
S O B R E L A V E R I F I C A C I Ó N A U T O M Á T I C A D E
A U T Ó M A T A S P R O B A B I L I S T A S D I S T R I B U I D O S C O N

I N F O R M A C I Ó N P A R C I A L

por sergio giro

Presentado ante la Facultad de Astronomía, Matemática y Física
como parte de los requerimientos para la obtención del grado de

Doctor en Ciencias de la Computación de la

U N I V E R S I D A D N A C I O N A L D E C Ó R D O B A

Marzo, 2010

©FaMAF — UNC 2010

Director: Dr. Pedro R. D’Argenio

Sergio Giro: On the automatic verification of Distributed Probabilistic Automata
with Partial Information, Computer Science, PhD, © March 2010

To my family, according to the (not certainly broad) sense of family: ”Ohana
means family.

Family means nobody gets left behind, or forgotten.”

— Lilo & Stitch

R E S U M E N

En esta tesis desarrollamos algoritmos y técnicas de análisis basadas en
model checking para analizar la corrección de sistemas distribuidos con car-
acterísticas aleatorias y no-deterministas.

Una contribución importante es la demostración de que no existe un al-
goritmo que resuelva el problema de verificación de forma totalmente au-
tomática, esto es: no existe un algoritmo tal que, dados cualesquiera sistema
distribuido y propiedad, el algoritmo decide si el sistema cumple con la
propidad.

A pesar de este resultado, presentamos algoritmos que, si bien no pueden
determinar la corrección para todos los sistemas y propiedades, sirven para
detectar que ciertos sistemas son correctos o incorrectos.

Uno de los impedimentos más frecuentes a la hora de verificar PDMs es
el problema de la explosión de estado. Este problema, bien conocido y atacado
en model checking, se agrava en el ámbito de model checking cuantitativo
(i.e. model checking de propiedades cuantificadas probabilísticamente). Los
algoritmos de model checking cuantitativo, además de almacenar los esta-
dos en memoria, deben resolver un sistema de optimización lineal donde
cada variable está asociada a un estado, y cada desigualdad a una tran-
sición probabilística. Existen trabajos previos que, con el fin de atacar este
problema, presentan adaptaciones de las técnicas de reducción orden parcial
para model checking cualitativo al caso cuantitativo.

En esta tesis presentamos una nueva adaptación de la técnica de reduc-
ción de orden parcial. Nuestra adaptación aprovecha el hecho de que las
componentes de un sistema concurrente tienen acceso limitado a la informa-
ción sobre el estado global del sistema. Usando nuestra técnica se obtienen
reducciones más efectivas que las existentes para el caso cuantitativo.

Concluimos la tesis con casos de estudio que muestran las mejoras de
nuestros algoritmos y nuestra técnica de orden parcial con respecto a sus
contrapartes para PDMs.

A B S T R A C T

We study concurrent systems involving probabilities and non-determinism.
Specifically, we focus on the automatic verification of distributed systems, in
which each component can access only a limited portion of the information
in the system.

Although model checking algorithms for Markov decision processes (MDPs)
can be applied to distributed systems, such algorithms assume that all com-
ponents in the system have access to all the information. As a consequence,
some correct distributed systems are deemed incorrect when we analyse
them using algorithms for MDPs.

In this thesis, we present model checking algorithms for distributed sys-
tems involving probabilities and nondeterminism.

A relevant contribution is the result that there exists no algorithm to solve
the model checking problem in a completely automated fashion. That is,

v

there exist no algorithm so that, for all distributed systems and properties,
the algorithm decides whether the property holds or not.

Despite of this result, we present two algorithms: one of these algorithms
is able to detect that some systems are correct, while the other detects incor-
rect ones.

In addition, we present a new adaptation of the POR technique. Our adap-
tation profits from the fact that a component in a concurrent system has lim-
ited access to the information stored by other components. Our technique
provides more effective reductions than those obtained using existing tech-
niques for MDPs.

We conclude the thesis by presenting case studies in which our algorithms
yield better results when compared to their counterparts for MDPs.

vi

P U B L I C A T I O N S

Several of the results in this thesis appeared in the following publications:

Sergio Giro and Pedro R. D’Argenio. Quantitative model checking revisited:
neither Decidable nor Approximable. In J.-F. Raskin and P.S. Thiagarajan,
editors, FORMATS, volume 4763 of Lecture Notes in Computer Science, pages
179–194. Springer, 2007.

Sergio Giro. Undecidability results for distributed probabilistic systems. In
Marcel Vinicius Medeiros Oliveira and Jim Woodcock, editors, SBMF, vol-
ume 5902 of Lecture Notes in Computer Science, pages 220–235. Springer, 2009.

Sergio Giro and Pedro R. D’Argenio. On the Expressive Power of Sched-
ulers in Distributed Probabilistic Systems. Electr. Notes Theor. Comput. Sci.,
253(3):45–71, 2009.

Sergio Giro and Pedro R. D’Argenio. On the verification of probabilistic
I/O automata with unspecified rates. In Sung Y. Shin and Sascha Ossowski,
editors, SAC, pages 582–586. ACM, 2009.

Sergio Giro, Pedro R. D’Argenio, and Luis María Ferrer Fioriti. Partial Order
Reduction for Probabilistic Systems: A Revision for Distributed Schedulers.
In Mario Bravetti and Gianluigi Zavattaro, editors, CONCUR, volume 5710

of Lecture Notes in Computer Science, pages 338–353. Springer, 2009.

vii

Lasciate ogne speranza, voi ch’intrate.
Dante, Divina Commedia, Inferno, Canto Terzo

ix

C O N T E N T S

0 introduction 1

0.1 Motivations 2

0.1.1 The relevance of probabilities 2

0.1.2 Probabilities and nondeterminism 3

0.1.3 The role of information 5

0.2 A Survey of Related Work 7

0.3 Outline 9

i probabilistic systems and schedulers 11

1 a framework for distributed systems 13

1.1 Simple Interleaved Probabilistic I/O Automata 13

1.1.1 Input/Output Transitions 13

1.1.2 Modelling symmetric choices 16

1.1.3 Simple Interleaved Probabilistic I/O Automata 17

1.1.4 Distributed schedulers 20

1.2 Extended Interleaved Probabilistic I/O automata 25

1.2.1 Extended transitions 25

1.2.2 Global enabledness conditions 26

1.2.3 Extended systems 27

1.3 Generalized projections and schedulers 28

1.3.1 Projections 28

1.3.2 Schedulers 32

1.4 Comparison with existing approaches 37

2 restrictions on the interleaving scheduler 39

2.1 Strongly distributed schedulers 39

2.2 Rate schedulers 46

2.3 Total order-based schedulers 49

2.4 Comparison with existing approaches 50

3 limit schedulers 53

3.1 Limit schedulers 53

3.2 Finitely falsifiable sets and closure under limits 56

3.3 Distributed schedulers are closed under limits 58

3.4 Discussion and further work 60

4 on the expressive power of different classes of sched-
ulers 61

4.1 Non-randomized distributed schedulers 62

4.2 Non-randomized strongly distributed schedulers 73

4.2.1 Randomization adds power to strongly distributed sched-
ulers 74

4.2.2 Expressive non-randomized strongly distributed sched-
ulers 75

4.2.3 Full-communication version of a projection 79

4.2.4 Proof of Theorem 4.3 81

4.3 Inexistence of a scheduler yielding the supremum probabil-
ity 87

4.4 Finite-memory (and Markovian) schedulers 88

4.5 Discussion 91

xi

xii contents

5 undecidability 93

5.1 Quantitative case 93

5.2 Finite memory schedulers 96

5.3 Qualitative case 98

5.3.1 Distributed schedulers 98

5.3.2 Strongly distributed schedulers 101

5.4 Comparison with existing results 102

ii techniques and algorithms 105

6 algorithms 107

6.1 From IPIOA to MDPs 107

6.2 An overestimation for total order-based schedulers 109

6.3 Underestimation of probabilities under distributed schedulers 115

6.4 Further work 118

7 partial order reduction 121

7.1 Partial Order Reduction and Restricted Schedulers 121

7.2 An improvement for restricted schedulers 124

7.3 Correctness of our techniques 125

7.3.1 Overview of the proof 125

7.3.2 Proof of the correctness theorems 127

7.4 Using our technique with existing model checking algorithms 139

7.5 Related work 140

iii applications and conclusions 141

8 anonymous fair service 143

8.1 The specification of the protocol 143

8.2 Analysis 146

8.3 Further work 148

9 partial order reduction in practice 149

9.1 Partial Order Reduction for PRISM modules 149

9.2 Analysing the dining cryptographers 157

9.3 Analysing the binary exponential backoff protocol 158

9.4 Discussion and further work 160

10 concluding remarks 161

10.1 Contributions 161

10.2 Future research directions 163

10.3 A conclusion’s conclusion 164

iv appendix 165

a proofs of chapter 4 169

Theorem 4.7 169

Lemma 4.10 171

b proofs of chapter 6 175

c proofs of chapter 7 177

Lemma 7.1 177

Lemma 7.2 180

Lemma 7.3 188

Lemma 7.4 192

Lemma 7.5 193

Lemma 7.6 194

Lemma 7.7 200

d proofs of chapter 9 207

d.1 Theorem 9.1 207

glossary (including symbols and notations) 211

bibliography 215

L I S T O F F I G U R E S

Figure 0.1 T tosses a coin and G has to guess 5

Figure 0.2 Compound model for T and G 6

Figure 0.3 A fictitious behaviour in the compound model 6

Figure 1.1 Unrealistic choices in synchronizations 14

Figure 1.2 Fixing unrealistic choices in synchronizations 14

Figure 1.3 Generative transitions with several action labels 14

Figure 1.4 A reactive transition that probabilistically chooses be-
tween two states 15

Figure 1.5 Generative and reactive structures 15

Figure 1.6 Modelling symmetric choices using input/output la-
bels 16

Figure 1.7 T tosses a coin and G has to guess 20

Figure 1.8 T tosses a coin, G guesses heads or tails 25

Figure 1.9 System P = T ‖ G 25

Figure 1.10 Scheduler η ∈ DISTP 25

Figure 2.1 Motivating strongly distributed schedulers 40

Figure 2.2 An unrealistic distributed scheduler 40

Figure 2.3 Regarding A and B as a single component 41

Figure 2.4 Inclusion relations among schedulers with restricted
interleaving 50

Figure 3.1 A simple example to illustrate limits 54

Figure 4.1 Example showing that randomization adds power to
strongly distributed schedulers 75

Figure 4.2 Projection [[·]] is not traceable 76

Figure 4.3 The projection [[·]] is equivalent for the sets B = {Bi}
3
i=1

and C = {C1,C2} 78

Figure 4.4 G has to guess that the coin has landed tails at least
once 87

Figure 4.5 Atom A must lead B to the smiling state 89

Figure 5.1 From PFA to IPIOA 94

Figure 7.1 T tosses a coin, G guesses heads or tails 124

Figure 7.2 A total information scheduler 124

Figure 7.3 System P = T ‖ G 124

Figure 7.4 A POR based reduction 124

Figure 7.5 POR and distributed schedulers 124

Figure 7.6 A distributed scheduler 127

Figure 7.7 The corresponding scheduler in the reduced system 127

Figure 7.8 Mapping paths in η to paths starting with β 134

xiii

Figure 7.9 Example showing the need for (A4). 139

Figure 7.10 Another example showing the need for (A4) 139

Figure 8.1 PRISM code for an AFS client 144

Figure 8.2 PRISM code for the AFS1 server 145

Figure 8.3 PRISM code for the AFS2 server 147

Figure 8.4 Analysis of AFS1 and AFS2. 148

Figure 9.1 PRISM code for an AFS client 150

L I S T O F T A B L E S

Table 1 Expressive subsets of schedulers 92

Table 2 Summary of Experimental Results 158

Table 3 Experimental results for the binary exponential back-
off protocol 159

xiv

B A S I C N O T A T I O N

Here, we introduce the mathematical notation we use throughout the thesis.
In particular, the notation here concerns usual mathematical concepts such
as sequences, equivalences relations, etc.

This thesis contains also a glossary in page 211. Such a glossary is in-
tended to be a reminder for the symbols and notations specific to the thesis. Glossary

• πj denotes the j-th projection: πj(a1, · · · ,aj, · · · ,an) = aj.

• The cardinality of a set S is denoted by
∣∣S ∣∣.

• The complement of S is denoted by S.

• {ai}
N
i=M (with possibly N = ∞). Sequence aM, · · · ,aN. If the index

and the bound are obvious we may omit them. In some other cases,
the index is useful to avoid confusion. For instance, {aij}

n
i=1 denotes

the sequence a1j , · · · ,anj .

• {ai}i∈S, sequence/set indexed by elements in S. For instance, if S =

{M, · · · ,N}, then {ai}i∈S = {ai}
N
i=M. If ai ∈ A for all i, then {ai}i∈S can

be seen as the set {f | f : S→ A} comprising all functions from S to A .

• sR s ′, the pair (s, s ′) is in the relation R .

• s 6R s ′, the pair (s, s ′) is not in the relation R .

• S/R , set whose elements are the equivalence classes of R. R is assumed
to be an equivalence relation on S .

• A σ-algebra F on S is a set F ⊆ P(S) such that: (1) S ∈ F and (2) A ∈
F =⇒ S \A ∈ F and (3) {An}∞n=1 ⊆ F =⇒

⋃∞
n=1Ai ∈ F .

• Given a set S and a σ-algebra F on S, a probability distribution on S
is a function p : F → R>0 such that p(S) = 1 and, if An ∈ F for all n,
then p (

⊎∞
n=1An) =

∑∞
n=1 p(An) .

• A probability distribution on S is said to be discrete if F = P(S) and
p(A) =

∑
x∈A p({x}). We denote by PROB(S) the set of all discrete prob-

ability distributions over the set S. We adopt the following notation:
given p ∈ PROB({x1, · · · , xn}), we may write p as p({x1}) :x1 + · · · +
p({xn}) :xn. Moreover, we may omit the terms in which p(vi) = 0. For
instance, if p ∈ PROB({x1, x2, x3, x4}) and p({x1}) = 1/2, p({x2}) = 1/4,
p({x3}) = 1/4 and p({x4}) = 0, we write p as 1/2 :x1 + 1/4 :x2 + 1/4 :x3 .

xv

0
I N T R O D U C T I O N

Model checking [56, 14] is a well-established technique to verify the correct
behaviour of systems. Given a specification of the system (that is, a set of
properties that the system must comply with) and a model of the behaviour
of such system, model checking algorithms can be used to automatically
check whether the system complies with its specification or not.

Model checking is a very valuable tool to save time in the development
process, since models of the system can be constructed and checked at early
stages of development. As a consequence, errors can be corrected before
they affect a larger part of the system.

The first works on model checking started in the early 80’s [53, 127]. More
than twenty years later, we have several available tools implementing model
checking techniques, such as SPIN [99], BLAST [24], NuSMV [51] and Java
Pathfinder [92].

In practice, model checking tools are useful in diverse fields such as hard-
ware design [26], web services [6], biological systems [36] and security proto-
cols [55], just to name a few. It was thanks to a model checking tool (namely,
SMV) that formal methods could spot an error in an IEEE standard for the
first time [54].

As a consequence of the success of model checking, by the mid-90’s this
technique was adapted to deal with systems involving probabilities, thus
giving birth to probabilistic model checking [25, 18, 21]. There are several
tools for model checking of probabilistic systems: notable examples include
PRISM [97], LiQuor [50] and MRMC [105]. The use of probabilistic model
checking also spans several fields such as robotics [148], power manage-
ment [112] and communication protocols [72].

In this thesis, we focus on model checking of distributed probabilistic sys-
tems, in which there are several entities that behave in an independent way.
The framework we propose allows us to model multiple types of entities
including (but not limited to) nodes in a network, computational processes
and user interactions. In general, by “entity” we mean anything that can be
described as a transition system (possibly including probabilities).

Existing tools for probabilistic model checking assume that all informa-
tion is available to all entities. In other words, the system is verified under a
total-information assumption. In case the entities of the system under consid-
eration do not share all information, an accurate verification must take into
account that each entity has access to a limited portion of the information
in the system [45, 46, 42, 41]. In other words, the system must be verified
under partial information. Although algorithms for total information can be
applied to the partial information setting, the total-information assumption
becomes fictitious. As we shall see, such fictitious availability of information
results in fictitious behaviours in which the system does not necessarily com-
plies with its specification. As a consequence, it is possible that a program is
deemed incorrect by a total-information algorithm, while all the behaviours
that violate the specification according to the algorithm (that is, the coun-

1

2 introduction

terexamples) are fictitious. The bottom line is that systems that are correct
may be deemed incorrect by existing algorithms.

In this thesis, we explore the adaptation of model checking techniques for
probabilistic systems to the distributed setting. The ideal adaptation should
be an algorithm to automatically check whether or not a system satisfies a
certain property under partial information. However, we show that the correct-
ness of a probabilistic system under partial information is algorithmically
undecidable (in other words, such an ideal algorithm does not exist).

Despite of this negative result, we develop two algorithms: one of these
algorithms can be used to show that a system is correct. It computes an
overestimation of the probability that a system fails: if this overestimation is
below the maximum acceptable probability, then the system is correct. How-
ever, it might be the case that the overestimation obtained is not acceptable,
while the exact value is. Hence, the algorithm is inconclusive if the overesti-
mation exceeds the maximum acceptable value. The other algorithm can be
used to show that a system with partial information is incorrect. Based on
certain criteria, it explores a finite amount of behaviours of the system. Such
behaviours can only occur in a partial information setting. In case the algo-
rithm finds a non-acceptable behaviour, then the system is incorrect even
under the assumption of partial information.

Model checking is not only about algorithms to decide whether a property
holds or not. In fact, it owes part of its success to the techniques to reduce the
size of the models. Giving a model, these techniques obtain a smaller one, in
such a way that the counterexamples in the original model are preserved in
the reduced one. In the setting of probabilistic systems, existing techniques
include partial order reduction [12, 57] (POR) and symmetry reduction [113].

We introduce a variation on the POR technique. Our variation profits from
the assumption of partial information, thus yielding better results than the
existing technique for probabilistic systems under total information.

In the following, we take a deeper look on the motivations for the prob-
lems we tackle in this thesis.

0.1 motivations

“Who writes a dissertation should have no hope
on its use beyond bookshelf decoration.”
Pedro R. D’Argenio. [61], Stellingen X

Our work is based on three fundamental concepts: probability, nondeter-
minism and information. First, we show why probabilities are useful to solve
current problems in software development. Next, we show the role of non-
determinism. Finally, we show why it is important to take into account the
availability of information.

0.1.1 The relevance of probabilities

In the last years, the development of computer products has faced new chal-
lenges. We are far from the days in which computer systems were used
only to perform calculations. Nowadays, computers are embedded in cars,
phones, and music players. This new role of computer devices being em-
bedded in everyday life has added new requirements. In the first place,

0.1 motivations 3

computer systems tend to be as small as possible: some years ago, it was
difficult to imagine a computer device that fits in the pocket and provides
all of the functionality that actual mobile phones do. Such quest for compact-
ness influenced the problem of the cost: making a portable device is easier
in case the cost is not a problem, but developments in which costs are not
a problem are hard to imagine. Another challenge related to embedded de-
vices is power consumption: tiny devices can carry little power with them.
Interoperability is another important aspect: currently, devices must be able
to communicate and exchange information in a reliable way. The interoper-
ability of mobile and embedded devices, in turn, introduces new difficulties:
a mobile device is always able to leave the network without sending any
notification. Clearly, a protocol that has a high performance penalty in this
scenario is not suitable for mobile devices.

Many of the solutions to the problems described above are related to prob-
abilistic behaviour. For instance, if the size of a device is affected by the size
of one of its components, we can consider a smaller “probabilistically reli-
able” replacement for this component, such replacement being ensured to
work correctly “at least 95% of the times”. The same applies with respect
to the cost and the power consumption of components. Of course, the be-
haviour of the device under consideration should be acceptable even if some
components do not work correctly every time they are required to.

Probabilities are also a useful tool when designing communication pro-
tocols: some fault-tolerant protocols can only be implemented in case ran-
domization is introduced. In such implementations, the participants of the
protocol toss coins in order to decide how to continue. In the case of a
well-known consensus protocol [49] the validity of the protocol can only be
ensured in case the possibility of failure does not depend on the outcome
of the coin toss [47]. This is a case in which the availability of information
makes a significant difference: we must assume that the outcome is hidden
from the environment that causes the failure.

Also in cryptography, anonymity protocols may benefit of the ability of
tossing fair coins. In the dining cryptographers protocol [44], anonymity
holds only in case we assume that the outcome of the coin remains hidden
from every potential adversary.

