and

impatience cannot be encoded into each other. An alter-

native way to express impatience in a patient setting is to

use the concept of urgent channels as they are provided, for

instance, by the timed-automata model checker UPPAAL [6].
Invariants and urgency constraints. STA are based on timed

automata with deadlines [13]. This is reflected syntactically
by the urgent construct. However, if one restricts oneself to
using only the invariant construct (see Section 6), the more
standard model of timed automata is retained with all its
compositional properties [22], [48], [59]. The latter model is
tailored toward hard-real time systems. (In this model,

826 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 32, NO. 10, OCTOBER 2006

patience and impatience coincide). Timed automata with
deadlines,8 on the other hand, were originally introduced
for modeling soft-real time systems. However, in this
model, compositionality is shallow, because—as discussed
in Section 5—bisimulation is a congruence only for limited
usages with synchronization on patient actions.

Data model and assignments. The MODEST language and
semantics have stayed rather abstract with respect to the way
assignment functions are specified. This is a deliberate
decision, because we do not intend to prescribe unnecessary
details. One may opt for functional declarations, as in
standard ML or E-LOTOS [41] or for imperative programs,
as in LOTOS-NT [57]. The notation used in our examples (and
in the current version of the tool) is defining the assignment
function A by a sequence of assignments of the form

f¼ x ¼ tt; y ¼ 0; z ¼ EXPONENTIALð1=delayÞ ¼g:

We foresee that plain C-code fragments may also be used in
this context, which would enable one to include more
complex data manipulations in a single atomic block. As an
artificial example, it allows us to write, for instance,

{=

x ¼ true;
for (int i ¼ 1, i < 3, iþþ){

x ¼ !x;

}

=}

In this context, the assignment expression AðxÞ is to be
understood as the fixpoint of the function (in lambda-
notation) corresponding to this fragment (which is �x:tt in
this example). Such a code fragment may also give rise to a
multidimensional assignment.

There is, however, the following generic condition to be
met by any assignment function A. For each variable x, the
assignment AðxÞmust be a random variable on the domain of
x, whenever the expression AðxÞ is instantiated with
concrete parameters. If no sampling is used in AðxÞ, this
requirement boils down to the obvious requirement
AðxÞ 2 dom x, and, in particular, the code computing AðxÞ
must be terminating. In the presence of sampling, this
requirement asserts termination with probability 1, as in, for
example,

{=

x ¼ true;

whileðx ¼¼ trueÞ f
x ¼ BERNOULLIð0:5Þ

}

=}

(where BERNOULLI(0.5) corresponds to an unbiased prob-
abilistic choice between ftt; ffg). Here, the code may not
terminate, but this occurs with probability 0. The assign-
ment function described by this code is �x:X, where X is a
random variable on ftt; ffg taking value ff with prob-
ability 1 and tt with probability 0. Ensuring termination of
such a code fragment is left to the user, and surely it is

advised to abstain from specifying code fragments like the
ones above. Other approaches, such as PROMELA [39] or
PROBMELA [5], are even more relaxed and allow termina-
tion with probability less than 1. (Since PROMELA does not
model probabilistic steps, this means that atomic statements
may or may not terminate.)

Synchronization discipline and value passing. Synchroniza-
tion between MODEST processes is realized by shared
actions, i.e., actions contained in the alphabet of multiple
processes. This kind of multiway synchronization originates
from CSP and enjoys a revival in the FSP [43] (Finite State
Processes) language. Alternative synchronization mechan-
isms, like binary synchronization (as in CCS and the
�-calculus, could also have been adopted for MODEST, if
desired. For future extensions of MODEST, a graphical
composition operator in the style of [32] could be an
interesting generalization of the current multiway synchro-
nization paradigm. Value passing in MODEST takes place
by means of shared variables. This mechanism is also
adopted, for instance, in the timed-automata model checker
UPPAAL [6]. For the sake of simplicity, the scheme of
LOTOS with notions such as value generation and value
matching has not been adopted.