Those are just some examples in which the use of probabilities makes a
significant difference. However, as we shall see, probabilities are not suffi-
cient, and we also need the notion of nondeterminism in order to accurately
model distributed systems.

0.1.2 Probabilities and nondeterminism

Even in case that some of the changes the system exhibits are driven by
probabilistic events, some other changes cannot be correctly described using
probabilities. This is illustrated in the following example.

Consider we are analyzing a system A that receives numbers n ranging
from 1 to 10 from an external source S. The goal of A is to communicate one
given message to another system B. System A is acceptable only if the prob-
ability that B receives the message is 0.9. The system A uses the (potentially
infinite) sequence ξ provided by S in order to calculate the precise moment
to send the message. It is not known how S chooses the numbers in ξ, and

4 introduction

so the goal must be achieved with an acceptable probability (that is, with
probability greater than or equal to 0.9) for all ξ. Once A decides to send the
message, it is sent through a channel that fails to deliver the message with
probability 0.05. For simplicity, we assume that A simply stops after sending
the message, without checking if it got lost.

Since the system under consideration involves probabilities, one might be
tempted to model the input of a number as a probabilistic choice, in which
each of the values is chosen with probability 0.1. However, this model is
not a suitable representation of the system. Suppose that A sends the mes-
sage when it has received the value 2 after the value 1. In case the input
is modelled as a probabilistic choice, a verification on this model will in-
dicate that the system achieves its objective with an acceptable probability
of 0.95: given that the choice is probabilistic, the subsequence 12 eventually
appears in the sequence ξ with probability 1. Then, the system A sends the
message, which is lost with probability 0.05. However, in the real system
the probability that the message arrives to B might be far less than 0.95: the
external source S might send the sequence 9876543219876..., or the sequence
19283746551928..., or only zeroes, or only ones. Moreover, it might be the
case that S chooses the number at random but, if the previous output was
1 and the chosen value is 2, then S does not output 2, and selects another
number instead. Each of these behaviours of S causes A to delay the com-
munication of the message forever, and so the probability that the goal is
achieved under these behaviours is 0. Nonetheless, these behaviours are not
considered if the input is modelled as a probabilistic choice, and this is why
a fully probabilistic model is not suitable.

We refer to choices that cannot be described using probabilities as nonde-
terministic choices. For these choices, we must consider that any of the options
can be taken every time the choice arises. Nondeterministic choices are, thus,
analogous to the branches found in the verification of non-probabilistic sys-
tems and, in fact, the verification of a system having only nondeterministic
choices reduces to the verification of a conventional transition system.

Formalisms with probabilistic and nondeterministic choices consider prob-
abilistic transitions. Each transition defines a probability distribution on the
set of states. Such distribution models the probability with which each state
is reached after the current one in case this transition is executed. In order to
model nondeterminism, several of these transitions may be enabled in each
state.

In this kind of formalism, the verification problem is to find out the small-
est probability that the system behaves correctly, quantifying over all pos-
sible resolutions of the nondeterministic choices. As a concrete instance,
suppose we are verifying a networking protocol and the nondeterministic
choices correspond to routing decisions that are not specified. Moreover,
suppose that the correct behaviours are those in which no packages are lost,
and that we are able to prove that the smallest probability that a package is
lost is 0.05, no matter how the nondeterministic choices are resolved. Then,
we can state that “the probability that no package is lost is above the bound
0.95 no matter how the packages are routed”.

The resolution of nondeterminism is given by the so called schedulers
(called also adversaries, policies or strategies —see e.g. [133, 25, 126, 38]). A
scheduler is a function mapping paths to transitions (or, in the more general
case, paths to distributions on transitions). Metaphorically, we can think that

0.1 motivations 5

the scheduler “chooses” to perform one transition out of all transitions en-
abled in state s. The choice of the scheduler is based on the path that led the
system to s. This metaphorical meaning also justifies the term “adversary”,
since the scheduler can be seen as an evil player trying to make the system
behave as bad as possible by choosing the (un)appropriate transitions. The
term “policy” is related to planning problems, in which the aim is to find the
best plan (or the best policy) to accomplish a given goal. The term “strategy”
applies both to the planning and the verification settings and, in addition,
it is used often in game theory [38, 66]. Sometimes our examples have a
“verification” flavour, some other times they may have a “game-theoretic”
or “planning” flavour. The essence of the problems is the same: to find out
the smallest/greatest probability that an event occurs, taking into account
all schedulers/adversaries/policies/strategies.

There are efficient tools implementing algorithms to perform automatic
verification [97, 50] on probabilistic and nondeterministic systems. However,
the algorithms underlying existing tools do not take into account that the
entities in the system might not share all the information. In some cases,
this causes the tool to deem some correct systems as incorrect, as explained
in the following section.

0.1.3 The role of information

If we consider a distributed system as a whole (disregarding the fact that the
system comprises several independent entities) some schedulers correspond
to unrealistic resolutions of the nondeterminism. As a consequence, it may
be the case that overly pessimistic worst-case probabilities are computed
during the verification. The following example illustrates the problem: a
man tosses a coin and another one tries to guess heads or tails. We study
the example from the point of view of T , and so we consider it inconvenient
that G guesses the outcome. Figure 0.1 depicts models of these men. Man T ,
who tosses the coin, has only one transition which represents the toss of the
coin: with probability 1/2 he moves to state headsT and with probability 1/2
he moves to state tailsT . Instead, man G has two possible transitions, each
one representing his choice: headsG or tailsG.

initT initG
1/21/2

headsT tailsT headsG tailsG

T G

t ch ct

Figure 0.1: T tosses a coin and G has to guess

In the standard “compose-and-schedule” approach, the verification of the
system comprising T and G considers a compound model. The way in which
the compound model is defined corresponds to the product of labelled tran-
sition systems. The compound model comprises all the possible interleav-
ings for the executions of the components. In Fig. 0.2 we depict the com-
pound model for T and G.

Following the compose-and-schedule approach, the verification of the com-
pound model is carried out by considering all of its schedulers. However, a
scheduler for the compound model may let G guess the correct answer with

6 introduction

1/2 1/2

1/2 1/2
ct

ct

t

1/2 1/2t

ch

t

ch

ch

ct

Figure 0.2: Compound model for T and G

probability 1 according to the following sequence: first, it lets T toss the coin,
and then it chooses for G the transition leading to heads if T tossed a head
or the transition leading to tails if T tossed a tail. This behaviour is depicted
in Fig. 0.3. Therefore, the supremum probability of guessing obtained by

1/2 1/2t

ch

ctch

Figure 0.3: A fictitious behaviour in the compound model

quantifying over these almighty schedulers is 1, even if T is a smart player
that always hides the outcome until G reveals his choice.

Note that, from the point of view of T , this is a very pessimistic result,
since T loses all the times †. If we were analysing a strategy to avoid being
predicted all the time, and our model checking tool tell us that our choice
will be guessed with probability 1, then we would feel very disappointed
about our strategy.

Our simple example shows that quantitative model checkers based on the
compose-and-schedule approach, though safe, yield an overestimation of
the correct value. Since T and G do not share all information, we would like
that the supremum probability of guessing (i.e., of reaching any of the states
(headsT , headsG) or (tailsT , tailsG)) is 12 .

This observation is fundamental in distributed systems in which enti-
ties share little information with each other, as well as in security proto-
cols, where the possibility of information hiding is a fundamental assump-
tion [40]. The phenomenon we illustrated has been first observed in [133]
from the point of view of compositionality and studied in [64, 46, 43] in
different settings. Distributed schedulers are also related to the partial-infor-
mation policies of [63].

In order to avoid considering these unrealistic behaviours, previous works
introduce distributed schedulers. Local schedulers for each entity of the sys-
tem are defined in the usual way (that is, the choices are based on the com-
plete history of the entity) and distributed schedulers are defined to be the
schedulers that can be obtained by composing these local schedulers. We
remark that the “almighty” scheduler of the example would not be a valid
scheduler in this new setting since the choice for G depends only on informa-
tion which is external to (and not observable by) G. Then, a local scheduler

†Moreover, note that he gets very sad in case he loses

0.2 a survey of related work 7

for G takes the decision without any information about the actual state of T ,
and so the choice cannot be decided according to the outcome of T .

The nondeterministic choice between heads and tails is internal to G, in
the sense that G is the only entity involved in this decision. Local schedulers,
having access to the internal information of G, are thus suitable for resolv-
ing these choices. Asynchronous concurrent systems introduce another kind
of nondeterministic choice. Such choices arise every time that several enti-
ties have transitions enabled, as only one of these entities must be chosen to
perform the next transition. These choices determine the way in which the
transitions of different entities are interleaved, and so we refer to them as
the interleaving nondeterminism. Roughly speaking, previous work on dis-
tributed probabilistic systems do not consider interleaving nondeterminism
(for a comparison see Sec. 2.4). This nondeterminism is one of the most diffi-
cult aspects to capture in a framework for asynchronous distributed systems,
as it concerns a global decision that is based on local information. During
this thesis, we consider several mechanisms to express that the interleaving
is also chosen in a distributed fashion. These mechanisms are based on sub-
tle considerations that are far beyond the scope of an introduction, and so
we postpone the discussion on interleaving nondeterminism until Chapter 2.

0.2 a survey of related work

“...y que ni el interés ni el miedo, el rencor ni la
afición, no les haga torcer del camino de la verdad,

cuya madre es la historia, émula del tiempo,
depósito de las acciones, testigo de lo pasado,

ejemplo y aviso de lo presente, advertencia de lo
porvenir.”

Cervantes. Don Quijote de la Mancha, 9

The paper Probabilistic Algorithms by Rabin [128] is one of the earliest and
most important contributions to the field of probabilistic algorithms. This
paper presents two algorithms in which coins are tossed. The problems
solved by these algorithms are: Nearest Neighbours (a problem in compu-
tational geometry) and Primality Testing (test whether a number is prime or
composite). Moreover, these probabilistic algorithms were fastest than any
other algorithm known at the time. In fact, a provably efficient determinis-
tic algorithm for primality testing could not be devised until 2002 [2] (for a
survey on primality testing see [70]). Since then, randomization was used in
several algorithms as a useful tool to improve performance and/or save re-
sources. An interesting example is the distributed randomized algorithm to
ensure mutual exclusion presented in [129]. This algorithm uses a test-and-
set shared variable with O(logn) possible values, while in [31] it is proven
that Ω(n) values are necessary for a non-randomized distributed algorithm.
The improvement is more dramatical in the case of distributed consensus: no
deterministic algorithm can solve the problem of distributed consensus with
faulty processes [74], but a randomized algorithm has been devised [49]†.
Several surveys on randomized algorithms are available: [104, 88, 101, 33].

†Such algorithm ensures probabilistic termination, that is, the algorithm is ensured to
work correctly with probability 1

8 introduction

With respect to the verification of probabilistic systems, different research
directions arose for non-probabilistic systems such as process algebra [10],
labeled transition systems [108] and model checking [56, 14].

Several probabilistic algebra were devised [75, 82, 11, 4]. In [96], perfor-
mance and process algebra were combined for the first time, giving rise to
stochastic process algebra. An important class of algebra are Markovian pro-
cess algebra. Such algebra were introduced to take advantage of the analyti-
cal framework provided by continuous time Markov chains. Some examples
are IMC [93], TIPP [94], PEPA [76] and EMPA [23]. Other works considered
the case of general (not only markovian) distributions [59, 60, 28, 91] (a sur-
vey on this topic can be found in [29]). In [42, 39, 43], an algebraic approach
is used to model systems with restricted schedulers.

Labeled transition systems can be extended with probabilities in several
ways. In [133], the model of probabilistic automata is defined. In such model,
there are several transitions available at each state. Each transition defines
the probabilities of both the label and the next state to be reached. However,
most of the results of [133] are restricted to simple probabilistic automata, in
which a label is assigned to each transition. So, in simple automata, transi-
tions assign probabilities to states, while the label is fixed for each transition.
The restriction to simple automata is needed to define a suitable composition
operator. An important improvement over simple probabilistic automata is
achieved by the probabilistic I/O automata in [147]. Such automata allow
transitions assigning probabilities to labels, but behaviours are restricted in
such a way that, in every synchronisation, only one of the participating tran-
sitions is allowed to assign probabilities to labels. As we shall see in Chap-
ter 1, this restriction has an intuitive explanation in terms of input and out-
put. The probabilistic Input/Output automata in [147] assume exponential
distributions for the time that entities delay in a given state. Moreover, the
exponential distribution is fixed for each state. This mechanism resembles
the Markovian process algebra mentioned before. The Probabilistic I/O Au-
tomata model in [46], introduces a token-based mechanism in which the
entity that owns the token is the only one able to perform an output. In
addition, transitions specify whether or not the owner of the token changes
after the transition, and also specify the next entity that receives the token.
The introduction of the token eliminates the need for a delay mechanism
but, as we shall see in Sec. 2.4, nondeterminism cannot be handled in a
satisfactory way in all cases. So, we introduce an interleaving scheduler that
decides the next entity to execute a transition. The introduction of this inter-
leaving scheduler does not come for free, and we show that the interleaving
scheduler needs to be restricted.

Probabilistic automata can be seen as Markov decision processes [126]
in that they are Markov chains extended with the ability to choose among
several distributions at a given state. In fact, existing algorithms for model
checking probabilistic systems use the Bellman equations for Markov deci-
sion process [25]. An algorithm to check bisimulation was introduced in [15].
Interestingly, bisimulation can be checked also under the so-called demonic
schedulers [42].

In addition to the algorithms to determine correctness, model checking
also requires techniques to alleviate the state explosion problem. The tech-
nique of partial order reduction (POR) [125, 52, 83] was adapted to the
probabilistic setting in [12, 57]. Other techniques adapted include symme-

0.3 outline 9

try reduction [113] and abstraction [58, 5, 107]. In Chapter 7 we propose
improvements to the technique of POR. As we shall see, the key ingredient
to prove that such improvements are correct is the fact that entities do not
share all information.

Several other approaches have been devised to deal with partial infor-
mation. Partially Observable Markov Decision Processes (POMDPs [135, 35,
114]) and Decentralised POMDPs [135] have been heavily used in areas such
as Artificial Intelligence and Planning. However, they have received little at-
tention in recent research on verification of probabilistic systems, and so we
preferred to adhere to the trend of Probabilistic I/O Automata. POMDPs
use the notion of observation: in addition to the probabilities concerning the
next state to be reached, the transition defines probabilistically how the state
“looks like” to the observer, by defining a distribution on a set of observa-
tions. So, the choices are based on observations of the history of the system,
and such observations represent the uncertainty about the actual state affect-
ing decision making. We compare our approach to POMDPs more deeply
in Sec. 1.4.

A formalism that considers partial information can also be found in [63].
Given a specified relation, two states of the system are meant to be indistin-
guishable for the decision maker iff they are related. The choices are then
restricted to coincide on indistinguishable histories, and so the equivalence
classes of the relation resemble the observations found in POMDPs.

Another formalism that deserves attention is the one in [64]. In this paper,
the entities execute in a completely synchronous fashion (that is, each time
that the system performs a step, all the entities perform a step). The states of
the system are modelled as valuations over a set of variables, and the infor-
mation available to each entity can be modelled by restricting the variables
that it is able to read. The model is primarily intended for compositional
reasoning. We preferred the Probabilistic I/O Automata model since it is
more suitable for asynchronous systems.

0.3 outline

Chapter 1 presents the formalism of Interleaved Probabilistic I/O Automata
(IPIOA) used in this thesis. It is based on the Switched PIOA of [45]. We
present a general approach to partial information by considering arbitrary
projections for each of the components. A projection is a function restricting
the information available: two different executions are distinguished only if
the component’s projection maps the executions to different observations.

Chapter 2 discusses several restrictions on the interleaving scheduler. This
scheduler resolves the nondeterminism concerning the different options to
interleave the executions of the components. Given that this scheduler is not
related to a particular component, it is not obvious how the information
available to each of the components relates to information observable by the
interleaving scheduler. The restrictions we propose ensure that the interleav-
ing of two executions of components A, B does not depend on information
hidden by another component C.

In Chapter 3 we show that some sequences of schedulers permit the con-
struction of limit schedulers. Limits are constructed in such a way that, if all
the schedulers in the sequence comply with a given property, then the limits

10 introduction

also do. Since this construction (as well as several other properties associated
to limit schedulers) are reused many times along this thesis, we isolated the
fundamental results in this chapter.

Chapter 4 compares different sets of schedulers with respect to their ex-
pressive power. A set of schedulers S has more expressive power than a set
S ′ iff the worst-case probability that the system fails under S is greater than
the probability under S ′. The results in Chapters 3 and 4 are generalizations
of those presented in On the Expressive Power of Schedulers in Distributed Prob-
abilistic Systems (Giro, D’Argenio [79]).

Chapter 5 presents several undecidability results concerning the calcula-
tion of worst-case probabilities. The maximum probability that a set of states
is reached cannot be calculated. Moreover, there is no algorithm to approxi-
mate such probability within an error threshold ε. Some of the results in this
chapter appeared in Quantitative model checking revisited: neither Decidable nor
Approximable (Giro, D’Argenio [78]), while others appeared in Undecidability
Results for Distributed Probabilistic Systems (Giro [77]).

Chapter 6 presents two algorithms. One of them calculates an overestima-
tion of the maximum probability that the system fails. The other one exhaus-
tively explores the set of non-randomized distributed Markovian schedulers,
in order to look for schedulers in which the probability of a failure is not
acceptable. We present a branch-and-bound technique to elide some subsets
of schedulers during the exploration.

Chapter 7 introduces a variation on the technique of partial order reduc-
tion (POR) for probabilistic systems. The assumption that components can
observe only a partial amount of information allows us to improve the tech-
nique, thus obtaining smaller systems for which the verification is faster.

Chapter 8 presents a case study concerning a protocol to anonymously
serve two clients. One of the algorithms in Chapter 6 is used to analyze
whether or not the protocol ensures that the clients are served in a fair fash-
ion. The algorithm and the case study were introduced in On the verification
of probabilistic I/O automata with unspecified rates (Giro, D’Argenio [80]).

Chapter 9 presents an interpretation of models in the PRISM language into
IPIOA. This interpretation allows us to implement our POR technique into
PRISM. We also present two examples showing how our implementation
performs in practice. The POR technique in Chapter 7 and the examples in
this chapter were presented in Partial Order Reduction for Probabilistic Systems:
A Revision for Distributed Schedulers (Giro, D’Argenio, Ferrer Fioriti [81]).

The conclusion in Chapter 10 explores the thesis in a retrospective view
and proposes further research directions.

Part I

P R O B A B I L I S T I C S Y S T E M S A N D S C H E D U L E R S

1
A F R A M E W O R K F O R D I S T R I B U T E D S Y S T E M S W I T H
P R O B A B I L I T I E S A N D N O N D E T E R M I N I S M

We present a modelling framework based on the Switched Probabilistic I/O
Automata [46]. It is called Interleaved Probabilistic I/O Automata (IPIOA),
since we eliminate the “switching” semantics in [46] (in which the control of
the outputs is switched using a token-based mechanism) and follow an ap-
proach closer to usual interleaving semantics. For the sake of simplicity, we
split the presentation of our formalism into two sections. Section 1.1 starts
with a simple framework, which is similar to the one in [46]. These automata
are called simple IPIOA. In order to give the semantics of our automata, this
section introduces notions of projections and schedulers, which resemble the
ones in [46, 64]. Section 1.2 revisits several aspects of the framework, and de-
fines extended IPIOA. The simple automata in Sec. 1.1 are a particular case
of these ones. We expect that our presentation helps the reader familiar with
PIOA, since he will be able to link our extended formalism to the existing
one.

In Section 1.3 we generalize the notions of projections and schedulers.
These generalizations apply to simple as well as to extended IPIOA, and we
find them useful when developing algorithms and techniques for verifica-
tion.

1.1 simple interleaved probabilistic i/o automata

1.1.1 Input/Output Transitions

In process algebras such as CSP, processes synchronize on common actions.
In order to avoid unrealistic behaviours, it may be useful to specify which
entity takes the initiative to perform the action (for instance, which entity
decides to send a message through several channels) and which entities sim-
ply react to the action initiated (for instance, the channels react by queuing
the message). This fact is illustrated using the following example.

Example 1.1. Consider a process P that sends data messages and control
messages over the channel C. The channel C may fail during the startup.
It fails with probability 0.01 and, in this case, the channel appears to be
active but the messages are not transmitted. Models for P and C are depicted
in Fig. 1.1. The label d (label c, resp.) represents the action in which P tries
to send a data message (a control message, resp.) We need to model the fact
that P is the entity that chooses between sending a control or a data message,
otherwise, the model may be misinterpreted as follows: if the channel fails
during startup, then C takes the initiative to execute c. Otherwise, C takes
the initiative to execute d. Note that, in this behaviour, control messages are
never transmitted. However, if P is not able to see whether or not C has

13

14 a framework for distributed systems

c c c

start failed

transmitControl

INITP

d d

INITC

0.010.99

d

good

transmitData

CP

Figure 1.1: Unrealistic choices in synchronizations

failed during startup, one expects the probability that a message is lost to be
0.01, independently of the type of the message.

We use the symbol ! after a label to indicate that the label’s entity chooses
to perform the action. We say that the entity generates the label, and that the
label is output. In addition, we use the symbol ? after a label to indicate that
the entity reacts to the action. That is, although the action changes the actual
state of this entity, the decision about whether to execute this action is not
up to this entity. In this case, the label indicates an input. Figure 1.2 shows a
modified version of Fig. 1.1.

c! c?

start! failed

!transmitControl

c?d!

INITC

0.010.99

d?

good

transmitData!

CP

INITP

d?

Figure 1.2: Fixing unrealistic choices in synchronizations

If an entity is able to perform several actions, the choice among these
actions may be probabilistic. We can modify the previous example in such a
way that data messages and control messages are sent with some particular
probability, as illustrated in Fig. 1.3. In this figure, action labels c and d

c!

INITP
0.8 0.2

P

d!

s1 s2

Figure 1.3: Generative transitions with several action labels
.

occur in the same transition. This transition is enabled in the state INITP, and
it specifies that either d is output and P changes its state to s1, or c is output
and P changes its state to s2. This is an example of a generative transition.

If an entity reacts to an input, the state of the entity input may change
probabilistically. Figure 1.4 shows a modified version of the channel in Ex-
ample 1.1. In this version, an external entity S starts the channel up. The
probabilistic choices reflect the fact that the channel may fail during startup.
This is an example of a reactive transition.

1.1 simple interleaved probabilistic i/o automata 15

start!c?

start? failed

transmitControl!

c?

S

INITC

0.010.99

d?

good

transmitData!

C

d?

Figure 1.4: A reactive transition that probabilistically chooses between two states
.

The component executing a generative transition chooses both a label a
to output and a new state s according to a given distribution. Reactive tran-
sitions specify how a component reacts to a given input. Therefore, reactive
transitions are simply distributions on states.

Definit ion 1.1. Given a set ACTLAB of action labels and a set S of states,
the set of generative transitions TG on (S, ACTLAB) is PROB(ACTLAB× S), and PROB(·) is

introduced in the
basic notation, p. xv.

the set TR of reactive transitions is PROB(S).

Generative and reactive structures [82, 136] provide the means to specify
the transitions enabled in each state. Note that, in the presence of nondeter-
minism, a state might have several output transitions enabled. In addition,
for each state and each label, we allow several input transitions to be en-
abled. This flexibility allows to specify that the entity may react to an input
in several different ways. We call these structures local, in contrast to the
global ones we present later in Sec. 1.2.

Definit ion 1.2. A local generative structure on (S, ACTLAB) is a function
G : S → P(TG). A local reactive structure on (S, ACTLAB) is a function R :

S× ACTLAB → P(TR). We restrict to finite structures, that is, G(s) and R(s,a)

are finite for all s, a.

Figure 1.5 depicts an example of local generative/reactive structures.

A reactive structure with two transitionsA generative structure with two transitions

1/2

1/2

1/2

1/2

a?

2/3

1/3

a!

1/3

2/3

a! b?

b! b!

s1 s2 s3 s4 s2 s3 s4s1

s0 s0

Figure 1.5: Generative and reactive structures

In the example,

G(s0) = {1/2 : (a, s1) + 1/2 : (b, s2) , 2/3 : (b, s3) + 1/3 : (a, s4)}

and The notation
p1 :x1 + · · ·+
pn :xn is described
in p. xv.

R(s0,a) = {1/3 :s1 + 2/3 :s2}

R(s0,b) = {1/2 :s3 + 1/2 :s4} .

Note that, if a generative transition g is enabled in two different states s1

and s2, then the probability that g outputs a and reaches a certain s ′ is the
same in both s1 and s2 (namely, it is g(a, s ′)). In the extended version of

16 a framework for distributed systems

probabilistic I/O automata presented later in Sec. 1.2, the probability may
change according to the source state. Moreover, in the case of input transi-
tions, the probability depends on the source state and label. Then, the fol-
lowing notation allows us to treat transitions in both versions in a uniform
way.

Notation 1.1. Given sj, s ′j ∈ S, a ∈ ACTLAB, we define

g(sj,a, s ′j) = g(a, s ′j) , if g ∈ G(sj)

= undefined otherwise

and

r(sj,a, s ′j) = r(s ′j) , if r ∈ R(sj,a)

= undefined otherwise

1.1.2 Modelling symmetric choices

The communication mechanism we presented before is based on input/out-
put, and thus asymmetric: our synchronizations distinguish the entity that
decides to output the label from the entities that react to that decision. Some-
times synchronizations are fully symmetric, in the sense that, if there are
several common labels enabled, then the decision concerning the label to
execute is up to all the entities sharing the label.

Next, we show how symmetric choices can be modelled within our frame-
work.

Example 1.2. A boy from Colombia and a girl from Argentina are intro-
duced in an informal meeting. In both countries it is usual to give a little
kiss to a girl being introduced. However, they are not sure that in the other
one’s country such a kiss is usual, and they think that maybe they should
shake their hands. On the other hand, shaking hands may seem very formal
for this meeting... Note that in this example both the boy and the girl are
choosing what to do, and that both need to synchronize to do it. Figure 1.6
illustrates how this choice can be modelled using input/output labels. In

Boy Girl

kiss!

shake?kiss?

shake! kiss!

shake?kiss?

shake!

Figure 1.6: Modelling symmetric choices using input/output labels

these cases, we can abstract away the input/output qualifiers and simply
consider the fact that they can kiss or shake hands with any probability.
For instance, consider the behaviour in which they kiss with probability 1/2.
This behaviour corresponds to several behaviours of our model. One of such
behaviours is the one in which the boy decides first and he chooses to kiss
with probability 1/2. Note that, in this case, the choice of the girl is irrele-
vant. In the converse case, the girl decides first and the choice of the boy is

1.1 simple interleaved probabilistic i/o automata 17

irrelevant. Note that, in this example, we also deal with the nondetermin-
ism concerning the one that “decides first”. Such nondeterminism can be
also resolved probabilistically. In fact, it may be the case that they note each
other indecision and the boy says: “OK, let’s flip a fair coin. If the coin lands
heads, then I decide” †. Moreover, suppose that, if the boy decides, then he
chooses to kiss with probability 1, while the girl, in case the coin lands tails,
chooses to shake hands. The probability that they kiss is the probability that
the boy decides and he chooses to kiss, that is, 1/2 · 1 = 1/2.

In the next section, we present a framework of probabilistic automata that
uses the input/output mechanism we have described.

1.1.3 Simple Interleaved Probabilistic I/O Automata

In our framework, a system is obtained by composing several probabilistic I/O
atoms. Each atom is a probabilistic automaton having reactive and generative
transitions.

Definit ion 1.3. A simple probabilistic I/O atom is a tuple

(S, ACTLAB,G,R, INIT) ,

where

• S is a finite set of states,

• ACTLAB is a finite set of actions labels,

• G is a generative structure on (S, ACTLAB), Gi

• R is a reactive structure on (S, ACTLAB) and Ri

• INIT ∈ S is the initial state.

We require atoms to be input-enabled:

∀s ∈ S,a ∈ ACTLAB : R(s,a) 6= ∅ . (1.1)

We write Si to denote the set of states of an atom Ai and similarly for the
other elements of the tuple. In addition, we write TGi (TRi , resp.) for the set TGi

TRi
of generative (reactive, resp.) transitions on (Si, ACTLABi) (Def. 1.1).

The input-enabledness requirement is standard, and it is already present
in the first works introducing I/O automata [117].

A path of an atom Ai is a sequence s1i .a1. · · · .an−1.sni such that ski ∈ Si, Path in an atom

ak ∈ ACTLABi and g(ski ,a, sk+1
i) > 0 for some g ∈ Gi(ski). The set of paths in

Ai is denoted by APATHS(Ai). APATHS(Ai)

An interleaved probabilistic I/O system P is a set ATOMS(P) of probabilistic
I/O atoms A1, · · · ,AN. The set of states of the system is SP =

∏
i Si, and

the initial state of the system is INIT = (INIT1, · · · , INITN). During this thesis
we use N to denote the number of atoms in the system under consideration. N

The parallel composition of two systems P, Q (denoted by P ‖ Q) is the system ‖
having ATOMS(P ‖ Q) = ATOMS(P)∪ATOMS(Q). Given two atoms A and B, we

†OK, I pushed the example too far. It cannot be such a case.

18 a framework for distributed systems

denote by A ‖ B the parallel composition of the systems P with ATOMS(P) =

{A} and Q with ATOMS(Q) = {B}.
In order to define how the system evolves, we define compound transi-

tions, which are the transitions performed by the system as a whole. In such
compound transitions, all the atoms having the same action label in their
alphabet must synchronize and exactly one of them must participate with
an output (generative) transition (thus modelling multicasting). Formally, a
compound transition is a tuple c = (gi,a, rj1 , · · · , rjm) (we require i 6= jk
and jk 6= jk ′ for all k 6= k ′) where gi is a generative transition in the atom
Ai (the active atom), a ∈ ACTLABi is an action label, the rjk are reactive tran-
sitions in the atoms Ajk (the reactive atoms) having a in their alphabet, i. e.,
the set {Ai,Aj1 , · · · ,Ajm} is equal to {Aj | a ∈ ACTLABj}. We say that Ai, Aj1 ,
. . . , Ajm are the atoms involved in the compound transition. We also say that
an atom Ak participates in a compound transition if Ak ∈ {Ai,Aj1 , · · · ,Ajm}.
The action label a of a compound transition c is indicated by LABEL(c).LABEL(c)

We denote the active atom Ai by ACTIVE(c) and the set of reactive atomsACTIVE(c)

{Aj1 , · · · ,Ajm} by REACTIVE(c). Note that REACTIVE(c) = {Ai | LABEL(c) ∈REACTIVE(c)

ACTLABi} \ {ACTIVE(c)}. A compound transition is an internal transition of an
atom Ai if LABEL(c) ∈ ACTLABi and for all j 6= i we have LABEL(c) 6∈ ACTLABj.

We say that a compound transition c = (gi,a, rj1 , · · · , rjm) is enabled in
state s = (s1, · · · , sN) (denoted by c ∈ ENABLED(s)) if gi ∈ Gi(si) and rjk ∈
Rjk(sjk ,a) for all Ajk such that a ∈ ACTLABjk .

Definit ion 1.4. Given a compound transition c = (gi,a, rj1 , · · · , rjm) and
states s = (s1, · · · , sN), s ′ = (s ′1, · · · , s ′N), the probability c(s, s ′) of reachingc(s, s ′)

a state s ′ from a state s using c is

gi(s,a, s ′i)∑
s ′′ gi(s,a, s ′′i)

·
m∏
k=1

rjk(s,a, s ′jk)

if sl = s ′l for every atom not involved in the transition. Otherwise, the prob-
ability is 0.

The factor 1∑
s ′′ gi(s,a,s ′′i) is introduced since c(s, s ′) is the probability that

s ′ is reached conditioned to the event that a is output. The following lemma
ensures that that c(s, ·) can be seen as a discrete probability distribution.

Lemma 1.1. For all states s and compound transitions c such that c ∈ ENABLED(s):∑
s ′

c(s, s ′) = 1 .

Proof. Let c = (gi,a, rj1 , · · · , rjm) and s = (s1, · · · , sN). Then,Note that, in this
proof, we make
intensive use
of Notation 1.1.

∑
s ′

gi(si,a,πi(s ′)) ·
m∏
k=1

rjk(sjk ,a,πjk(s
′))

=
∑
s ′i

∑
s ′j1

· · ·
∑
s ′jm

gi(si,a, s ′i) ·
m∏
k=1

rjk(sjk ,a, s ′jk)

=
∑
s ′i

gi(si,a, s ′i) ·
(∑
s ′j1

· · ·
∑
s ′jm

m∏
k=1

rjk(sjk ,a, s ′jk)
)

=
∑
s ′i

gi(si,a, s ′i) ·
(∑
s ′j1

rj1(sj1 ,a, s ′j1) ·
(∑
s ′j2

· · ·
∑
s ′jm

m∏
k=1

rjk(sjk ,a, s ′jk)
))

1.1 simple interleaved probabilistic i/o automata 19

= · · ·

=
∑
s ′i

gi(si,a, s ′i) ·
(∑
s ′j1

rj1(sj1 ,a, s ′j1) ·
(
· · ·
∑
s ′jm−1

rjm−1
(sjm−1

,a, s ′jm−1
)

·
(∑
s ′jm

rjm(sjm ,a, s ′jm)
)
· · ·
))

=
∑
s ′i

gi(si,a, s ′i) ·
(∑
s ′j1

rj1(sj1 ,a, s ′j1) ·
(
· · ·
∑
s ′jm−1

rjm−1
(sjm−1

,a, s ′jm−1
)

·1 · · ·
))

=
∑
s ′i

gi(si,a, s ′i) ·
(∑
s ′j1

rj1(sj1 ,a, s ′j1) ·
(
· · ·
∑
s ′jm−1

rjm−1
(sjm−1

,a, s ′jm−1
) · · ·

))
= · · ·

=
∑
s ′i

gi(si,a, s ′i)

From this calculation, we obtain:∑
s ′

c(s, s ′)

=
1∑

s ′′ gi(si,a, s ′′i)
·
∑
s ′

(
gi(si,a,πi(s ′)) ·

m∏
k=1

rjk(sjk ,a,πjk(s
′))
)

=
1∑

s ′′ gi(si,a, s ′′i)

∑
s ′i

gi(si,a, s ′i)

= 1 .

In order to ease some definitions, we introduce a fictitious “stutter” com-
pound transition ς . Intuitively, this transition is executed iff the system has ς

reached a state in which no atom is able to generate a transition.

Definit ion 1.5. For all states s such that ∀AiGi(πi(s)) = ∅, we let

ENABLED(s) = {ς} .

The probability ς(s, s ′) of reaching s ′ from s using ς is 1, if s = s ′, or 0,
otherwise.

A path σ of P is a sequence s1.c1.s2.c2 · · · cn−1.sn such that

ci is enabled in si and ci(si, si+1) > 0 for all i . (1.2)

A path can be finite or infinite. Paths of the system P are called global paths Global path

to disambiguate them from the paths of the atoms.
For a finite path σ as before, we define:

• σ(k) = sk, σ(k)

• σ〈k〉 = ck, σ〈k〉

• LAST(σ) = sn, LAST(σ)

• LEN(σ) = n LEN(σ)

20 a framework for distributed systems

• σ↓k = s1.c1 · · · ck−1.sk. If k is negative, s1.c1 · · · cLEN(σ)+k−1.sLEN(σ)+kσ↓k

• σ↑k = sk.c1 · · · cn−1.sn.σ↑k

• σ ′ v σ if σ ′ = σ↓k for some k,σ ′ v σ

• σ ·σ ′ = s1.c1 · · · cn−1.sn.d2.t2 · · ·dm−1.tm if σ ′ = t1.d2.t2 · · ·dm−1.tmσ · σ ′

and t1 = sn

• the cylinder generated by σ (denoted by (σ)↑) comprises all the infi-(σ)↑

nite paths ω that extend σ, that is, σ v ω. It is called also the set of
extensions to σ.

Example 1.3 (Guess heads or tails). We can use the IPIOA to present the
toy example in Subsection 0.1.3 in a formal setting. The atoms corresponding
to T and G are depicted in Fig. 1.7.In general, in the

pictures we omit
input transitions
required
by Eqn. (1.1) if they
are irrelevant

T G

h! t!
1/2 1/2

gh?gt? gt?

INITT INITGgh? gt?

gh?

s1Gs1T

ch! ct!
s2Gs2T

s3T

gh! gt!

s3G s4Gs4T

Figure 1.7: T tosses a coin and G has to guess

Actions gh and gt communicate the choice ofG to T . An intuitive meaning
is that G chooses heads or tails using ch and ct and then it guesses heads or
tails accordingly using gh and gt.

We have ACTLABT = {h, t,gh,gt} and ACTLABG = {ch, ct,gh,gt}. Later on,
we define our semantics in such a way that

h 6∈ ACTLABG ∧ t 6∈ ACTLABG ,

implies that the outcome of the coin toss is not visible to G.
The model does not specify the order in which transitions of T and G are

interleaved. It may be the case that T flips the coin immediately, while G de-
lays for some time before deciding. In this case, atom T has some probability
to lose. If G were allowed to see the outcome of the coin, such probability
would be 1, since G can choose gh! if he observes h, and gt! if he observes
t. Since G is not allowed to see the outcome of the coin, such probability is
the probability of guessing a random value chosen uniformly among two
options, that is, 1/2.

1.1.4 Distributed schedulers

In this subsection, we explain mechanisms to resolve nondeterminism. Al-
though the mechanism to resolve nondeterministic choices among transitions
are very similar to ones presented before [46, 64] (in particular, our input and
output schedulers are similar to the ones in [46]), the mechanism to resolve
choices among atoms was proposed by us [79].

1.1 simple interleaved probabilistic i/o automata 21

Although we use the metaphor of “games and adversaries” in some ex-
planations, for the formal definitions we prefer the term “scheduler” to “ad-
versary”, since “scheduler” is preferred in recent research in distributed
systems [46, 45, 42, 64].

In a distributed setting as IPIOA, we need to resolve different kinds of
nondeterministic choices. In the first place, it might be the case that several
atoms have transitions enabled. In addition, each atom might have several
output transitions enabled. And there is a third kind: it may be the case that
several reactive transitions are enabled for the same label in the same state.
These kinds of nondeterminism are resolved by three kinds of schedulers:
the interleaving, output and input schedulers, respectively.

We start by explaining output schedulers. For each atom Ai, there is an out-
put scheduler Θi. Such a scheduler chooses one of the enabled generative
transitions in Ai. More generally, the scheduler may choose a probability
distribution on the enabled generative transitions. We can see this scheduler
as an adversary that tosses a (possibly biased) coin to decide which gener-
ative transition to pick up. The choice of the transition (or the probability
distribution) must depend solely on the information available to the out-
put scheduler, Given a global path σ, we model the available information
as the local path traversed by Ai during the execution of σ. The function
[[·]]i : PATHS(P)→ APATHS(Ai) strips a global path to obtain a path of Ai.

Definit ion 1.6. For all atoms Ai, the function [[·]]i is defined inductively
as follows:

• [[(INIT1, · · · , INITN)]]i = INITi and

• [[σ.c.(s1, · · · , sN)]]i = [[σ]]i.LABEL(c).si if LABEL(c) ∈ ACTLABi and

• [[σ.c.(s1, · · · , sN)]]i = [[σ]]i if LABEL(c) 6∈ ACTLABi .

An output scheduler Θi for atom Ai is then a function

Θi : APATHS(Ai)→ PROB(TGi) .

We restrict the schedulers so that they can only choose enabled transitions,
and so we require

Θi([[σ]]i)(gi) > 0 =⇒ gi ∈ Gi(πi(LAST(σ))) (1.3)

for all σ such that
∣∣Gi(πi(LAST(σ)))

∣∣ > 0, that is, for all σ in which Ai
has enabled transitions. Because of the way in which we give semantics to
schedulers, the value of Θi is irrelevant in case Ai has no enabled transitions.

The input scheduler chooses a reactive transition for each state s and action
label a. Following the same argument as for output schedulers, an input
scheduler Υi is a function

Υi : APATHS(Ai)× ACTLABi → PROB(TRi)

such that

Υi([[σ]]i,a)(ri) > 0 =⇒ ri ∈ Ri(πi(LAST(σ)),a) .

Notice that
∣∣Ri(πi(LAST(σ)),a)

∣∣ > 0 by the input-enabledness condition (1.1).

22 a framework for distributed systems

We still need to resolve the nondeterministic choice concerning the next
atom to perform an output. We use an interleaving scheduler to resolve such
nondeterminism. Note that, so far, we were using APATHS(Ai) as the argu-
ment to schedulers. However, the interleaving scheduler is not related to a
particular atom Ai. In our first attempt, we take a permissive approach, and
our definition allows the interleaving scheduler to see the global path (later
on, in Sec. 2.1, we introduce restrictions on the interleaving scheduler). An
interleaving scheduler is thus a function:

I : PATHS(P)→ PROB({A1, · · · ,AN}) (1.4)

such that

I(σ)(Ai) > 0 =⇒ Gi(πi(LAST(σ))) 6= ∅ . (1.5)

The last restriction ensures that the atoms chosen by the interleaving sched-
uler are able to generate a transition.