Exception handling and scoping. MODEST exception hand-
ling is inspired by Ada [47]. Exceptions in MODEST are
declared globally, and if thrown, they may (or may not) be
caught by a catching exception handler at the same or at a
higher level. If unhandled, the exception is visible to
parallel components. An unhandled exception terminates
the raising process in an error state. Concurrent processes
proceed unaffected. A “local” unhandled exception thus
does not yield a global system halt. Synchronization on
exceptions is not possible in MODEST.

MODEST actions are also declared globally, so local
actions are not directly supported (while local variables
are), but can implicitly be achieved via the hide-construct.
Together with action synchronization, local action scopes
would enable an abstract modeling of information hiding
and security issues, as in the �- and S�-calculus [1], [52]. The
restriction to global action scopes is a design choice that has
been made for simplicity and might be relaxed.

Priorities. For simplicity, MODEST does not include
means to express priorities. The approach proposed in
[14] shows a possible way of incorporating priorities.

8 CONCLUDING REMARKS

This paper has introduced the modeling formalism
MODEST, a language to model real-time and stochastic
concurrent systems. The formal semantics has been pro-
vided in two layers: An operational semantics maps
MODEST terms onto a finite-state model whose interpreta-
tion is given in terms of infinite transition systems—as for
timed automata [4].

MODEST is quite expressive covering a wide range of
timed, probabilistic, nondeterministic, and stochastic mod-
els. Table 4 lists a selection of prominent models and makes
precise which semantic concepts (see Section 1) each of
them shares with STA. In the table, LTS stands for labeled
transition systems, PTS for probabilistic transition systems
[55], TA for timed automata [4], PTA for probabilistic timed

BOHNENKAMP ET AL.: MODEST: A COMPOSITIONAL MODELING FORMALISM FOR HARD AND SOFTLY TIMED SYSTEMS 827

8. As the term deadline is somewhat misleading, we use the term
urgency constraint instead.

automata [45], DTMC for discrete-time and CTMC for
continuous-time Markov chains [44], CTMDP for contin-

uous-time Markov decision processes [31], GSMP for
generalized semi-Markov processes [34], and SA for

stochastic automata [21], [27]. CTMCs and CTMDPs are

obtained if only negative exponential random variables are
used, and clocks only occur in a restricted form (indicated

by R; guards are right-continuous and clocks can be

uniquely mapped on the random variables they use).
Apart from action nondeterminism, each listed semantic

concept can be detected syntactically, while parsing a

MODEST specification. Table 4 thus provides sufficient
criteria for identifying submodels syntactically on the level

of MODEST.
Action nondeterminism is a principal feature of compo-

sitional formalisms, yet it implies that DTMCs, CTMCs, and
GSMPs are not closed under composition in general. Action

nondeterminism can, in principle, be excluded syntactically

by disallowing alt and par, but the resulting language is too
poor to be of much use. More liberal syntactic conditions for

the absence of action nondeterminism can be adopted from

[50]. Semantic conditions can be incorporated while con-
structing the automaton underlying a MODEST specification

by resorting to algorithms proposed in [18], [20], [37].
Alternatively, one can resolve action nondeterminism using

ad hoc schedulers as in [11], [21], [28].
This paper has focused on the theoretical underpinnings

of MODEST. The language is supported by the MODEST tool
environment prototype MOTOR9 [10], which has been

linked to the stochastic analysis framework MÖBIUS10

[19]. This tool chain has recently been applied successfully
to some industrial case studies originating from varying

different domains:

. Stability analysis of plug-and-play networks [9]. This
study led to a network protocol redesign that has
lately been patented by a large Dutch electronics
company.

. Schedulablity analysis of a lacquer production plant
[11], [49]. Here, the MODEST language and tool has
been used together with UPPAAL to assess the
quality and robustness of production schedules in a
faulty environment.

. Reliability estimation of wireless train signaling [42].
This case study focused on the upcoming European
standard for train interoperability ETCS and esti-
mated how wireless link failures of various types
influence the spatial proximity of high speed trains.