A composition of interleaving, output and input schedulers forms a sched-
uler for the whole system, as formally defined below.

Definit ion 1.7. A distributed scheduler is a tuple

(I, {Θi}Ni=1, {Υi}Ni=1)

I is an interleaving scheduler, Θi is an output scheduler and Υi is an input
scheduler for each Ai ∈ ATOMS(P).

Given a system P, we denote by DISTP the set of all distributed schedulersDISTP

for P.

An important subset of schedulers is that of non-randomized schedulers.
Intuitively, these schedulers correspond to adversaries that, when facing a
nondeterministic choice, pick one of the options instead of selecting one of
them at random.

Definit ion 1.8. We say that a scheduler is non-randomized iff I(σ)(Ai) >Non-randomized
schedulers 0 =⇒ I(σ)(Ai) = 1, Θi(σi)(gi) > 0 =⇒ Θ(σi)(gi) = 1 and Υi(σi,a)(ri) >

0 =⇒ Υ(σi,a)(ri) = 1.
The set of non-randomized distributed schedulers is denoted by NRDIST(P).

Each scheduler defines a probability measure on the set of infinite paths.
It does so by defining the probability that a compound transition c occurs,
given that the global finite path σ has occurred. This probability is denoted
by η(σ)(c). After the intuitive explanations, we prove that the function de-
fined below is a discrete probability distribution (Lemma 1.2).

Definit ion 1.9. Let C be the set of all compound transitions for system P.
For all η ∈ DISTP, σ ∈ PATHS(P), the function η(σ)(·) : C→ [0, 1] is defined as:

η(σ)(gi,a, rj1 , · · · , rjm) = I(σ)(Ai) · Θi([[σ]]i)(gi)

·
∑
si

gi(πi(LAST(σ)),a, si)

·
m∏
k=1

Υjk([[σ]]jk ,a)(rjk)

if
∣∣Gi(πi(LAST(σ)))

∣∣ > 0 for some Ai. Otherwise, η(σ)(ς) = 1.

1.1 simple interleaved probabilistic i/o automata 23

Intuitively, the event “(gi,a, rj1 , · · · , rjm) occurs” is the intersection of the
events:

• the interleaving scheduler I chooses Ai

• Θi chooses gi

• gi outputs a

• each of the atoms Ajk chooses rjk .

We assume all these events to be independent, and so the probability as-
signed to the compound transition (gi,a, rj1 , · · · , rjm) is the product of the
events’ probabilities.

Recall that, in the definition of output schedulers, we did not impose the
restriction

Θi([[σ]]i)(gi) > 0 =⇒ gi ∈ Gi(πi(LAST(σ))) .

for the paths σ such that
∣∣Gi(πi(LAST(σ)))

∣∣ = 0, on the basis that, for such σ,
the value of Θi([[σ]]i) would be irrelevant in our semantics. For all transitions
gi ∈ TGi note that, regardless of the value Θ([[σ]]i), we have η(σ)(gi, · · ·) = 0,
since I(σ)(Ai) = 0 by (1.4).

Similarly as we did for Def. 1.4, we show that η(σ)(·) can be seen as a
discrete probability distribution on the set {c | c ∈ ENABLED(LAST(σ))}.

Lemma 1.2. For all distributed schedulers η, paths σ, compound transitions c, we
have ∑

c∈ENABLED(LAST(σ))

η(σ)(c) = 1 .

Proof. Let s = (s1, · · · , sN) = LAST(σ).∑
(gi,a,rj1 ,··· ,rjm)∈ENABLED(LAST(σ))

η(σ)((gi,a, rj1 , · · · , rjm))

=
∑

Ai∈ATOMS(P)

∑
gi∈Gi(si)

∑
a∈ACTLABi

∑
rj1∈Rj1(sj1 ,a)

· · ·
∑

rjm∈Rjm(sjm ,a)

I(σ)(Ai) · Θi([[σ]]i)(gi) ·
(∑
s

gi(LAST(σ),a, s)
)
·
m∏
k=1

Υjk([[σ]]i)(rjk)

=
∑
Ai

I(σ)(Ai)
∑
gi

∑
a

∑
rj1

· · ·
∑
rjm

Θi([[σ]]i)(gi)

·
∑
s

gi(LAST(σ),a, s) ·
m∏
k=1

Υjk([[σ]]i)(rjk)

=
∑
Ai

I(σ)(Ai)
∑
gi

Θi([[σ]]i)(gi) ·
(∑
a

(
∑
s

gi(LAST(σ),a, s))

·
(∑
rj1

· · ·
∑
rjm

m∏
k=1

Υjk([[σ]]i)(rjk)
))

=
∑
Ai

I(σ)(Ai)
∑
gi

Θi([[σ]]i)(gi) ·
(∑
a

(
∑
s

gi(LAST(σ),a, s))

·
(∑
rj1

Υj1([[σ]]i)(rj1)
(∑
rj2

· · ·
∑
rjm

m∏
k=2

Υjk([[σ]]i)(sjk)
)))

24 a framework for distributed systems

= · · ·

=
∑
Ai

I(σ)(Ai)
∑
gi

Θi([[σ]]i)(gi) ·
(∑
a

(
∑
s

gi(LAST(σ),a, s))

·
(∑
rj1

Υj1([[σ]]i)(rj1)

·
(
· · ·
∑
rjm−1

Υjm−1
([[σ]]i)(rjm−1

)

·
(∑
rjm

Υjm([[σ]]i)(s
′
jm

)
)
· · ·
)))

∑
Ai

I(σ)(Ai)
∑
gi

Θi([[σ]]i)(gi) ·
(∑
a

(
∑
s

gi(LAST(σ),a, s))

·
(∑
rj1

Υj1([[σ]]i)(rj1)
(
· · ·
∑
rjm−1

Υjm−1
([[σ]]i)(rjm−1

)

· 1 · · ·
)))

= · · ·

=
∑
Ai

I(σ)(Ai)
∑
gi

Θi([[σ]]i)(gi) ·
(∑
a

(
∑
s

gi(LAST(σ),a, s)) · 1
)

=
{ ∑

a

∑
s g(a, s) = 1 (definition of generative transition)

}∑
Ai

I(σ)(Ai)
∑
gi

Θi([[σ]]i)(gi) · 1

=
∑
Ai

I(σ)(Ai)

= 1

The probability distribution in Def. 1.9, induces a probability measure on
the set of paths.

Definit ion 1.10 (Probability of a set of paths). For a cylinder (σ)↑, the
probability measure PRη is inductively defined by:

PRη((INIT)↑) = 1

PRη((σ.c.s)↑) = PRη((σ)↑) · η(σ)(c) · c(LAST(σ), s)

PRη uniquely extends to least σ-field containing all cylinders in the stan-
dard way (namely, by resorting to the Carathéodory extension theorem [109]).

Although in the general case we deal with arbitrary measurable sets, for
some results we restrict to reachability sets. Given a set a set of states U, letReachability set

REACH(U) denote the set of all in infinite paths σ such that ω(k) ∈ U forREACH(U)

some k.

Example 1.4. Consider again the guess-heads-or-tails example. In Fig. 1.9
we present a graphical representation of the system P = T ‖ G. Figure 1.10

depicts a scheduler η ∈ DISTP. Given the enabledness restrictions we impose
to schedulers (the interleaving scheduler must choose atoms with enabled
transitions, etc.) such a scheduler is completely determined by the defini-
tions: I(INIT) = 1 :T and ΘG(INITG) = 1 :ch!. As we can see in the graphical

1.2 extended interleaved probabilistic i/o automata 25

T G

h! t!
1/2 1/2

gh?gt? gt?

INITT INITGgh? gt?

gh?

s1Gs1T

ch! ct!
s2Gs2T

s3T

gh! gt!

s3G s4Gs4T

Figure 1.8: T tosses a coin, G guesses heads or tails

1/21/2

INIT‖

h! t!
ch ! ct !

ch !ct !

t!
1/2

h!
1/2 t!

1/2
h!

1/2

ch ! ct !

gh !

gh !

gt !

gt !

gt !gh !

Figure 1.9: System P = T ‖ G

gh?gh?

INIT‖

h! t!

ch ! ch !

1/2 1/2

Figure 1.10: Scheduler η ∈ DISTP

representation, the choice is not changed according to the outcome of the
coin toss: ch is chosen for both s1T and s2T .

Note that, by Def. 1.9, we have η(σ)(ς) = 1 for all σ such that π2(LAST(σ)) =

s3G or π2(LAST(σ)) = s4G, since in these paths there are no enabled transitions.
In particular, note that

∀σ,σ ′ : η(σ) = η ′(σ)

holds for all η,η ′ differing only wrt. the value of ΘG(INITG.ch!.s1G.gh!.s3G).

1.2 extended interleaved probabilistic i/o automata

In this section, we present several extensions to the definitions in the previ-
ous section. We need these extensions to deal with existing formalisms such
as the PRISM language [97]. Subsections 1.2.1 and 1.2.2 present extensions
to transitions and structures, resp. Subsection 1.2.3 summarizes the link be-
tween the systems defined in Sec. 1.1 and the ones in this section.

1.2.1 Extended transitions

Suppose that a generative transition g is enabled in two states s and s ′.
According to Def. 1.1, the probability of generating a and reaching s ′′ is the
same in both s and s ′ (namely g(a, s ′′)). This definition of transition is not
straightforwardly compatible with guarded command languages, where the
state of the system is given by a valuation over a set of variables. As an

26 a framework for distributed systems

example, consider a system whose state consists of two variables s and t

ranging over {0, 1}. Moreover, suppose that we have a command [a]s = 0 →
s = 1, whose intended meaning is “if s is 0, then output a and assign 1 to
s”. Then, in the state (s = 0, t = 0) this command leads to (s = 1, t = 0) with
probability 1, and to (s = 1, t = 1) with probability 0. Conversely, in the state
(s = 0, t = 1), it leads to (s = 1, t = 0) with probability 0, and to (s = 1, t = 1)

with probability 1. In short, the state reached after the command depends
on what the actual state is. Then, we generalize generative transitions so
that the probabilities depend on the actual state. With respect to reactive
transitions, we extend them so that probabilities depend both in the actual
state and the label to which the atom reacts.

Definit ion 1.11. An (extended) generative transition for atom Ai is a
function gi : Si → PROB(ACTLABi × Si). The set comprising all generative
transitions for atom Ai is denoted by TGi . An (extended) reactive transition
in atom Ai is a function ri : Si × ACTLABi → PROB(Si). The set comprising all
reactive transitions for atom Ai is denoted by TRi .

Of course, if gi is not enabled in a given state s, then the value gi(s) is
irrelevant. We could have defined the domain of gi as the set of states in
which gi is enabled, but this makes no difference and we prefer to keep
the definition simple. Note that the definition of TG clashes with that of
the original definition (Def. 1.1). This causes no harm as long as it is clear
whether the transitions we are considering are extended or not.

Notation 1.2. We write gi(si,a, s ′i) for gi(si)(a, s ′i) and ri(si,a, s ′i) for
ri(si,a)(s ′i).

Together with Notation 1.1, this notation allows us to abstract whether the
transitions are extended or not.

1.2.2 Global enabledness conditions

We have defined the generative structure of an atom Ai as a function Gi :

Si → TGi . Then, it suffices to look to the local state in order to see if a
transition is enabled. This is possible since we require input-enabledness
(Eqn. (1.1)): otherwise, it might be the case that gi is enabled in si, gi(a, s ′i) >
0 for some a, s ′ and a is in the alphabet of an atom Aj such that Rj(sj,a) = ∅.
In other words, gi is enabled, but it generates an action a while Aj blocks
this action.

As a result, when interpreting languages without input-enabledness into
IPIOA, our definition of generative structures happens to be inappropriate.
In general, if gi(a, s ′i) > 0, then we would like gi to be enabled only if
Rj(sj,a) 6= ∅ for all Aj such that a ∈ ACTLABj, Aj 6= Ai. The following
definition helps us to achieve this goal.

Definit ion 1.12. A (global) generative structure for atom Ai is a func-Generative structure

tion Gi :
∏N
i=1 Si → P(TGi). A (global) reactive structure for atom Ai is aReactive structure

function Ri :
∏N
i=1 Si × ACTLAB → P(TRi). (For the definition of TGi and TRi ,

see Def. 1.11.) We restrict to finite structures, that is, Gi(s) and Ri(s,a) are
finite for all s, a.

1.2 extended interleaved probabilistic i/o automata 27

In order to see the usefulness of Def. 1.12, suppose that we have an IPIOA
such that gi(a, s ′i) > 0, gi ∈ Gi(si) and Rj(sj,a) = ∅ for some sj, a. Then,
we can use the local generative structure Gi of atom Ai to define a global
generative structure G ′i. This global structure is defined as:

G ′i(s) = {gi | gi ∈ Gi(πi(s))
∧ ∀Aj 6= Ai : gi(a, s ′i) > 0 ∧ a ∈ ACTLABj =⇒ Rj(πj(s),a) 6= ∅}

That is, if gi ∈ Gi(πi(s)) and no atom blocks an action generated by gi, then
gi ∈ G ′i(s).

An important benefit of this encoding is that we do not need to resign the
input-enabledness assumption: in fact, if Rj(s,a) = ∅, then we can define
Rj(s,a) arbitrarily, since (by definition of G ′i) the transitions in Rj(s,a) will
not be executed in sj.

We finish this subsection by noting that local structures can be seen as a
particular case of global ones: in fact, given a global structure G ′i complying
with

∀s, t : πi(s) = πi(t) =⇒ G ′i(s) = G ′i(t) , (1.6)

we can define a local structure Gi(πi(s)) = Gi(s) (= Gi(t)). Conversely,
given a local structure Gi, we can define a global structure G ′i as G ′i(s) =

Gi(πi(s)). Similarly, a local reactive structure can be seen as a global struc-
ture R ′i complying

∀a : ∀s, t : πi(s) = πi(t) =⇒ R ′i(s,a) = R ′i(t,a) . (1.7)

Most of the time we find it useful to abstract whether the atoms have local
or global structures, and so we assume the structures to be global. Some
other times we want to show that our results are valid specifically in the
case of local structures (for instance, undecidability results are stronger if
they hold for specific classes of systems). In case the structures are local
(Def. 1.2) we say that the system has local enabledness conditions. If we are Local enabledness

conditionsunder Def. 1.12, we say that the system has global enabledness conditions.
Global enabledness
conditions

1.2.3 Extended systems

We define an extended probabilistic I/O atom as a tuple (S, ACTLAB,G,R, INIT).
The only difference with respect to the atoms defined before is that G and R
are structures as in Def. 1.12.

An (extended) IPIOA is a set of extended atoms, and the composition
of two systems P and Q comprises the atoms of both P and Q. Similarly,
all other definitions in Subsection 1.1.3 map straightforwardly to extended
systems.

Each atom Ai = (S, ACTLAB,G,R, INIT) as in Def. 1.3 can be seen as an
extended atom A ′ = (S, ACTLAB,G ′,R ′, INIT) complying with the following
properties: Notation 1.1 results

particularly helpful
to understand the
last two conditions.

• G ′i complies with Eqn. (1.6),

• R ′i complies with Eqn. (1.7),

• gi(si,a, s ′i) = gi(ti,a, s ′i) for all gi, si, a, s ′i, ti and

28 a framework for distributed systems

• ri(si,a, s ′i) = ri(ti,b, s ′i) for all ri, si, a, s ′i, b, ti.

The first two conditions reflect the fact that the structures in A are as in Def-
inition 1.2, while the last two conditions reflect the fact the transitions in A
are as in Definition 1.1.

1.3 generalized projections and schedulers

In this section, we generalize the projections and schedulers introduced
in Subsection 1.1.4. These generalized versions apply to simple as well as
to extended IPIOA.

1.3.1 Projections

Definition 1.6 in Subsection 1.1.4 introduces the function [[·]]i. It transforms
a global path into an local path of atom Ai. This function is used in order to
evaluate the scheduler in a local path instead of a global one: when defining
the probability η(σ)(c) (Def. 1.9), we faced the factor Θi([[σ]]i). Since Θi :

APATHS(Ai)→ PROB(TGi), we have Θi([[σ]]i) = Θi([[σ
′]]i) for all σ, σ ′ such that

[[σ]]i = [[σ ′]]i.
The transformation from global to local paths hides information to the

scheduler. In order to illustrate this, we can consider functions other than
[[·]]i and, particularly, two extreme cases:

• If we consider the function fi : PATHS(P) → {INITi} defined as fi(σ) =

INITi for all σ, then we can define our output schedulers as functions
Θi : {INITi} → PROB(TGi). In this case, Θi(fi(σ)) = Θi(fi(σ

′)) for all σ,
σ ′. Here, Θi has no information about what the global path is, and
so it is forced to choose the same distribution in all paths (to ease
explanation, we assume all transitions to be enabled in all states, thus
disregarding restriction (1.3)).

• If we consider the identity function ID : PATHS(P) → PATHS(P) and the
schedulers Θi : PATHS(P)→ PROB(TGI), then Θi(ID(σ)) = Θi(σ). Here, it
may be the case that Θi chooses a different transition for each global
path. In other words, Θi has perfect information about what the global
path is, and then Θi can choose according to the global path.

These examples motivate the following general definition.

Definit ion 1.13. Given a system P =‖Ni=1 Ai, a projection [·] is a family of
functions

{
[·]i : PATHS(P)→ O[·]i

}
i
. The set of all projections for P is denoted

by PROJECTIONS(P). For the particular case of [[·]]i, we have O[·]i = APATHS(Ai).
The range of [·]i is denoted by LOCALPATHS

[·]
i .

Usually, we do not care too much for the precise definition of the set O[·]i ,
as we can often infer it from the definition of [·]i. We have LOCALPATHS

[·]
i ⊆

O[·]i , as thatO[·]i is the co-domain of [·], while LOCALPATHS
[·]
i is the range. Then,

for all σi ∈ LOCALPATHS
[·]
i there exists σ such that [σ]i = σi.

From the two examples above, we can construct two projections [·]f and[·]f

[·]ID defined by [σ]fi = INITi and [σ]ID
i = σ for all σ.[·]ID

When introducing the function fi, we assumed that all transitions were en-
abled in all states. We need this assumption in order to ensure that Θi(fi(σ))

1.3 generalized projections and schedulers 29

is well defined, in other words, it must comply with the following analogous
of (1.3):

Θi(fi(σ))(gi) > 0 =⇒ gi ∈ Gi(LAST(σ)) . (1.8)

Next, we look for conditions on the projections and the generative transi-
tions so that well-defined schedulers are ensured to exist. In case there are
two paths σ, σ ′ such that [σ]i = [σ ′]i = σi, we require Gi(πi(LAST(σ))) =

Gi(πi(LAST(σ ′))). To illustrate this, suppose [σ]i 6= [σ ′]i, Gi(πi(LAST(σ))) =

{gi} and Gi(πi(LAST(σ ′))) = {g ′i}, with gi 6= g ′i. In this system, no output
scheduler for Ai can be defined, since condition (1.8) fails for either σ or σ ′.
In short, the generative transitions enabled at the end of two indistinguish-
able paths must coincide: if this restriction does not hold, then the scheduler
would not know whether it can choose a certain transition or not, since it
might be the case that a transition is enabled in some global path σ, but it is
disabled in other global paths having the same projection as σ.

Hence, we require,

[σ]i =
[
σ ′
]
i

=⇒ Gi(LAST(σ)) = Gi(LAST(σ ′)) . (1.9)

Note that we write Gi(LAST(σ)) = Gi(LAST(σ ′)), instead of Gi(πi(LAST(σ))) =

Gi(πi(LAST(σ ′))), since in the general case we deal with global transition
structures (see Def. 1.12). The projection [[·]] complies with this requirement
for all simple IPIOA: if [[σ]]i = [[σ ′]]i = s1i .a1. · · · .ski , then πi(LAST(σ)) =

πi(LAST(σ ′)) = ski . Since simple IPIOA have local transition structures (that
is, its transitions structures are as in Def. 1.2), we obtain Gi(πi(LAST(σ))) =

Gi(πi(LAST(σ ′))) = Gi(s
k
i), as desired.