Though these practical applications are out of the scope of

this paper, it is worth mentioning that they have shown the

effectiveness and adequacy of MODEST. More importantly,

these case studies have confirmed that the formal under-

pinning of MODEST—as laid down in this paper—is the

basis of a trustworthy analysis. As convincingly illustrated

in [17], the absence of such a rigorous basis easily leads to

contradictory results for even simple models.

ACKNOWLEDGMENTS

This work was partially funded by the NWO Vernieuwing-

simpuls award “Verification of Performance and Depend-

ability,” the ANPCyT project PICT 11-11738 “Teorı́a y

Herramientas para la Construcción de Software Crı́tico,”

the NWO/DFG-project “Validation of Stochastic Systems

(VOSS),” and the European Community Project IST-2001-

35304, Advanced Methods for Timed Systems (AMETIST).

REFERENCES

[1] M. Abadi and A.D. Gordon, “A Calculus for Cryptographic
Protocols: The SPI Calculus,” Information and Computing, vol. 148,
no. 1, pp. 1-70, 1999.

[2] L. Aceto, “A Static View of Localities,” Formal Aspects of
Computing, vol. 6, pp. 201-222, 1994.

[3] R. Alur et al., “The Algorithmic Analysis of Hybrid Systems,”
Theoretical Computer Science, vol. 138, no. 1, pp. 3-34, 1995.

[4] R. Alur and D.L. Dill, “A Theory of Timed Automata,” Theoretical
Computer Science, vol. 126, no. 2, pp. 183-235, 1994.

[5] C. Baier, F. Ciesinski, and M. Groesser, “PROBMELA: A Modeling
Language for Communicating Probabilistic Processes,” Proc. Int’l
Conf. Formal Methods and Models for Codesign (MEMOCODE ’04),
2004.

[6] G. Behrmann, A. David, and K.G. Larsen, “A Tutorial on
UPPAAL,” Proc. Int’l Conf. Formal Modelling and Analysis of Timed
Systems (FORMATS ’04), 2004.

[7] M. Ben-Ari, Principles of Concurrent and Distributed Programming.
Prentice Hall, 1990.

[8] G. Berry, “Preemption and Concurrency,” Foundations of Software
Technology and Theoretical Computer Science, pp. 72-93, 1993.

[9] H. Bohnenkamp, J. Gorter, J. Guidi, and J.-P. Katoen, “Are You
Still There?—A Lightweight Algorithm to Monitor Node Presence
in Self-Configuring Networks,” Proc. Int’l Conf. Dependable Systems
and Networks (DSN ’05), pp. 704-709, June 2005.

[10] H. Bohnenkamp, H. Hermanns, J.-P. Katoen, and J. Klaren, “The
MODEST Modelling Tool and Its Implementation,” Proc. Conf.
Computer Performance Evaluation: Modelling Techniques and Tools
(TOOLS ’03), pp. 116-133, 2003.

[11] H. Bohnenkamp, H. Hermanns, J. Klaren, A. Mader, and Y.S.
Usenko, “Synthesis and Stochastic Assessment of Schedules for
Lacquer Production,” Proc. Int’l Conf. Quantitative Evaluation of
Systems (QEST ’04), 2004.

[12] T. Bolognesi and E. Brinksma, “Introduction to the Formal
Description Technique LOTOS,” Computer Networks, vol. 14,
pp. 25-59, 1987.

[13] S. Bornot and J. Sifakis, “An Algebraic Framework for Urgency,”
Information and Computation, vol. 163, pp. 172-202, 2001.

[14] M. Bravetti and P.R. D’Argenio, “Tutte le Algebre Insieme:
Concepts, Discussions and Relations of Stochastic Process
Algebras with General Distributions,” Validation of Stochastic
Systems, LNCS 2925, pp. 44-88, Springer-Verlag, 2004.

[15] M. Bravetti and R. Gorrieri, “The Theory of Interactive General-
ised Semi-Markov Processes,” Theoretical Computer Science,
vol. 286, no. 1, pp. 5-32, 2002.