Similarly, we require input schedulers to satisfy:

[σ]i =
[
σ ′
]
i

=⇒ Ri(LAST(σ),a) = Ri(LAST(σ ′),a) (1.10)

for all a ∈ ACTLABi.
We postpone the proof that these requirements ensure that a well-defined

scheduler exists until we have presented the definition of generalized sched-
ulers (Theorem 1.1).

In addition to requirements (1.9) and (1.10), we assume an additional prop-
erty. The motivation for this assumption is that the property is very natural,
and all the projections we present comply with it (in addition, it is quite tire-
some to repeat the property in the hypotheses of all theorems). We assume:

∀σ,σ ′ :
(
∃k : LABEL(σ ′〈k〉) ∈ ACTLABi

)
=⇒ [σ]i 6=

[
σ · σ ′

]
i

. (1.11)

This assumption is best explained by showing why it holds for [[·]]. Note that
LABEL(σ ′〈k〉) ∈ ACTLABi means that Ai participates in the transition after the
k-th state in σ ′. W. l. o. g. , we consider the least such a k. Let a = LABEL(σ ′〈k〉).
Then, [[σ · σ ′]]i = [[σ]]i.a.σ ′i 6= [[σ]]i, where σ ′i is a local path. That is, after σ ·σ ′
the atom is able to see the label in which it synchronized after the k-th step
in σ ′. In the general case, the assumption is even weaker since, by requiring
[σ]i 6= [σ · σ ′]i, we just enforce that, after participating in a transition, the
scheduler has a different information than it had previous to the transition.
Intuitively, the scheduler notices that “something has happened”.

30 a framework for distributed systems

Example 1.5. Suppose that a system comprises several components, each
of which is modelled by an atom Ai. These components share a common re-
source, which is modelled as a separate atom Ar. We assume that the model
of the resource is completely deterministic: the components perform oper-
ations on the resource which univocally determine its next state; moreover,
the resource receives inputs from the components, and it does not generate
any output. Each component is allowed to see its local state, plus the state
of the resource. However, the component is not aware of a change in the
state of the resource until it performs an operation on it: in case the opera-
tion changes the state of the resource, the state observed is the updated one.
For the atoms Ai modelling components, the projection [·]i capturing the
information available to an atom at each point of the execution is:

• [(INIT1, · · · , INITN)]i = INITi

• [σ.c.(s1, · · · , sN)]i = [σ]i .LABEL(c).(si, sr)

If LABEL(c) ∈ ACTLABi ∩ ACTLABr. Here, sr is the local state of atom
Ar, and LABEL(c) ∈ ACTLABi ∩ ACTLABr means that c is a compound
transition involving both the component and the resource.

• [σ.c.(s1, · · · , sN)]i = [σ]i .LABEL(c).si
If LABEL(c) ∈ ACTLABi and LABEL(c) 6∈ ACTLABr. In this case, the transi-
tion involves the component but not the resource, and so the projection
gives the same information as [[·]].

• [σ.c.(s1, · · · , sN)]i = [σ]i if LABEL(c) 6∈ ACTLABi.

In this case, the atom does not obtain new information from c.

With respect to atomAr, the projection can be defined arbitrarily: projections
capture the information used to resolve the nondeterministic choices, and
we assumed that there are no such choices in Ar. For simplicity, let [σ]r =

[[σ]]r.
The restrictions (1.9) and (1.10) indicate that, if a component other than

Ai performs an operation on the resource, this operation does not affect the
enabledness of the transitions in Ai, until the next time Ai operates on the
resource.

In order to give a concrete example, assume there are two components
modelled by atoms A1 and A2, while the resource is modelled by Ar. Let
a ∈ ACTLAB1 ∩ ACTLABr, b ∈ ACTLAB1, b 6∈ ACTLABr, c 6∈ ACTLAB1. Then,

[σ︷ ︸︸ ︷
(s11, s12, s1r) . (g1,a, r1) . (s21, s12, s2r) . (g2,b) . (s31, s12, s2r) . (g3, c, r3) . (s31, s22, s3r)

]
1

= s11 .a . (s21, s2r) .b . s31 .

Furthermore, suppose that g3(s22,d, s32) > 0 for some d 6∈ ACTLABr. That is,
by executing g3, atom A2 can output not only c, but also a label d that is not
an operation on Ar. Then,

[σ′︷ ︸︸ ︷
(s11, s12, s1r) . (g1,a, r1) . (s21, s12, s2r) . (g2,b) . (s31, s12, s2r) . (g3,d) . (s31, s22, s2r)

]
1

= s11 .a . (s21, s2r) .b . s31 = [σ]1 .

The fact that [σ]1 = [σ ′]1 reflects that A1 is not able to see whether the state
of the resource has changed since the last operation on it. Atom A1 only

1.3 generalized projections and schedulers 31

knows that, after the last time A1 performed an operation, the state of the
resource was s2r .

An order on projections

We say that a projection [·] ′ gives at least the same information as [·] (written
[·] v [·] ′) if

∀Ai ∈ ATOMS(P),σ,σ ′ : [σ]i 6=
[
σ ′
]
i

=⇒ [σ] ′i 6= [σ ′] ′i (1.12)

that is, all the paths distinguished by [·] are distinguished by [·] ′ as well.
As an example, for the projection [·] in Example 1.5, we have [[·]] v [·]. Intu-

itively, [[·]] only allows to see the local state and the action labels in ACTLABi,
while [·] also allows to see the state of the shared resource after a synchro-
nization. In order to prove [[·]] v [·], we can prove the contrapositive of (1.12),
namely

∀σ,σ ′ : [σ]i =
[
σ ′
]
i

=⇒ [[σ]]i = [[σ ′]]i .

In case Ai = Ar, the result follows trivially from [·]r = [[·]]r. For atoms
Ai 6= Ar, the implication can be proven by induction, considering the four
cases in the definition of [σ]i in Example 1.5. A concrete example gives us
more insight: if

[
σ1
]
i
= INIT1.a1.(s11, s1r).a2.s21, then [[σ1]]i = INIT1.a1.s11.a2.s21.

In general, [[σ]]i can be obtained by removing the Ar-states from [σ]i. Hence,
for all σ, σ ′ such that [σ]i = [σ ′]i, by removing the Ar-states in [σ]i and [σ ′]i,
we obtain [[σ]]i = [[σ ′]]i as well.

We say that two projections are equivalent (denoted by [·] ≡ [·] ′) iff

∀σ,σ ′ : [σ]i 6=
[
σ ′
]
i
⇐⇒ [σ] ′i 6= [σ ′] ′i .

Note that [·] ≡ [·] ′ iff [·] v [·] ′ and [·] ′ v [·].
We can obtain more insight on the relations v and ≡ by considering the

kernel of the projections. The kernel of a function f (denoted by KERf) is an
equivalence relation defined as:

aKERf b ⇐⇒ f(a) = f(b) .

Hence,

[·] ≡ [·] ′ ⇐⇒ ∀Ai : KER[·]i = KER[·] ′i (1.13)

In addition, [·] v [·] ′ iff

∀Ai : ∀σ,σ ′ : σKER[·] ′i σ
′ =⇒ σKER[·]i σ

′ .

If we see the relation KER[·]i as a set of ordered pairs, then

[·] v [·] ′ ⇐⇒ KER[·] ′i ⊆ KER[·]i (1.14)

(in terms of relations, KER[·]i is coarser than or equal to KER[·] ′i).
The equivalences (1.13) and (1.14) imply that v defines a partial order on

PROJECTIONS(P)/≡ . The results in this thesis do not profit from this property
of v , and we point it out just to justify the notation. The only property of
the order v we use in the thesis is the lemma below, which states that [·]ID

is a top element of the order.

32 a framework for distributed systems

Lemma 1.3. For all projections [·], we have [·] v [·]ID.

Proof. We have to prove

[σ]i 6=
[
σ ′
]
i

=⇒ [σ]ID
i 6= [σ ′]ID

i .

By definition of [·]ID this is equivalent to

[σ]i 6=
[
σ ′
]
i

=⇒ σ 6= σ ′

which is true since [·]i is a function.

1.3.2 Schedulers

Using the generalized projections, we can generalize the distributed sched-
ulers. In order to introduce this generalization, we illustrate how output
schedulers (as in Subsection 1.1.4) can be seen as functions whose domain
is the set of global paths, instead of the local ones. Consider a function
f : PATHS(P)→ PROB(TGi). If

∀σ,σ ′ :
(
[[σ]]i = [[σ ′]]i =⇒ f(σ) = f(σ ′)

)
(1.15)

then we can define an output scheduler Θfi as Θfi(σi) = f(σ), where σ is any
global path such that [[σ]]i = σi. Equation (1.15) ensures that the definition
of Θfi(σi) does not depend on the particular σ chosen (as long as [[σ]]i = σi).
The functions f and Θfi are related by

∀σ : Θfi([[σ]]i) = f(σ) . (1.16)

Conversely, given a scheduler Θi, we can define a function fΘ as fΘ(σ) =

Θi([[σ]]i). This function complies with (1.15), as well as with the following
analogue of Equation (1.16):

∀σ : Θi([[σ]]i) = fΘ(σ) . (1.17)

In conclusion, the set of output schedulers is in one-to-one correspondence
with the set of functions f complying with (1.15). The existence of this corre-
spondence means that we could have defined output schedulers as functions
Θi : PATHS(P) → PROB(TGi) complying with Eqn. (1.15). By substituting an
arbitrary projection [·] for [[·]] in Eqn. (1.15), we get the general definition.

Given a projection [·], an output scheduler under [·] is a function

Θi : PATHS(P)→ PROB(TGi)

complying

Θi(σ)(gi) > 0 =⇒ gi ∈ Gi(LAST(σ))

for all σ such that
∣∣Gi(LAST(σ))

∣∣ > 0 and

∀σ,σ ′ :
(
[σ]i =

[
σ ′
]
i

=⇒ Θi(σ) = Θi(σ
′)
)

. (1.18)

Similarly, an input scheduler under [·] is a function

Υi : PATHS(P)× ACTLABi → PROB(TRi)

1.3 generalized projections and schedulers 33

such that

Υi(σ,a)(ai) > 0 =⇒ ri ∈ Ri(σ,a)

and

∀a ∈ ACTLABi,σ,σ ′ :
(
[σ]i =

[
σ ′
]
i

=⇒ Υi(σ,a) = Υi(σ
′,a)

)
. (1.19)

Recall that, when defining projections, we imposed the restrictions (1.9)
and (1.10), with the aim to ensure the existence of output and input sched-
ulers. Moreover, we can ensure the existence of non-randomized schedulers.

Theorem 1.1. For all atoms Ai, projections [·], a non-randomized output (input,
resp.) scheduler for Ai exists.

Proof. We prove the case for output schedulers (the case for input schedulers
follows in the same way). In order to do so, we construct an output scheduler
Θi. For all σi ∈ LOCALPATHS

[·]
i , let Q(σi) be a global path such that [Q(σi)]i =

σi, and let T(σi) be a generative transition enabled in LAST(Q(σi)). For all σ
such that [σ]i = σi, define

Θi(σ)(T([σ]i)) = 1

If [σ]i = [σ ′]i, then

Θi(σ) = 1 :T([σ]i) = 1 :T(
[
σ ′
]
i
) = Θi(σ

′)

as desired.
In addition, Θi(σ)(gi) > 0 =⇒ gi = T([σ]i) and so, by definition of

T([σ]i), we obtain gi ∈ Gi(LAST(Q([σ]i))). Since (by definition of Q(σi)) we
have [σ]i = [Q([σ]i)]i, requirement (1.9) implies

Gi(LAST(σ)) = Gi(LAST(Q([σ]i))) ,

and hence gi ∈ Gi(LAST(σ)).

Example 1.6. In order to exemplify how schedulers and projections in-
teract, we consider the projections [·]f and [·]ID presented at the beginning
of Subsection 1.3.1. We show that the restriction imposed to schedulers
yields the intended meaning we gave to these projections in Subsection 1.3.1.
Again, in order to ease explanation, we assume that all transitions are en-
abled in all states. If Θi is distributed under [·]f, then it must be Θi(σ) =

Θi(σ
′) for all σ, σ ′ such that [σ]fi = [σ ′]fi . Since [σ]fi = [σ ′]fi = INITi, we have

Θi(σ) = Θi(σ
′) for all σ, σ ′. That is, the scheduler chooses the same (distribu-

tion on) transition(s) for all σ, σ ′. This corresponds to the intended meaning
in Subsection 1.3.1, since we get an output scheduler whose resolution of
nondeterminism is the same in all paths.

If Θi is distributed under [·]ID, then the equality is required for all σ, σ ′

such that [σ]ID
i = [σ ′]ID

i , that is, for all σ, σ ′ such that σ = σ ′. Of course, the
requirement ∀σ = σ ′ : Θi(σ) = Θi(σ

′), holds no matter how we define Θi.
Then, the schedulers distributed under [·]ID are not restricted at all. They can
be seen as schedulers that have access to all the information, and are thus
able to make any arbitrary decision based on the full history of system.

34 a framework for distributed systems

Recall the projection [·] in Example 1.5, and the paths σ, σ ′ defined therein.
In the example, we have [σ]1 = [σ ′]1. The restriction Θ1(σ) = Θ1(σ

′) indi-
cates that the resolution of the nondeterminism in A1 cannot be changed ac-
cording to whetherA2 has performed an operation on the shared resource or
not. This constraint on the scheduler captures the fact that, in a distributed
setting, A1 is not able to see the operations of A2 until some communication
occurs via the shared resource.

So far, we have extended output and input schedulers. The definition
of the interleaving scheduler is almost unchanged with respect to the one
in Subsection 1.1.4: an interleaving scheduler is a function

I : PATHS(P)→ PROB({A1, · · · ,AN})

such that

I(σ)(Ai) > 0 =⇒ Gi(LAST(σ)) 6= ∅ . (1.20)

Note that the only change wrt. Subsection 1.1.4 is that the implication (1.20)
concerns LAST(σ), while the implication (1.5) concerns πi(LAST(σ)). The rea-
son for this change is that, in the general case, we deal with global transition
structures (Def. 1.12).

A distributed scheduler under [·] is a tuple

(I, {Θi}Ni=1, {Υi}Ni=1)

Θi is an output scheduler and Υi is an input scheduler under [·] for each Ai,
and I is an interleaving scheduler.

Given a system P, we denote by DISTP([·]) the set of all distributed sched-
ulers for P under [·].

The following notation allows us to adapt the definitions and results
for the projection [[·]] (and its respective schedulers introduced in Subsec-
tion 1.1.4) to generalized projections and schedulers.

Notation 1.3. Given an output scheduler Θi under [·], and a local path
σi in LOCALPATHS

[·]
i (recall Def. 1.13), we define Θi(σi) = Θi(σ), where σ

is any global path such that [σ]i = σi. Equation (1.18) ensures that the ex-
istence of several such σ does not introduce any ambiguity. Similarly, we
write Υi(σi,a) for Υi(σ,a) for any input scheduler Υi.

This notation is useful in calculations, since it allows us to write∑
{σ | [σ]i=σi}

Θi(σ) · f(σ) = Θi(σi) ·
∑

{σ | [σ]i=σi}

f(σ)

instead of the more verbose∑
{σ | [σ]i=σi}

Θi(σ) · f(σ) = Θi(σ
∗) ·

∑
{σ | [σ]i=σi}

f(σ) for some σ∗ s.t. [σ∗]i = σi .

In the light of the notation, we notice that an alternative definition for out-
put schedulers could be Θi : LOCALPATHS

[·]
i → PROB(TGi). The problem with

this definition is that, given Θi under [·] and Θ ′i under [·] ′ 6= [·], these out-
put schedulers are different mathematical entities (since the domain of Θi is

1.3 generalized projections and schedulers 35

LOCALPATHS
[·]
i , while the domain of Θ ′i is LOCALPATHS

[·] ′
i) even if they resolve

nondeterminism in the same way for all paths, that is, even if Θi([σ]i) =

Θ ′i([σ] ′i) for all σ. In particular, the following theorem could not be stated so
concisely.

Theorem 1.2.

[·] v [·] ′ =⇒ DISTP([·]) ⊆ DISTP([·] ′)

In words, if [·] ′ gives more information than [·], then the schedulers have
more freedom to resolve nondeterminism under [·] ′ than under [·]†.

Proof. Let η = (I, {Θi}i, {Υi}i) be distributed under [·]. We show that the
schedulers Θi are also distributed under [·] ′. Since the same argument ap-
plies to the schedulers Υi, this implies that η is distributed under [·] ′.

For all σ, σ ′, we have:

[σ] ′i = [σ ′] ′i

=⇒
{

Definition of v
}

[σ]i =
[
σ ′
]
i

=⇒
{
Θi is distributed under [·]

}
Θi(σ) = Θi(σ

′)

The implication [σ] ′i = [σ ′] ′i =⇒ Θi(σ) = Θi(σ
′) is precisely the require-

ment for a scheduler to be distributed under [·] ′.

The next corollary follows from Lemma 1.3.

Corollary 1.1. For all projections [·], DISTP([·]) ⊆ DISTP([·]ID).

Hence, the set DISTP([·]ID) encompasses all schedulers for P, for all projec-
tions. We denote this set by SCHEDP SCHEDP

An alternative interpretation of Theorem 1.2 is that, if a strategy can be
carried out with a certain amount of information (namely, the information
provided by [·]) then the same strategy can be carried out with more infor-
mation and, in particular, the information provided by [·] ′. This is illustrated
by the following example.

Example 1.7. Recall the system in Example 1.5. Consider two distinct paths

σ1 = (s11, s12, s1r).(g
1,a, r1).(s11, s22, s2r).(g

2,b, r2).(s21 , s22, s3r)

and

σ2 = (s11, s12, s1r).(g
1,a, r1).(s11, s22, s2r).(g

2,b, r2).(s ′21 , s22, s3r)

where a ∈ ACTLAB2 ∩ ACTLABr, a 6∈ ACTLAB1 and b ∈ ACTLAB1 ∩ ACTLABr. The
only difference between σ1 and σ2 is that, in σ1, the transition g2 leads A1
to s21 while, in σ2, it leads A1 to s ′21 6= s21.

Let Θ1, be an output scheduler such that

Θ1(σ
1)(g1) = 1

Θ1(σ
2)(g ′1) = 1

†Kind of “The information will set you free”

36 a framework for distributed systems

with g1 6= g ′1. Since

[[σ1]]1 = s11.b.s21 6= s11.b.s ′21 = [[σ2]]1

Θ1 is distributed under [[·]], as far as σ1 and σ2 are concerned: formally, Θ1
complies with (1.18) for [[·]], σ1, σ2. The restriction (1.18) is also satisfied
under the projection [·] in Example 1.5, since[

σ1
]
1

= s11.b.(s21, s3r) 6= s11.b.(s ′21 , s3r) =
[
σ2
]
1

.

Roughly speaking, if the scheduler for Ai resolves nondeterminism accord-
ing to the state of Ai, then it can resolve nondeterminism according the state
of Ai and the state of Ar.

Now, consider the path

σ3 = (s11, s12, s1r).(g
1, c , r1).(s11, s22, s ′2r).(g2,b, r2).(s21, s22, s ′3r)

where c ∈ ACTLAB2 ∩ ACTLABr. Note that the difference wrt. σ1 is that g1

outputs c instead of a, and the label c leads the resource to state s ′2r instead
of s2r . In addition, when the resource is in s ′2r and receives the label b, it
moves to state s ′3r , instead of s3r . An output scheduler Θi complying with
Θ1(σ

1) = g1, Θ1(σ3) = g ′1 satisfies (1.18) under the projection [·], since[
σ1
]
1

= s11.b.(s21, s3r) 6= s11.b.(s21, s ′3r) =
[
σ3
]
1

.

However, it is not a distributed scheduler under the projection [[·]], since

[[σ1]]1 = s11.b.s21 = [[σ3]]1 .

For any scheduler η having Θ1 as output scheduler for A1, we have η 6∈
DISTP([[·]]). This reflects the fact that, if the information about the state of the
resource is not available to A1, then (the scheduler of) A1 cannot resolve its
nondeterminism based on such information.

Definitions 1.9 and 1.10, as well as Lemma 1.2 can be straightforwardly
adapted to generalized schedulers and projections.

Definit ion 1.14. Let η ∈ SCHEDP. The discrete probability distribution on
compound transitions η(σ)(·) is defined as

η(σ)(gi,a, rj1 , · · · , rjm) = I(σ)(Ai) · Θi([σ]i)(gi)

·
∑
si

gi(πi(LAST(σ)),a, si)

·
m∏
k=1

Υjk([σ]jk ,a)(rjk)

if
∣∣Gi(LAST(σ))

∣∣ > 0 for some Ai. Otherwise, η(σ)(ς) = 1.

Lemma 1.4. For all schedulers η distributed under [·], paths σ, and compound
transitions c, we have∑

c∈ENABLED(LAST(σ))

η(σ)(c) = 1 .

1.4 comparison with existing approaches 37

The proof of the lemma is the same as that of Lemma 1.2, replacing [[·]] by
[·].

Definit ion 1.15 (Probability of a set of paths). Let η be a scheduler dis-
tributed under [·]. For a cylinder (σ)↑, the probability measure PRη is induc-
tively defined by:

PRη((INIT)↑) = 1

PRη((σ.c.s)↑) = PRη((σ)↑) · η(σ)(c) · c(LAST(σ), s)

PRη uniquely extends to least σ-field containing all cylinders.

1.4 comparison with existing approaches

probabilistic systems In [133], a general framework of probabilistic
automata is presented. The composition defined in this framework does not
preserve the structure concerning the constituent entities, and an ad-hoc
equivalence is required to consider partial information. Similarly, [63] con-
siders simple MDPs equipped with an equivalence relation ∼ on states. Two
paths σ, σ ′ are equivalent iff they have the same length and σ(i) ∼ σ ′(i) for
all i.

In contrast to these approaches, we introduce a framework with the aim
to represent the uncertainty that is present in distributed systems. Existing
frameworks in which partial information is an essential characteristic in-
clude the probabilistic modules in [64], and the different versions of probabilis-
tic I/O automata [147, 46, 34]. It is no coincidence that these formalisms were
devised with the aim to develop techniques of compositional reasoning.

The probabilistic I/O automata in [147] are I/O deterministic, but there is
nondeterministic choice concerning the order in which components execute.
The probability that a given entity executes before another one depends
solely on the local states of these entities. The switched probabilistic I/O
automata in [46] are similar to ours, and we borrow the input and output
schedulers from this approach. A state of the system comprises the state of
each automaton being composed, plus the state of a token. During the exe-
cution, the token is assigned to exactly one of the automata. The automaton
holding the token is the only one able to execute generative transitions. Gen-
erative transitions also specify which automaton is the next one to receive
the token, and so the interleaving is restricted in the specification. Inter-
leaving nondeterminism arises from several transitions passing the token to
different automata. The recent task probabilistic I/O automata in [34] go
back to the original approach in [133] by considering equivalence relations
on transitions.

projections The concept of projection resembles the observations in Par-
tially Observable Markov Decision Processes (POMDPs), but a crucial differ-
ence is that our projections are path based instead of state based: in POMDPs
(see [135, 35, 114]), the model specifies a distribution pt,s on observations for
each pair transition/state. This models the fact that, when state s is reached
through transition t, the POMDP can obtain different observations o, each
one with probability pt,s(o). The observations on pairs induce observations
on paths in the natural way (two paths are observed as equal if each of the

38 a framework for distributed systems

pairs transition/state are observed as equal). This is a good model to deal
with environments in which there is some amount of uncertainty. In such
environments, the execution of a transition can yield different observations,
and the probability that a certain observation is perceived might depend on
the particular state and the particular transition. In Decentralized POMDPs,
several entities are considered. The steps of the system are obtained by per-
forming a step in each of the entities and, for each step, each entity may
have a different distribution on observations. Again, this a good model in
case several entities are placed in an environment that introduces some kind
of uncertainty.

Briefly speaking, Decentralized POMDPs are about several entities evolv-
ing in an environment that introduces uncertainty, while Interleaved Prob-
abilistic I/O Automata are about several entities that are uncertain with re-
spect to each other’s state. So, although we also deal with unavailability of
information, our uncertainty is caused exclusively by the information that is
not shared among components. Since we deal with this kind of uncertainty,
two important differences arise: in the first place, the uncertainty does not
need to be modelled separately, since it is derived from the entities’ models.
For instance, suppose that an entity tosses a balanced coin. Moreover, sup-
pose that the entity communicates to all other entities the fact that the coin
has been tossed, but the outcome is kept as a secret. Then all of the other en-
tities are equally uncertain about whether the coin landed heads or tails, and
they know that, with probability 1/2, the coin has landed heads (and tails,
resp.) Note that this probability distribution does not need to be modelled
separately, since it is implied by the distribution on coin outcomes. Another
important implication is that, given that the entities are distributed, an entity
may perform a step in such a way that another entity does not even notice it.
So, not every step yields an observation for every entity, and so the notion
of observation on states cannot be extended to paths in a straightforward
way.

schedulers The idea of having separate schedulers for each atom is al-
ready used in [64, 46]. However, this is not the only possible approach. In
POMDPS, as well as in [63], the schedulers are required to satisfy η(σ) =

η(σ ′) whenever σ ∼ σ ′. In [133], partial information is modelled using an
equivalence relation ≡ on paths and a family F of functions mapping tran-
sitions to transitions (one function fσ,σ ′ for each pair (σ,σ ′) in the equiv-
alence relation). The pair (≡, F) is called an oblivious relation. A scheduler
is then said to be with partial information if, whenever two paths σ, σ ′

are equivalent with respect to ≡, then η(σ) = fσ,σ ′(η(σ
′)). The problem

with this approach is that the equivalence relation does not allow to express
that two paths are equivalent from the point of view of a certain atom, but
distinguishable by another one. In addition, using our schema of partial in-
formation we can obtain more precise results about the expressive power
of randomized schedulers. In [133, p. 99], a discussion explains that adver-
saries must be length sensitive in order to prevent randomized schedulers
to be more powerful than non-randomized schedulers. In Chapter 4 (more
precisely, in Corollary 4.2), we sharpen this statement and find a more pre-
cise criterion. In particular, the equivalence between randomized and non-
randomized schedulers is preserved by some projections that are not fully
sensitive to the path length.

2
R E S T R I C T I O N S O N T H E I N T E R L E A V I N G S C H E D U L E R

The definition of distributed schedulers introduced in the last chapter does
not restrict the interleaving schedulers with respect to the availability of
information. The fact that the domain of interleaving schedulers is the set of
global paths introduces unrealistic behaviours similar to those that motivated
the introduction of distributed schedulers, and so this chapter is devoted to
impose restrictions on the interleaving scheduler with the aim to eliminate
such behaviours.

The first restriction we propose is based on conditional probabilities, and
is the more permissive of the restrictions we present in this chapter. The
schedulers complying with such restriction are called strongly distributed
schedulers. The second restriction can be seen as a scheduling assumption,
namely, that the sojourn time of an atom after a given local path is dis-
tributed according to an exponential distribution, whose mean depends on
the particular local path. The set of rate-based schedulers comprises the sched-
ulers that can arise under this assumption. We use the word rate since the
parameters of exponential distributions are often interpreted as rates, and
the schedulers in this set resolve the interleaving nondeterminism by setting
such rates according to the local path. The third restriction can be thought
of as another assumption, namely, that the atoms are given a certain priority
according to the local path traversed so far, and the next atom to execute
is the one having the highest priority. These priorities are modelled using
a total order on the local paths, and so these schedulers are called total
order-based schedulers. These schedulers can occur if one of the entities coor-
dinates the execution of the others. In this case, the local paths of the atoms
reflect the information that the coordinator is able to see. These schedulers
might seem not applicable in all cases, since the systems we consider do not
necessarily have a coordinator. However, if the projection fulfils certain con-
ditions (detailed in Subsection 4.2.2), the extremal probabilities quantifying
over rate-based or strongly distributed schedulers equal those obtained by
quantifying over total order-based schedulers. These equalities are useful in
proofs, since total order-based schedulers are technically easier to manipu-
late than general strongly distributed schedulers.

2.1 strongly distributed schedulers

Distributed schedulers model the fact that, when facing a nondeterministic
choice, the components can only look at their local history. However, under
distributed schedulers, it is still possible that the hidden state of a compo-
nent affects the behaviour of an unrelated group of components.

We explain how this leak of information occurs using atoms depicted in
Fig. 2.1. Consider the system T ‖ Z ‖ A ‖ B. In this system, T is a process
that tosses a coin. For the labels h! and t!, corresponding to heads and tails,
we have h!, t! 6∈ ACTLABZ ∪ ACTLABA ∪ ACTLABB. So, if we consider the usual

39

40 restrictions on the interleaving scheduler

BA

ch? ct?

initZ

Z

gh! gt! gh! gt!gt?gh?

initT

1/2 1/2

gh?

h! t!

gh? gt?

gt?

T

ct? ct!

initA initB

ch?ch!

Figure 2.1: Motivating strongly distributed schedulers

projection [[·]], the intended meaning is that T keeps the outcome as a secret †.
Atom Z models an attacker trying to guess the outcome of the coin. Atoms
A and B are two processes that Z is able to observe.

Consider the maximum probability that attacker Z guesses the outcome
(i.e. the probability that i_¨ is reached). Since the attacker is able to see only
the actions of A and B (and these atoms cannot, in turn, see the outcome of
T) the attacker has no information about T , and so the maximum probability
should be 1/2. Unfortunately, there exists a distributed scheduler ηd that
yields probability 1: the interleaving scheduler chooses T in the first place,
and then it chooses either (A and then B) or (B and then A), according to
the outcome of the probabilistic transition. Finally, the interleaving sched-
uler chooses Z. The order in which ch! and ct! were output is part of the
local history of Z, so the output scheduler for Z can always choose the tran-
sition agreeing with the outcome of the coin. The scheduler ηd is depicted
in Fig. 2.2.

Note that the leak of information arises from the fact that the interleaving
scheduler can look at the complete history of the system. In the following,
we derive restrictions on interleaving schedulers that prevent the leak pre-
sented above. Then, strongly distributed schedulers are defined as distributed
schedulers whose interleaving scheduler complies with such condition.

In the example above, the state of T affects the execution of atoms A and
B. Distributed schedulers were defined in such a way that the state of an
atom cannot affect the execution of another atom. Note that, if we regard A
and B as a single component AB (see Fig. 2.3), we end up in a situation very
similar to the guess-heads-or-tails example: in the case in which the coin
lands heads, AB chooses to perform the transition ch!. In case the coin lands
tails, AB chooses to perform the transition ct!. In fact, note that the graphical
representation of the unrealistic scheduler ηd coincides with the unrealistic

†Coins whose output are assumed to be secrets can be found in probabilistic security
protocols such as the solution to the dining cryptographers problem, see [44].

init‖

gh! gt!

1/2 1/2

ch! ct!

h! t!

Figure 2.2: An unrealistic distributed scheduler

2.1 strongly distributed schedulers 41

scheduler of the guess-heads-or-tails example in Fig. 0.3. If we consider the
system T ‖ Z ‖ AB, no output scheduler for AB can be defined in such a
way that the order of execution of ch! and ct! depends on the outcome of
T (since the outcome of T does not affect the state of AB). Then, there is no
distributed scheduler for T ‖ Z ‖ AB being able to simulate ηd. Therefore,
in T ‖ Z ‖ A ‖ B we would like to consider only the schedulers having a
corresponding distributed scheduler in T ‖ Z ‖ AB.

In the general case, let P be a compound system containing atoms A and
B. Let AB be a single atom representing the composition of A and B and
P ′ another compound system such that ATOMS(P ′) =

(
ATOMS(P) \ {A,B}

)
∪

{AB}. We want to restrict interleaving schedulers in such a way that, for
every distributed scheduler η on P complying to such restriction, there is a
distributed scheduler η ′ on P ′ that defines the same probabilistic behaviour.

To motivate the restriction, consider a distributed scheduler η for the sys-
tem T ‖ A ‖ B such that I(INIT) = (12T + 2

6A + 1
6B). We seek a restriction

on I s.t. it is possible to find a distributed scheduler for T ‖ AB. When
AB is in state (INITA, INITB), the output scheduler ΘAB chooses a distribu-
tion on {ch!, ct!}. To respect the choice of I in T ‖ A ‖ B, it must hold that
ΘAB(INITAB)(ch!) = 2 ·ΘAB(INITAB)(ct!), since, according to I, the probabil-
ity of executing ch! is twice the probability of executing ct!. Then,

ΘAB(INITAB)(ch!) = 2
3 and ΘAB(INITAB)(ct!) = 1

3 . (2.1)

Suppose (INITT , INITA, INITB)
t!−→ (headsT , INITA, INITB) in T ‖ A ‖ B. The corre-

sponding path in T ‖ AB is (INITT , INITAB)
t!−→(headsT , INITAB). Call both these

paths σheads (ambiguity is resolved according to whether it is used in the
context of T ‖ A ‖ B or T ‖ AB).

Since [[σheads]]AB = INITAB = [[(INITT , INITAB)]]AB, we have that

ΘAB([[(INITT , INITAB)]]AB)(ch!) = ΘAB([[σheads]]AB)(ch!)

= ΘAB(INITAB)(ch!) =
2

3

and similarly for ct!. Therefore

ΘAB([[σheads]]AB)(ch!) = 2 ·ΘAB([[σheads]]AB)(ct!) .

This relation has to be maintained in T ‖ A ‖ B by I(σheads). That is,
whichever is the probabilistic choice in I(σheads) w.r.t. other atoms, the re-
lation

I(σheads)(ch!) = 2 · I(σheads)(ct!)

has to be maintained.

gt?gh?

ch? ct?

initZ

gh! gt! gh! gt!

Z

initAB

AB

ct!ch!

initT

1/2 1/2

gh?

gh? gt?

gt?

T

h! t!

Figure 2.3: Regarding A and B as a single component

42 restrictions on the interleaving scheduler

This suggests that, in the general case, for two executions that cannot be
distinguished by any of the two atoms A and B, the relative probabilities of
choosing A over B (or B over A) should be the same. Or better stated: condi-
tioned to the fact that the choice is between atoms A and B, the probability
should be the same in two executions that cannot be distinguished by any
of the two atoms.

Formally, given any two atoms A, B of a system P and a projection [·], the
examples above motivate the following general restriction for I: for all σ, σ ′

s.t. [σ]A = [σ ′]A and [σ]B = [σ ′]B:

I(σ)(A)

I(σ)(A) + I(σ)(B)
=

I(σ ′)(A)

I(σ ′)(A) + I(σ ′)(B)
(2.2)

whenever I(σ)(A) + I(σ)(B) 6= 0 and I(σ ′)(A) + I(σ ′)(B) 6= 0.

Definit ion 2.1. A scheduler η = (I, {Θi}i, {Υi}i) is strongly distributed un-Strongly distributed
scheduler der projection [·] iff η ∈ DISTP([·]) and

I(σ)(A)

I(σ)(A) + I(σ)(B)
=

I(σ ′)(A)

I(σ ′)(A) + I(σ ′)(B)
(2.3)

holds for all σ, σ ′ such that [σ]A = [σ ′]A, [σ]B = [σ ′]B, PRη((σ)↑) > 0,
PRη((σ ′)↑) > 0 and I(σ)(A) + I(σ)(B) 6= 0, I(σ ′)(A) + I(σ ′)(B) 6= 0. The set
comprising these schedulers is denoted by SDISTP([·]).

Note that we do not require condition (2.3) to hold unless both σ and σ ′

have positive probability under η. By doing so, we allow some schedulers for
which (2.3) does not hold (for such scheduler s, we have either PRη((σ)↑) = 0

or PRη((σ ′)↑) > 0). However, we profit from this relaxation in several proofs.
We emphasize that strongly distributed schedulers are useful depending

on the particular model under consideration. In case we are analysing an
agreement protocol and each atom models an independent node in a net-
work, then the order in which nodes A and B execute cannot depend on
information not available to none of them, and so strongly distributed sched-
ulers give more realistic worst-case probabilities. However, in case the inter-
leaving scheduler represents an entity that is able to look at the whole state
of the atoms (for instance, if the atoms represent processes running on the
same computer, and the interleaving scheduler plays the role of the kernel
scheduler), then the restriction above may rule out valid behaviours, and so
distributed schedulers should be considered.

The following theorem is the generalization of the fact that, for every
strongly distributed scheduler η on T ‖ Z ‖ A ‖ B as in Fig. 2.1 there is
a distributed scheduler η ′ on T ‖ Z ‖ AB that defines the same probabilistic
behaviour.

Theorem 2.1. Let P be a system such thatA,B ∈ ATOMS(P). Consider the system
P ′ such that ATOMS(P ′) =

(
ATOMS(P) \ {A,B}

)
∪ {AB}, where AB is the usual

cross-product of A and B (as in, for instance, [45, p. 99]). Then, for every strongly
distributed scheduler η for P, there exists a strongly distributed scheduler η ′ for P ′

yielding the same probability distribution on paths as η.

2.1 strongly distributed schedulers 43

Proof. We show that the condition imposed to the interleaving scheduler is
sufficient to define an output scheduler for AB. Let σAB be a local path on
AB, and let σ be a global path such that [σ]AB = σAB. Define

ΘAB(σAB)(gA) =
I(σ)(A)

I(σ)(A) + I(σ)(B)
·ΘA([σ]A) .

Note that the condition imposed to I ensures that the particular σ cho-
sen is not relevant. Let I ′ be the interleaving scheduler for PAB such that
I ′(σ)(AB) = I(σ)(A) + I(σ)(B) and I ′(σ)(C) = I(σ)(C) for any other atom
C. We have to prove that the scheduler η ′ for PAB obtained from I ′ as in-
terleaving scheduler and ΘAB as output scheduler for AB yields the same
behaviour as the original scheduler η for P. To see this, note that for a path
σ, the probability assigned to a generative transition gA of A is pσ,gA =

I(σ)(A) · ΘA([σ]A)(gA). Then, pσ,gA equals

(
I(σ)(A) + I(σ)(B)

)
·
(

I(σ)(A)

(I(σ)(A) + I(σ)(B))
ΘA([σ]A)(gA)

)
,

which in turn equals I ′(σ)(AB) · ΘAB([σ]AB)(gA), that is, the probability
of pσ,gA in η ′. The same reasoning allows to conclude a similar equality if
atom B is considered instead of A.

Given reactive transitions rA ∈ RA(s,a) and rB ∈ RB(s,a), the atom AB

has a reactive transition (rA, rB) ∈ RAB(s,a). This transition is defined as
(rA, rB)(tA, tB) = rA(tA) · rB(tB). The input scheduler for AB is defined as
ΥAB(σ,a)((rA, rB)) = ΥA(σ,a)(rA) ·ΥB(σ,a)(rB).

The input and output schedulers for the atoms other than A, B are the
same as in the scheduler for the original system.

One may wonder what happens if, instead of considering two atoms A
and B in (2.3), two disjoint sets A, B of atoms are considered. The (apparently
more general) condition on sets holds whenever the condition (2.3) on atom
pairs holds, as formalized in the following theorem.

Theorem 2.2. Let A = {A1, · · · ,An}, B = {B1, · · · ,Bm} be disjoint sets of
atoms. If Eqn. (2.3) holds, then∑

i I(σ)(Ai)∑
i I(σ)(Ai) +

∑
j I(σ)(Bj)

=

∑
i I(σ

′)(Ai)∑
i I(σ

′)(Ai) +
∑
j I(σ

′)(Bj)

holds whenever
∑
i I(σ

′)(Ai) +
∑
j I(σ

′)(Bj) 6= 0 and [σ]A = [σ ′]A for all A ∈
A∪B.

Proof. By induction on n. We prove the base case n = 1 by induction on m.
If m = 1, the statement becomes Eqn. (2.3). For the inductive step, we need a
preliminary equality. Note that, if I(σ)(A) 6= 0 and I(σ ′)(A) 6= 0 in Eqn. (2.3),
then simple arithmetic gives

I(σ)(B)

I(σ)(A)
=

I(σ ′)(B)

I(σ ′)(A)
. (2.4)

The inductive step is

I(σ)(A1)

I(σ)(A1) +
∑
j I(σ)(Bj)

=
I(σ ′)(A1)

I(σ ′)(A1) +
∑
j I(σ

′)(Bj)
.

44 restrictions on the interleaving scheduler

First, we explore the case I(σ)(A1) = 0. If I(σ)(Bj) = 0 for all j, condition
I(σ)(A1) +

∑
j I(σ)(Bj) 6= 0 is false, and so the equation is not required to

hold. If I(σ)(Bj∗) > 0 for some Bj∗ , we show that I(σ ′)(A1) = 0 and so the
equation holds. Suppose, towards a contradiction, that I(σ ′)(A1) 6= 0. Then,
I(σ ′)(A1) + I(σ ′)(Bj∗) 6= 0. In addition, I(σ)(A1) + I(σ)(Bj∗) > 0. Hence,
Eqn. (2.3) ensures

I(σ)(A1)

I(σ)(A1) + I(σ)(Bj∗)
=

I(σ ′)(A1)

I(σ ′)(A1) + I(σ ′)(Bj∗)

So, since I(σ)(A1) = 0 then it must be I(σ ′)(A1) = 0, thus reaching a contra-
diction. Therefore, the inductive step holds in case I(σ)(Ai) = 0.