828 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 32, NO. 10, OCTOBER 2006

9. MOTOR is available for download from the following URL: http://
fmt.cs.utwente.nl/tools/motor/.

10. The Möbius software was developed by W.H. Sanders and the
Performability Engineering Research Group (PERFORM) at the University
of Illinois at Urbana-Champaign. See http://www.mobius.uiuc.edu/.

TABLE 4
Submodels of Stochastic Timed Automata

[16] S. Cattani, R. Segala, M.Z. Kwiatkowska, and G. Norman,
“Stochastic Transition Systems for Continuous State Spaces and
Non-Determinism,” Proc. Conf. Foundations of Software Science and
Computation Structures (FOSSACS ’05), pp. 125-139, 2005.

[17] D. Cavin, Y. Sasson, and A. Schiper, “On the Accuracy of MANET
Simulators,” Principles of Mobile Computing, pp. 38-43, ACM Press,
2002.

[18] G. Ciardo and R. Zijal, “Well-Defined Stochastic Petri Nets,”
Modeling, Analysis and Simulation of Computer and Telecommunica-
tion Systems, SCS Simulation Series, pp. 278-284, 1996.

[19] D. Deavours, G. Clark, T. Courtney, D. Daly, S. Derasavi, J. Doyle,
W.H. Sanders, and P. Webster, “The Mobius Framework and Its
Implementation,” IEEE Trans. Software Eng. vol. 28, no. 10, pp. 956-
970, Oct. 2002.

[20] D.D. Deavours and W.H. Sanders, “An Efficient Well-Specified
Check,” Proc. Int’l Workshop Petri Nets and Performance Models
(PNPM ’99), pp. 124-133, 1999.

[21] P.R. D’Argenio, “Algebras and Automata for Timed and
Stochastic Systems,” PhD thesis, Dept. of Computer Science,
Univ. of Twente, 1999.

[22] P.R. D’Argenio and E. Brinksma, “A Calculus for Timed
Automata,” Proc. Int’l Symp. Formal Techniques in Real-Time and
Fault Tolerant Systems (FTRTFT ’96), pp. 110-129, 1996.

[23] P.R. D’Argenio and B. Gebremichael, “The Coarsest Congruence
for Timed Automata with Deadlines Contained in Bisimulation,”
Proc. Int’l Conf. Concurrency Theory (CONCUR ’05), pp. 125-140,
2005.

[24] P.R. D’Argenio and B. Gebremichael, Axiomatising Timed
Automata with Deadlines, technical report, 2006, to appear.

[25] P.R. D’Argenio, H. Hermanns, and J.-P. Katoen, “On Generative
Parallel Composition,” Electronic Notes on Theoretical Computer
Science, vol. 22, 1999.

[26] P.R. D’Argenio, H. Hermanns, J.-P. Katoen, and J. Klaren,
“Modest: A Modelling Language for Stochastic Timed Systems,”
Joint Int’l Workshop Process Algebra and Performance Modelling and
Probabilistic Methods in Verification (PAPM-PROBMIV ’01), pp. 87-
104, 2001.

[27] P.R. D’Argenio, J.-P. Katoen, and E. Brinksma, “An Algebraic
Approach to the Specification of Stochastic Systems,” Programming
Concepts and Methods, pp. 126-147, Chapman & Hall, 1998.

[28] P.R. D’Argenio, J.-P. Katoen, and E. Brinksma, “Specification and
Analysis of Soft Real-Time Systems: Quantity and Quality,” Real-
Time Systems Symp. (RTSS ’99), pp. 104-114, 1999.

[29] J. Desharnais, “Labeled Markov Process,” PhD thesis, McGill
Univ., Montréal, 1999.

[30] S. Edwards, L. Lavagno, E.A. Lee, and A. Sangiovanni-Vincentelli,
“Design of Embedded Systems: Formal Models, Validation and
Synthesis,” Proc. IEEE, vol. 85, no. 3, pp. 366-390, 1997.