If I(σ)(A1) 6= 0, then either I(σ ′)(A1) = 0 and I(σ ′)(Bj) = 0 for all j (and
so the condition is not required to hold) or I(σ ′)(A1) 6= 0, and so we can
use Eqn. (2.4) in the following calculation.

I(σ)(A1)

I(σ)(A1) +
∑
j I(σ)(Bj)

=
{

Arithmetics
}

(
I(σ)(Bm)

I(σ)(A1)
+

I(σ)(A1) +
∑m−1
j=1 I(σ)(Bj)

I(σ)(A1)

)−1

=
{

Equation (2.4)
}

(
I(σ ′)(Bm)

I(σ ′)(A1)
+

I(σ)(A1) +
∑m−1
j=1 I(σ)(Bj)

I(σ)(A1)

)−1

=
{

Inductive hypothesis
}

(
I(σ ′)(Bm)

I(σ ′)(A1)
+

I(σ ′)(A1) +
∑m−1
j=1 I(σ ′)(Bj)

I(σ ′)(A1)

)−1

=
{

Arithmetics
}

I(σ ′)(A1)

I(σ ′)(A1) +
∑
j I(σ

′)(Bj)

Then, the statement holds for n = 1. For the remaining inductive step, we
calculate: ∑

i I(σ)(Ai)∑
i I(σ)(Ai) +

∑
j I(σ)(Bj)

=

∑n−1
i=1 I(σ)(Ai) + I(σ)(An)∑n−1

i=1 I(σ)(Ai) + I(σ)(An) +
∑
j I(σ)(Bj)

=

∑n−1
i=1 I(σ)(Ai)∑n−1

i=1 I(σ)(Ai) + I(σ)(An) +
∑
j I(σ)(Bj)

+
I(σ)(An)∑n−1

i=1 I(σ)(Ai) + I(σ)(An) +
∑
j I(σ)(Bj)

=
{

Inductive hypothesis for {Ai}
n−1
i=1 , An ∪ {Bj}

m
j=1

}∑n−1
i=1 I(σ ′)(Ai)∑n−1

i=1 I(σ ′)(Ai) + I(σ ′)(An) +
∑
j I(σ

′)(Bj)

2.1 strongly distributed schedulers 45

+
I(σ)(An)∑n−1

i=1 I(σ)(Ai) + I(σ)(An) +
∑
j I(σ)(Bj)

=
{

Base case with {An}, {Bi}
m
i=1 ∪ {Ai}

n−1
i=1

}
=

∑n−1
i=1 I(σ ′)(Ai)∑n−1

i=1 I(σ ′)(Ai) + I(σ ′)(An) +
∑
j I(σ

′)(Bj)

+
I(σ ′)(An)∑n−1

i=1 I(σ ′)(Ai) + I(σ ′)(An) +
∑
j I(σ

′)(Bj)

=

∑
i I(σ

′)(Ai)∑
i I(σ

′)(Ai) +
∑
j I(σ

′)(Bj)

The analogous of Theorem 1.2 holds for strongly distributed schedulers.

Theorem 2.3.

[·] v [·] ′ =⇒ SDISTP([·]) ⊆ SDISTP([·] ′)

Proof. Let η ∈ SDISTP([·]). We have to prove η ∈ SDISTP([·] ′). Since η ∈
DISTP([·]), by Theorem 1.2 we have η ∈ DISTP([·] ′). So, we need to prove

I(σ)(A)

I(σ)(A) + I(σ)(B)
=

I(σ ′)(A)

I(σ ′)(A) + I(σ ′)(B)
(2.5)

holds for all σ, σ ′ such that [σ] ′A = [σ ′] ′A, [σ] ′B = [σ ′] ′B, PRη((σ)↑) > 0,
PRη((σ ′)↑) > 0 and I(σ)(A) + I(σ)(B) 6= 0, I(σ ′)(A) + I(σ ′)(B) 6= 0. For any
such σ, σ ′, the hypothesis [·] v [·] ′ yields

[σ] ′A = [σ ′] ′A ∧ [σ] ′B = [σ ′] ′B =⇒ [σ]A =
[
σ ′
]
A

∧ [σ]B =
[
σ ′
]
B

. (2.6)

By η ∈ SDISTP([·]), Eqn. (2.5) holds for all σ, σ ′ complying with the conse-
quent of (2.6). Hence, Eqn. (2.5) holds for all σ, σ ′ such that [σ] ′A = [σ ′] ′A,
[σ] ′B = [σ ′] ′B.

For the study of strongly distributed schedulers, the interesting systems
are those in which the interleaving scheduler resolves at least one nondeter-
ministic choice, that is, the systems P such that there exists σ∗ ∈ PATHS(P)

such that Gi(LAST(σ∗)) 6= ∅ and Gj(LAST(σ∗)) 6= ∅ for some Ai, Aj with
Ai 6= Aj. The following theorem holds for all of such systems.

Theorem 2.4. Let P be a system such that there exists σ∗ ∈ PATHS(P) such that
Gi(LAST(σ∗)) 6= ∅ and Gj(LAST(σ∗)) 6= ∅ for some Ai, Aj with Ai 6= Aj. Then,
there exists a randomized interleaving scheduler for P complying with Eqn. (2.3).

Proof. Let I(σ)(Ak) = 1 /
∣∣ {Am | Gm(LAST(σ)) 6= ∅}

∣∣ for all Ak such that
Gk(LAST(σ)) 6= ∅. This scheduler is randomized since, by hypothesis,∣∣ {Am | Gi(LAST(σ∗))}

∣∣ > 2 ,

and so 0 < I(σ∗)(Ai) 6 1/2. We prove that I complies with Eqn. (2.3). Sup-
pose I(σ)(Ak) > 0 and [σ]k = [σ ′]k. Then Gk(LAST(σ)) 6= ∅ and Eqn. (1.9)

46 restrictions on the interleaving scheduler

imply Gk(LAST(σ ′)) 6= ∅. Similarly, if [σ]k ′ = [σ ′]k ′ , we have Gk ′(LAST(σ)) 6=
∅ ⇐⇒ Gk ′(LAST(σ ′)) 6= ∅. Hence, if Gk ′(LAST(σ)) = ∅, we have

I(σ)(Ak)

I(σ)(Ak) + I(σ)(Ak ′)
=

I(σ)(Ak)

I(σ)(Ak)
= 1 =

I(σ ′)(Ak)

I(σ ′)(Ak) + I(σ ′)(Ak ′)
.

If Gk ′(LAST(σ)) 6= ∅, we have

I(σ)(Ak)

I(σ)(Ak) + I(σ)(Ak ′)

=
1/
∣∣ {Am | Gm(LAST(σ)) 6= ∅}

∣∣
1/
∣∣ {Am | Gm(LAST(σ)) 6= ∅}

∣∣+ 1/∣∣ {Am | Gm(LAST(σ)) 6= ∅}
∣∣

=
1

2

=
I(σ ′)(Ak)

I(σ ′)(Ak) + I(σ ′)(Ak ′)

Theorem 2.5. For all systems P, projections [·], there exist a non-randomized
scheduler η ∈ SDISTP([·])P.

Proof. Suppose that ATOMS(P) = {A1, · · · ,AN}. By Theorem 1.1, there exist
input and output schedulers under [·]. Hence, it suffices to construct an
interleaving scheduler complying with Eqn. (2.3). Let I(σ) = 1 :Aj where
Aj = min{Ai | Gi(LAST(σ)) 6= ∅}. Suppose, towards a contradiction, that
Eqn. (2.3) does not hold. Then, since the scheduler is non-randomized, we
have I(σ)(Ai) = 1, I(σ ′)(Aj) = 1 for some Ai,Aj such that Ai 6= Aj, [σ]i =

[σ ′]i and [σ]j = [σ ′]j. W. l. o. g. , we can assume i < j. Since [σ]i = [σ ′]i,
Eqn. (1.9) ensures Gi(LAST(σ ′)) 6= ∅. Then, Ai ∈ {Ak | Gk(LAST(σ ′)) 6= ∅}.
Hence, I(σ ′) = 1 :Ak for some k 6 i, thus contradicting I(σ ′) = 1 :Aj with
j > i.

2.2 rate schedulers

In this section, we propose another restriction on interleaving schedulers.
The restriction we impose is based on a mechanism to resolve interleaving
choices for probabilistic I/O automata.

In [147], interleaving choices are resolved in a distributed fashion: the
model assigns a rate† RATE(si) to each state si in each atom Ai. Using such
rate, the choice among all the entities that are able to perform a transition is
transformed into a probabilistic choice as follows: when an atom arrives in
state s, it draws a random delay time from an exponential distribution with
parameter RATE(s) (i.e. an exponential distribution whose mean is 1/RATE(s)).
This delay describes the length of time the atom will remain in state s before
executing a transition. So, the atom having the least delay time is the next
one to perform a transition. In [147] it is explained that, according to this
interpretation of the rate, a definite probability can be assigned to the event
in which a given atom is the next one to perform a transition in a given
state. If each atom Ai is in state si, the probability that Aj is the next atom

†Rates are called delays in the paper introducing these automata [147]. However, we
prefer the term rate used in subsequent works [138, 137, 139, 140].

2.2 rate schedulers 47

to perform a transition is RATE(sj)
/ ∑

i RATE(si). The same mechanism is
used also in [138, 137, 139, 140]. As a simple example, if atom A1 (A2, resp.)
is in state s1 (s2, resp.) and RATE(s1) = 1 and RATE(s2) = 2, the probability
that A1 executes first is 1/(1+ 2) while the probability that A2 executes first
is 2/(1+2). Note that the rate of s2 is twice the rate of s1, and this is reflected
in the probabilities. In general, the rate can be seen as a “likeliness factor”
that indicates how likely is an atom to execute with respect to another.

We can straightforwardly adapt this mechanism to our nondeterminism
setting. Since we consider history dependent schedulers, it is natural to con-
sider that the rate is a function of the history (instead of the state). Then, a
rate scheduler for atom Ai is a function RATEi : LOCALPATHS

[·]
i → R>0 such that Rate scheduler

RATEi(σi) = 0 ⇐⇒ Gi(LAST(σi)) = ∅ (2.7)

(this condition is inherited from [147]). For a path σ, the probability that Ai
is the next atom to execute can be calculated according to the interpretation
given before as:

RATEi([σ]i)∑
j RATEj([σ]j)

.

We then restrict to the set of interleaving schedulers that can be obtained
using this mechanism. Later on, we will prove that these schedulers are
strongly distributed, thus justifying the notation introduced in the following
definition.

Definit ion 2.2. An interleaving scheduler I is rate-based for projection Rate-based
interleaving
scheduler

[·] iff there exist rate schedulers {RATEi}
N
i=1 such that

I(σ)(Ai) =
RATEi([σ]i)∑
j RATEj([σ]j)

.

A scheduler η is rate-based if the interleaving scheduler the defines η is rate- Rate-based scheduler

based. We denote by SDISTP([·], RATE) the set of rate-based schedulers for P.

Theorem 2.6.

SDISTP([·], RATE) ⊆ SDISTP([·])

Proof. Let σ, σ ′ be such that [σ]A = [σ ′]A and [σ]B = [σ ′]B. In the following
calculation, I is the interleaving scheduler that defines η ∈ SDISTP([·], RATE)

and RATEi are the rate schedulers that define I.

I(σ)(A)

I(σ)(A) + I(σ)(B)

=

RATEA([σ]A)∑
j RATEj([σ]j)

RATEA([σ]A)∑
j RATEj([σ]j)

+
RATEB([σ]B)∑
j RATEj([σ]j)

=

RATEA([σ]A)∑
j RATEj([σ]j)

RATEA([σ]A)+RATEB([σ]B)∑
j RATEj([σ]j)

=
RATEA([σ]A)

RATEA([σ]A) + RATEA([σ]B)

48 restrictions on the interleaving scheduler

=
RATEA([σ ′]A)

RATEA([σ ′]A) + RATEB([σ ′]B)

=

RATEA([σ ′]A)∑
j RATEj([σ ′]j)

RATEA([σ ′]A)∑
j RATEj([σ ′]j)

+
RATEB([σ ′]B)∑
j RATEj([σ ′]j)

=
I(σ ′)(A)

I(σ ′)(A) + I(σ ′)(B)

Hence, I complies with Eqn. (2.3), and so η ∈ SDISTP([·]).

In general, the inclusion in the previous theorem is strict. In fact, consider
a system having a path σ such that Gi(LAST(σ)) 6= ∅ and Gj(LAST(σ)) 6= ∅.
By (2.7), we have I(σ)(Ai) > 0, I(σ)(Aj) > 0 for all rate-based interleaving
schedulers. Then, for all systems in which two atoms are enabled at the
end of some path, we have that all rate-based schedulers are randomized.
By Theorem 2.5 there is at least one non-randomized strongly distributed
scheduler, and hence

SDISTP([·], RATE) (SDISTP([·]) . (2.8)

We finish this section by proving the analogous of Theorem 1.2.

Theorem 2.7.

[·] v [·] ′ =⇒ SDISTP([·], RATE) ⊆ SDISTP([·] ′, RATE)

Proof. Given η ∈ SDISTP([·], RATE), we prove that η ∈ SDISTP([·] ′, RATE). It suf-
fices to find rate schedulers RATE ′i : LOCALPATHS

[·] ′
i → R>0 such that

I(σ)(Aj) = RATE ′j([σ] ′j)/
∑
i

RATE ′i([σ] ′j) .

We construct such RATE ′i using the schedulers RATEi : LOCALPATHS
[·]
i → R>0

whose existence is ensured by η ∈ SDISTP([·], RATE).
In order to define RATE ′i in terms of RATEi, for all σ ′i ∈ LOCALPATHS

[·] ′
i let

h(σ ′i) be a global path such that [h(σ ′i)]
′
i = σ ′i. Then, we can define:

RATE ′i(σ
′
i) = RATEi(

[
h(σ ′i)

]
i
) .

We check that these rate schedulers do indeed generate I. Let I ′ be the
rate-based scheduler generated by RATE ′i. We prove that I ′ = I by using the
following property of h:

∀Ai : [h([σ] ′i)]
′
i = [σ] ′i .

This property holds by definition of h and (since [·] v [·] ′) implies

∀Ai :
[
h([σ] ′i)

]
i
= [σ]i . (2.9)

2.3 total order-based schedulers 49

Now we are able to prove I ′ = I. For all σ, Aj,

I ′(σ)(Aj)

=
{

Definition of rate-based scheduler
}

RATE ′j([σ] ′j)(Aj) /
∑
i

RATE ′i([σ] ′i)(Ai)

=
{

Definition of RATE ′i
}

RATEj(
[
h([σ] ′j)

]
j
)(Aj) /

∑
i

RATEi(
[
h([σ] ′i)

]
i
)(Ai)

=
{

Equation (2.9)
}

RATEj([σ]j)(Aj) /
∑
i

RATEi([σ]i)(Ai)

=
{

Definition of rate-based scheduler
}

I(σ)(Aj)

2.3 total order-based schedulers

In this section, we introduce yet another mechanism to resolve interleav-
ing choices. This mechanism resembles the oblivious schedulers for task
PIOA [34]. Each oblivious scheduler is simply a sequence of tasks: once the
scheduler has been fixed, the same sequence is applied regardless of the
probabilistic outcomes of the actual execution.

We adapt this mechanism so that the order in which the interleaving of
two atoms is resolved depends on the local path observed by these atoms.
The intuitive idea is that, whenever atom A has observed σA and atom B has
observed σB, a given scheduler η always schedules A before B (or it always
schedules B before A), regardless of the information not present in σA or
σB.

Definit ion 2.3. An interleaving scheduler I is total order-based with Total order-based
interleaving
scheduler

projection [·] iff there exists a total order 6I on
⋃
i LOCALPATHS

[·]
i such that,

for all σ, we have I(σ) = 1 :Ai, where Ai = arg min6I

Ai
[σ]i.

A scheduler η is total order-based iff the interleaving scheduler that de- Total order-based
schedulerfines η is total order-based. We denote by SDISTP([·], 6) the set of total order-

based schedulers for P.

Theorem 2.8.

SDISTP([·], 6) ⊆ SDISTP([·])

Proof. Let σ, σ ′ be two paths such [σ]A = [σ ′]A and [σ]B = [σ ′]B and I be
a total order-based scheduler. If I(σ) = 1 :C, where C 6= A and C 6= B, then
I(σ)(A) = I(σ)(B) = 0 and so Eqn. (2.3) is not required to hold for σ, σ ′. The
same argument can be applied in case I(σ ′) = 1 :C.

If I(σ) = 1 :A, then [σ]A 6I [σ]B. Then, either I(σ ′) = 1 :C (with C 6= A

and C 6= B) or I(σ ′) = 1 :A. In the latter case:

I(σ)(A)

I(σ)(A) + I(σ)(B)
= 1 =

I(σ ′)(A)

I(σ ′)(A) + I(σ ′)(B)
.

The case in which I(σ) = 1 :B is exactly the same.

50 restrictions on the interleaving scheduler

SDISTP([·], RATE) SDISTP([·], 6)

SDISTP([·])

Figure 2.4: Inclusion relations among schedulers with restricted interleaving

As in the case of rate-based schedulers, the inclusion is strict. In fact,
all total order-based interleaving schedulers are non-randomized and Theo-
rem 2.4 ensures the existence of a randomized scheduler, and so

SDISTP([·], 6) (SDISTP([·]) (2.10)

for all systems with interleaving nondeterminism.
Moreover, since in these systems rate-based schedulers are randomized,

we have

SDISTP([·], RATE)∩ SDISTP([·], 6) = ∅ . (2.11)

Figure 2.4 summarizes the inclusion relations among the sets of sched-
ulers presented in this chapter. We construct this figure from (2.8), (2.10),
(2.11) and Theorems 2.6, 2.8.

2.4 comparison with existing approaches

Our definition of strongly distributed schedulers is an important contribu-
tion, since it exactly captures the restrictions that the lack of information im-
poses to schedulers in asynchronous settings. In previous frameworks, there
are no nondeterministic choices concerning the interleaving. In [63], the com-
ponents are not specified explicitly (then, there are no interleaving issues).
In [64] a step of the whole system is obtained by taking a step in every
component (and so no interleaving is needed). The main difference between
our framework and the Switched PIOA framework in [46] is the concept of
interleaving scheduler. In contrast, in the framework presented in [46] the
different components have only input and output local schedulers, and a to-
ken is used in order to decide the next component to perform an output. The
interleaving among different components is not resolved by the schedulers,
since the way in which the token is passed is specified by the components.
Note that, because of the internal nondeterminism, the choice of the next
component to execute is still nondeterministic, since there may be different
transitions passing the token to different components. However, since inter-
nal nondeterminism is resolved according to the local history, the choice of
the next component to execute is based on the history of the component that
passes the token. In [45] it is suggested that a fictitious arbiter component
can be added in order to specify interleaving policies. The components pass
the token to the arbiter and the arbiter selects one of the components to
which the token is passed. Using the arbiter schema, the information used
to choose the next component can be restricted by specifying that some in-
formation is not available to the arbiter. Although this approach is useful
to specify that some information is not used at all when resolving the in-
terleaving, such an approach cannot be used to represent the restriction we

2.4 comparison with existing approaches 51

impose to strongly distributed schedulers since, in our restriction, the lack
of information depends on each pair of components.

3
L I M I T S C H E D U L E R S

“El número de todos los átomos que componen el
universo es, aunque desmesurado, finito, y sólo

capaz como tal de un número finito (aunque
desmesurado también) de permutaciones. En un
tiempo infinito, el número de las permutaciones
posibles debe ser alcanzado, y el universo tiene

que repetirse. De nuevo nacerás de un vientre, de
nuevo crecerá tu esqueleto, de nuevo arribará esta

misma página a tus manos iguales, de nuevo
cursarás todas las horas hasta la de tu muerte

increíble.”
Jorge Luis Borges. Historia de la eternidad, La doctrina de los ciclos

Several proofs in this thesis involve transformations on schedulers. For in-
stance, in order to show that there exists a scheduler complying with a cer-
tain property P, one may prove that every scheduler η can be transformed
into a scheduler η∗ complying with the property. Quite often, these transfor-
mations proceed in a step-wise fashion: the n-th step changes the choices of
the scheduler for a finite set of paths, and ensures that the resulting sched-
uler complies with a certain property Pn. The schedulers resulting from each
of the steps form a (possibly infinite) sequence {ηn}, the scheduler η∗ yielded
by the transformation is constructed using the schedulers in this sequence,
and the validity of P is derived from the validity of the properties Pn.