[31] E.A. Feinberg and A. Shwartz, Handbook of Markov Decision
Processes. Kluwer, 2002.

[32] H. Garavel and M. Sighireanu, “A Graphical Parallel Composition
Operator for Process Algebras,” Proc. Conf. Formal Techniques for
Networked and Distributed Systems (FORTE ’99), pp. 185-202, 1999.

[33] H. Garavel and M. Sighireanu, “On the Introduction of Exceptions
in E-LOTOS,” Proc. Conf. Formal Techniques for Networked and
Distributed Systems (FORTE ’96), pp. 469-484, 1996.

[34] P.W. Glynn, “A GSMP Formalism for Discrete Event Simulation,”
Proc. IEEE, vol. 77, no. 1, pp. 14-23, 1989.

[35] T.A. Henzinger, X. Nicollin, J. Sifakis, and S. Yovine, “Symbolic
Model Checking for Real-Time Systems,” Information and Compu-
tation, vol. 111, pp. 193-244, 1994.

[36] H. Hermanns, U. Herzog, and J.-P. Katoen, “Process Algebra for
Performance Evaluation,” Theoretical Computer Science, vol. 274,
pp. 43-87, 2002.

[37] H. Hermanns and D. Turetayev, “A Generalisation of the Well-
Specified Check,” Proc. Int’l Workshop Performability Modeling of
Computer and Comm. (PMCCS), pp. 62-66, 2003.

[38] J. Hillston, “A Compositional Approach to Performance Model-
ling,” PhD thesis, Univ. of Edinburgh, 1994.

[39] G.J. Holzmann, The Spin Model Checker. Addison-Wesley, 2002.
[40] C. Hoare, Communicating Sequential Processes. Prentice Hall, 1985.
[41] ISO/IEC International Standard 15437, Information Technology—

E-LOTOS, Int’l Organization for Standardization, 2001.
[42] D.N. Jansen, H. Hermanns, and Y.S. Usenko, “From Stocharts to

Modest: A Comparative Reliability Analysis of Train Radio
Communications,” Proc. Workshop Software and Performance
(WOSP ’05), pp. 13-23, 2005.

[43] J. Kramer and J. McGee, Concurrency: State Models and Java
Programs. John Wiley and Sons, 1999.

[44] V.G. Kulkarni, Modeling and Analysis of Stochastic Systems. Chap-
man & Hall, 1995.

[45] M.Z. Kwiatkowska, G. Norman, R. Segala, and J. Sproston,
“Automatic Verification of Real-Time Systems with Discrete
Probability Distributions,” Theoretical Computer Science, vol. 282,
pp. 101-150, 2002.

[46] E.A. Lee, “Embedded Software,” Advances in Computers,
M. Zelkowitz, ed., vol. 56, Academic, 2002.

[47] D. Luckham and W. Polak, “ADA Exception Handling: An
Axiomatic Approach,” ACM Trans. Programming Languages and
Systems, vol. 2, no. 2, pp. 225-233, 1980.

[48] N. Lynch and F.W. Vaandrager, “Action Transducers and Timed
Automata,” Formal Aspects of Computing, vol. 8, no. 5, pp. 499-538,
1996.

[49] A. Mader, H. Bohnenkamp, Y.S. Usenko, D.N. Jansen, J. Hurink,
and H. Hermanns, “Synthesis and Stochastic Assessment of Cost-
Optimal Schedules,” Technical Report 06-14, Univ. Twente, 2006.

[50] V. Mertsiotakis, “Approximate Analysis Methods for Stochastic
Process Algebras,” PhD thesis, Univ. of Erlangen-Nürnberg, 1998.

[51] R. Milner, Communication and Concurrency. Prentice Hall, 1989.
[52] R. Milner, Communicating and Mobile Systems: The �-Calculus.

Cambridge Univ. Press, 1999.
[53] G.D. Plotkin, “A Structural Approach to Operational Semantics,”

Report DAIMI FN-19, Computer Science Dept., Aarhus Univ.,
1981.

[54] J.C. Reynolds, Theories of Programming Languages. Cambridge
Univ. Press, 1998.

[55] R. Segala and N.A. Lynch, “Probabilistic Simulations for Prob-
abilistic Processes,” Nordic J. Comp., vol. 2, no. 2, pp. 250-273, 1995.

[56] A.N. Shiryaev, “Probability,” Graduate Texts in Math., vol. 95, 1996.
[57] M. Sighireanu, “LOTOS NT User’s Manual,” version 2.4, technical

report, INRIA Rhône-Alpes/VASY, 2004.
[58] A. Sokolova and E.P. de Vink, “Probabilistic Automata: System

Types, Parallel Composition and Comparison,” Validation of
Stochastic Systems, LNCS 2925, pp. 1-43, Springer-Verlag, 2004.

[59] W. Yi, P. Pettersson, and M. Daniels, “Automatic Verification of
Real-Time Communicating Systems by Constraint Solving,” Proc.
Conf. Formal Techniques for Networked and Distributed Systems
(FORTE ’94), pp. 223-238, 1994.

[60] W. Yi, “Real-Time Behaviour of Asynchronous Agents,” Proc. Int’l
Conf. Concurrency Theory (CONCUR ’90), pp. 502-520, 1990.

Henrik Bohnenkamp received the diploma
degree in computer science from the University
Erlangen/Nürnberg, Germany, in 1995 and the
PhD degree in computer science from the
University of Aachen, Germany, in 2002. He
has held positions with the Computer Science
Department of the University of Twente, the
Netherlands, and is now a researcher with the
group on software modeling and verification at
the University (RWTH) Aachen, Germany. His

research interests include modeling of probabilistic and stochastic
systems, semantics, and specification-based testing. He is a member of
the IEEE and the IEEE Computer Society.

Pedro R. D’Argenio received the BS degree
(1993) and the MS degree (1994) in computer
science at the Universidad Nacional de La Plata,
Argentina, and the PhD degree in computer
science (1999) from the Universiteit Twente, the
Netherlands. Currently, he is a lecturer at the
Universidad Nacional de Córdoba and a senior
researcher for CONICET in Argentina. He also
holds a visiting researcher position at the
Universiteit Twente. His research interests are

in formal methods to achieve dependable systems, particularly in model
checking, process algebra, process semantics, and quantitative
analysis.

BOHNENKAMP ET AL.: MODEST: A COMPOSITIONAL MODELING FORMALISM FOR HARD AND SOFTLY TIMED SYSTEMS 829

Holger Hermanns studied at the University of
Bordeaux, France, and the University of Erlan-
gen/Nürnberg, Germany, where he received the
diploma degree in computer science in 1993
(with honors) and the PhD degree from the
Department of Computer Science in 1998 (with
honors). From 1998 to 2006 he has been with
the University of Twente, the Netherlands,
holding an associate professor position since
October 2001. Since 2003, he has headed the

Dependable Systems and Software Group at Saarland University,
Germany. His research interests include modeling and verification of
concurrent systems, resource-aware embedded systems, and composi-
tional performance and dependability evaluation.

Joost-Pieter Katoen received the master’s
degree (with honors, 1987) and the PhD degree
(1996) in computer science, both from the
University of Twente, the Netherlands. He held
positions at the Universities of Erlangen/Nürn-
berg (Germany), Eindhoven, and Twente (the
Netherlands) and worked at Philips Research.
He is a full professor at the University (RWTH) of
Aachen, Germany, and chairs the group on
software modeling and verification. His research

interests include modeling and verification of distributed and embedded
systems, semantics, probabilistic model checking, and software
verification. He is a member of the IEEE Computer Society.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

830 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 32, NO. 10, OCTOBER 2006

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 36
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 36
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 36
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (Use these settings with Distiller 7.0 or equivalent to create PDF documents suitable for IEEE Xplore. Created 29 November 2005. ****Preliminary version. NOT FOR GENERAL RELEASE***)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