In this chapter, we introduce the notion of limit scheduler. A sequence
of schedulers may have several limits, and certain properties for the limits
are implied by properties of the sequence’s schedulers. Hence, in step-wise
transformations the resulting scheduler η∗ can be taken to be a limit, and
the properties for η∗ can be deduced from the properties for the schedulers
ηn.

We introduce a simple finiteness condition ensuring the existence of a
limit. Moreover, we give a sufficient condition to characterize the set of
schedulers S that are closed under limits, in the sense that, if the schedulers
of the sequence are in S, then every limit is also in S.

3.1 limit schedulers

In order to express the choices of a scheduler η = (I, {Θi}Ni=1, {Υi}Ni=1) ∈
SCHEDP in a more succinct way, we define the function η[·]. For a given path
σ, this function returns a tuple containing all the resolutions of nondetermin-
ism after σ according to η. In other words, this tuple comprises the choice
of the interleaving schedulers, the choices of the atoms having generative
transitions enabled, and the choices of all input schedulers for each one of
the labels in the alphabet of the corresponding atom.

53

54 limit schedulers

g3,c

g1,a g2,b

s1

s0

Figure 3.1: A simple example to illustrate limits

Formally:

η[σ] = (I(σ) , Θi1(σ), · · ·Θin(σ) , Υ1(σ,a11), . . . ,Υ1(σ,a1m1
),

· · · , ΥN(σ,aN
1), . . . ,ΥN(σ,aN

mN
))

if there exists Aj such that Gj(LAST(σ)) 6= ∅.
In this definition, {Ai1 , · · · ,Ain} is the set of atoms such thatGik(LAST(σ)) 6=
∅. In addition, {ai1, · · · ,aimi

} = ACTLABi for all Ai ∈ ATOMS(P).
If there exists no Ak such that Gk(LAST(σ)) 6= ∅, let

η[σ] = ς .

(Recall we also denote by ς the compound transition that the system executes
in case there is no atom with generative transitions enabled, see p. 19.)

The co-domain of η[·] is a bit difficult to express formally. We write it
explicitly just because we give it a name to use it later.

η[·] : PATHS(P)→
⋃

S⊆ATOMS(P)

(∏
Ai∈S

PROB(TGi)×
∏

Ai∈ATOMS(P)

∏
a∈ACTLABi

PROB(TRi)
)

∪ {ς}

(where TGi is the set of generative transitions of atom Ai and TRi is the set
of reactive transitions).

We write the co-domain of η[·] as CP.CP

Definit ion 3.1. Given a sequence E = {ηk}
∞
k=1, the scheduler η∗ is called

a limit of the sequence if, for every finite set S of finite paths, there exists a
subsequence E ′ = {ηkj}

∞
j=1 complying

∀σ ∈ S : PRη
∗
((σ)↑) > 0 =⇒ ∀j : η∗[σ] = ηkj [σ] .

Among other issues, the example below clarifies why we require the equal-
ity only in case PRη

∗
((σ)↑) > 0.

Example 3.1. Consider the system whose sole atom is depicted in Fig. 3.1.
Consider the sequence of schedulers E = {ηn}∞n=1 whose output schedulers
are defined as

Θn(

n times︷ ︸︸ ︷
INIT.a. · · · .a.INIT)(g1) = 1

for all k 6 n and

Θn(

n times︷ ︸︸ ︷
INIT.a. · · · .a.INIT)(g3) = 1 .

3.1 limit schedulers 55

In words, Θn delays the execution of g3 for n steps.
Recall that, by Def. 1.9, for the paths σ such that LAST(σ) = s1 we have

η(σ)(ς) = 1 for all η, regardless of the value of Θ([σ]i) (we already faced this
property in Example 1.4). Hence, ηn delays the execution of g3 for n steps;
then, it chooses g3, and it keeps choosing ς in all paths of the form

n times︷ ︸︸ ︷
INIT.(g1,a). · · · .INIT .(g3, c).s1.ς . · · · .s1 .

We show that the scheduler η∗ choosing g1 in all paths is a limit of E.
Given a finite set S of finite paths with positive probability under η∗, let
MS = maxσ∈S LEN(σ). In order to prove that η∗ is a limit, we must find a
subsequence of E such that η∗[σ] = ηn[σ], for all ηn in the subsequence,
For this particular system, this is equivalent to Θ∗(σ) = Θn(σ) for all paths
σ ∈ S. Note that, every path σ such that PRη

∗
((σ)↑) > 0 has the form

k︷ ︸︸ ︷
INIT.(g1,a). · · · .INIT

with k 6 MS. Then, the subsequence we need to find comprises all the ηn

such that n > MS. In fact, for all n > MS, we have

Θ∗(

k︷ ︸︸ ︷
INIT.(g1,a). · · · .INIT) = Θn(

k︷ ︸︸ ︷
INIT.(g1,a). · · · .INIT) = 1 :g1

for all k 6 n and, in particular, for all k 6 MS. In conclusion, for all S the
subsequence {ηn}∞n=MS+1

complies with Θ∗(σ) = Θn(σ) for all σ such that
LEN(σ) 6 MS (in particular, for all σ ∈ S) and PRη

∗
((σ)↑) > 0.

Note that PRη
n
(REACH({s1})) = 1 for all n, while PRη∗(REACH({s1})) = 0.

We also use this example to show why the equality η∗(σ) = ηn(σ) is
required only for the paths σ such that PRη

∗
((σ)↑) > 0. If the restriction were

η∗(σ) = ηn(σ) for all σ ∈ S, then S might contain the path

INIT.(g1,a).INIT.(g2,b).INIT .

Hence, whether η∗ is a limit or not would depend on the values that the
schedulers ηn assign to the path INIT.(g1,a).INIT.(g2,b).INIT, which has prob-
ability 0 in all of the schedulers ηn. This is clearly undesirable since the
choices for the paths with probability 0 should be irrelevant.

In order to emphasize that our definition of limits only considers equal-
ities, we present another example concerning the sequence E whose sched-
ulers are defined by:

ηn(INIT) =
1

2n
:g1 + (1−

1

2n
) :g2

ηn(INIT.(g1,a).INIT)(g3) = 1

ηn(INIT.(g2,b).INIT)(g3) = 1

The larger the n, the higher the probability that g2 is chosen in INIT. However,
the scheduler ηq defined by Θq(INIT)(g2) = 1, Θq(INIT.(g2,b).INIT)(g3) = 1 is
not a limit of E. In fact, we can show that E has no limits: PRη((INIT)↑) = 1 > 0

for all η, and there are no two different schedulers ηn,ηn
′ ∈ E such that

ηn[INIT] = ηn
′
[INIT]. So, for any S including the path INIT we cannot have a

subsequence (not even two schedulers) coinciding for all paths in S.

56 limit schedulers

The following theorem gives a sufficient condition for the existence of a
limit.

Theorem 3.1. Given a sequence of schedulers E = {ηk}
∞
k=1, if

∀σ : {ηk[σ] | 1 6 k 6∞} is finite.

then E has at least one limit.

The proof requires an ancillary lemma.

Lemma 3.1. Let {ηk}
∞
k=1 be a sequence of schedulers such that,

∀σ : {ηk[σ] | 1 6 k 6∞} is finite.

Then, there exists a subsequence {ηN}∞N=0 of {ηk}k such that, for all N, there exists
a sequence ZN = {ZNk }∞k=1 complying with:

ηN[σ] = ηZNk
[σ] (3.1)

for all k and σ such that LEN(σ) 6 N.

Proof. The scheduler η0 is simply η1. The sequence Z0 = {Z0k}k is the se-
quence {k}∞k=1. It trivially complies with (3.1), since there are no paths of
length 0 (INIT has length 1).

In order to construct the scheduler ηN+1 from the scheduler ηN, we de-
fine schedulers ηN,Q, where Q is a set of paths of length N + 1. In addi-
tion, each scheduler ηN,Q has a corresponding sequence ZN,Q = {Z

N,Q
k }∞k=1.

Once these schedulers are defined, we define ηN+1 = ηN,QN and ZN+1 =

ZN,QN+1 , where QN+1 is the set of all paths of length N+ 1. We will con-
struct the schedulers ηN,Q in such a way that ηN,Q(σ) = η

ZN,Q
k

(σ) for all k,

for all σ such that σ ∈ Q or LEN(σ) 6 N. The scheduler ηN,{} is ηN, and the
sequence ZN,{} is ZN. Now, we show how to construct ηN,Q∪{σ∗} from ηN,Q

for σ∗ 6∈ Q and LEN(σ∗) = N.
We consider the sequence {η

ZN,Q
k

[σ∗]}∞k=1. The hypothesis ensures that, in
such sequence, at least one element d∗ is repeated infinitely many times.
Let I be first index such that η

ZN,Q
I

[σ∗] = d∗. We define ηN,Q∪{σ∗} = η
ZN,Q
I

,

and take ZN,Q∪{σ∗} to be the infinite subsequence of ZN,Q complying with
η
Z
N,Q∪{σ∗}
k

[σ∗] = d∗ for all k 6 1 (this subsequence is ensured to exist since

d∗ appears infinitely many times in {η
ZN,Q
k

(σ∗)}∞k=1).

Proof (of Theorem 3.1). Consider the sequence {ηN}∞N=0 whose existence is en-
sured by the previous lemma. We define η∗ as

η∗[σ] = ηLEN(σ)[σ] .

We prove that η∗ is a limit of the sequence. For each finite S, let MS =

maxσ∈S LEN(σ). Then, by Eqn. (3.1), we have η∗[σ] = η
Z
MS
k

[σ] for all σ ∈ S,

for all k.

3.2 finitely falsifiable sets and closure under limits

“falsify: 1 : to prove or declare false”

Merriam-Webster dictionary

3.2 finitely falsifiable sets and closure under limits 57

The goal of this subsection is to establish a sufficient condition ensuring
that a set of schedulers S ⊆ SCHEDP is closed under limits. By closure under
limits we mean that, if the elements of a sequence are drawn from a set S,
then the limits of the sequence (if any) are also in S. We present a general
theorem to ensure closure under limits. This theorem requires the set of
schedulers to be finitely falsifiable.

Definit ion 3.2. We say that a set of schedulers S ⊆ SCHEDP is finitely
falsifiable iff there exists a predicate

F : P(PATHS(P)×CP)→ {TRUE, FALSE}

(recall that CP is the range of η[·]) such that

η 6∈ S ⇐⇒ ∃S ⊆ {σ | PRη((σ)↑) > 0} : S is finite ∧ F({ (σ,η[σ]) | σ ∈ S }) .

The set S is said to be a witness.

Intuitively, a set S is finitely falsifiable if the statement “η is a member of
S” can be falsified by looking at the choices of η for a finite number (namely,∣∣S ∣∣) of paths.

Example 3.2. Let d ∈ CP, s ∈ SP, n ∈ N. Consider the set S comprising
all the schedulers η such that the number of paths ending in s in which c
is chosen is at most n. We show that S is finitely falsifiable. First, we give
an alternative definition of S: η 6∈ S iff there exist paths {σ1, · · · ,σn+1} such
that LAST(σk) = s and η

[
σk
]

= c for all 1 6 k 6 n+ 1. The predicate is thus
defined by

F({(σ1,d1) , · · · , (σq,dq)})

⇐⇒ ∃j1, · · · , jn+1 : ∀16k6n+1 : LAST(σjk) = s ∧ djk(c) > 0 .

Note that the witness set S is only restricted to be finite, and so the predicate
must be defined for sets with any cardinality q. Given a set S = {σ1, · · · ,σq},
the specialization of F for {(σ,η(σ)) | σ ∈ S} yields

F({ (σ1,η
[
σ1
]
) , · · · , (σq,η[σq]) })

⇐⇒ ∃j1 < · · · < jn+1 : ∀16k6n+1 : LAST(σjk) = s ∧ η
[
σjk
]

= c .

If η 6∈ S, then we have a witness set S with n+ 1 elements; in this case any
set S ′ ⊇ S with

∣∣S ′ ∣∣ = q is also a witness. If η ∈ S, there are no witnesses of
any cardinality.

The set S comprising all schedulers such that η[σ] = c for some σ is not
finitely falsifiable (except for the boring case in which the number of paths in
the system P is finite). Intuitively, in order to see that a scheduler η does not
belong to S, we must test all the paths in the system, in order to check that η
does not choose c. In Example 3.1 we have shown a sequence of schedulers
such that all the schedulers choose the compound transition g3 in some of
the paths, while the limit does not. So, the set S is not closed under limits.
This example shows that, in the following theorem, the hypothesis of finite
falsifiability cannot be disregarded.

58 limit schedulers

Theorem 3.2. If a set S is finitely falsifiable and E = {ηi}
∞
i=1 is a sequence of

elements from S, then the limits of E are also in S.

Proof. Suppose, towards a contradiction, that η is a limit and η 6∈ S. Then,
there exist a predicate F and a finite set S such that F({ (σ,η(σ)) | σ ∈ S})

holds. However, since η is a limit of E, there exist infinitely many ηi such
that ηi[σ] = η[σ] for all σ ∈ S, and so

F({ (σ,η[σ]) | σ ∈ S}) = F({ (σ,ηi[σ]) | σ ∈ S}) = TRUE

for all such ηi, thus contradicting the fact that ηi ∈ S.

3.3 distributed schedulers are closed under limits

In this section, we show that the different sets of distributed schedulers
defined in previous chapters are finitely falsifiable and, hence, closed under
limits.

Theorem 3.3. For all [·], the set DISTP([·]) is finitely falsifiable.

Proof. Given dj ∈ CP, we define Ij, Oji and YJi,a to be the probability distribu-
tions such that dj = (Ij, {Oji}i, {Y

j
i,a}i,a). We show that it suffices to consider

the predicate F({ (σ1,d1) , · · · , (σn,dn)}) defined as

∃1 6 j < k 6 n,Ai ∈ ATOMS(P),a ∈ ACTLABi :[
σj
]
i

=
[
σk
]
i

∧
(
O
j
i 6= Oki ∨ Y

j
i,a 6= Yki,a

)
(3.2)

Suppose η = (I, {Θi}i, {Υi}i). Recall that, in Def. 3.2, the predicate F occurs
evaluated in the set { (σ,η[σ]) | σ ∈ S }, and so dj = η

[
σj
]
, dk = η

[
σk
]
.

Moreover, Oji = Θi(σ
j) and Y

j
i,a = Υi(σ

j,a). Hence, the predicate (3.2) is
equivalent to:

∃1 6 j < k 6 n,Ai ∈ ATOMS(P),a ∈ ACTLABi :[
σj
]
i

=
[
σk
]
i

∧
(
Θi(σ

j) 6= Θi(σ
k) ∨ Υi(σ

j,a) 6= Υi(σ
k,a)

)
Replacing σj by σ and σk by σ ′, we get

∃σ,σ ′,Ai,a ∈ ACTLABi :

[σ]i =
[
σ ′
]
i

∧
(
Θi(σ) 6= Θi(σ

′) ∨ Υi(σ,a) 6= Υi(σ
′,a)

)
(3.3)

If no such σ, σ ′ exist, then (1.18) and (1.19) hold, thus implying η ∈ DISTP([·]).
If there exist σ, σ ′ complying with (3.3), then (1.18) or (1.19) do not hold for
η, and so η 6∈ DISTP([·]).

Therefore η ∈ DISTP([·]) iff (3.2) does not hold.

We prove the same result for strongly distributed schedulers.

Theorem 3.4. For all [·], the set SDISTP([·]) is finitely falsifiable.

Proof. A scheduler is strongly distributed iff the following predicate is false

∃σ,σ ′,Ai,Aj :
I(σ)(Ai)

I(σ)(Ai) + I(σ)(Aj)
6= I(σ ′)(Ai)

I(σ ′)(Ai) + I(σ ′)(Aj)

Similarly as in Theorem 3.3, this predicate can be derived from a predicate
of the form F({(σ1,d1), · · · , (σn,dn)}) where dk = η

[
σk
]
.

3.3 distributed schedulers are closed under limits 59

The last set of schedulers for which we prove this property is the set of
total order-based schedulers in Sec. 2.3.

Theorem 3.5. The set SDISTP([·], 6) is finitely falsifiable.

Proof. We prove that the following predicate is suitable to falsify a scheduler.

∃Ai,σ ∈ S : 0 < I(σ)(Ai) < 1

∨ ∃A1, · · · ,An ∈ ATOMS(P),σ1, · · · ,σn ∈ S : I(σ1) = 1 :A1

∧ [σ1]2 = [σ2]2

∧ I(σ2) = 1 :A2

∧ [σ2]3 = [σ3]3

∧ I(σ3) = 1 :A3

∧ · · ·
∧ I(σn) = 1 :An

∧ [σn]1 = [σ1]1

∧ A1 6= An

(3.4)

Note that, if 0 < I(σ)(A) < 1, then the scheduler cannot be based on a
total order. If there exists σ1, · · · ,σn as in the predicate suppose, towards a
contradiction, that I is based on a total order 6. By Def. 2.3,(

I(σk) = 1 :Ak ∧
[
σk
]
k+1

=
[
σk+1

]
k+1

)
=⇒

[
σk
]
k
<
[
σk+1

]
k+1

and (
I(σn) = 1 :An ∧ [σn]1 = [σ1]1

)
=⇒ [σn]n <

[
σ1
]
1

Hence[
σ1
]
1
<
[
σ2
]
2
< · · · < [σn]n <

[
σ1
]
1

.

This contradicts the assumption that 6 is a total order. Therefore, if η is
total order-based, then (3.4) does not hold.

In order to prove that η is total order-based whenever the predicate does
not hold, we define a relation R6. Then, under the assumption that (3.4)
does not hold, we prove that R6 is a total order on the local paths and I

behaves according to R6. We start the construction of R6 with a relation R
defined as follows: σi Rσj iff there exists σ such that [σ]i = σi and [σ]j = σj
and I(σ) = 1 :Ai. Let R+ be the transitive closure or R. In order to complete
our definition, we also consider the equivalence closure of R, denoted by R∗.
The relation R∗ has (at most) countably many equivalence classes {Ck}

∞
k=1.

Note that, if σi 6R∗ σj, then σi and σj are not related by R+. We define

R6 = R+ ∪ {(σi,σ ′i ′) | σi ∈ Ck ∧ σ ′i ′ ∈ Cm ∧ k < m} .

Since k < m, we have Ck 6= Cm, and so σi 6R∗ σ ′i ′ , which implies σi 6R+ σ ′i ′ .
By construction, R6 is total and transitive. To prove that R6 is antisymmet-
ric, suppose σi R6 σj and σj R6 σi since R6 only adds pairs that are not re-
lated in R+, we have σi R+ σj and σj R+ σi. By definition of R+, there exists
σi1 , · · · ,σin ,σi ′1 , · · · ,σi ′

n ′
such that

σi Rσi1
∧ ∀k : σik Rσik+1

∧ σin Rσj

60 limit schedulers

and

σj Rσi ′1
∧ ∀k : σi ′k Rσi

′
k+1

∧ σi ′
n ′
Rσi .

By definition of R, there exists

Sσ = {σi,i1 ,σi1,i2 , · · · ,σin,j,σj,i
′
1 ,σi

′
1,i ′2 , · · · ,σi

′
n ′ , i}

such that, for all p,q, r, we have σq = [σp,q]q = [σq,r]q and I(σp,q) = 1 :Ap.
Then, the assumption that (3.4) does not hold yields i ′n ′ = i. Hence, σi =

[σi,i
′
n ′]i = [σi,i

′
n ′]i ′

n ′
= σi ′

n ′
. Similarly, by using different permutations of Sσ

(more particularly, by “rotating” Sσ), we can prove σp = σq for all σp,q ∈ Sσ.
By transitivity of =, we have σi = σj as desired. Therefore,

σi R
6 σj ∧ σj R

6 σi =⇒ σi = σj ,

and so R6 is antisymmetric.
Let σi 6 σj iff σi R6 σj. If I(σ) = 1 :Ai, by definition of Rwe have [σ]i R [σ]j

for all i 6= j, and so i = arg min6[σ]i. Then, I is based on the total order
6.

By considering Theorems 3.3, 3.4 and 3.5 together with Theorem 3.2, we
obtain the following corollary.

Corollary 3.1. For all [·], the sets DISTP([·]), SDISTP([·]) and SDISTP([·], 6) are
closed under limits.

3.4 discussion and further work

Along this chapter, we used the name limit without providing a justification
for it. We consider that an interesting research direction is to study whether
limit schedulers are actually limit points (also called accumulation points)
under some metric. If so, in such space we have that finitely falsifiable are
closed sets. This would allow us to use the existing machinery for metric
spaces in order to explore further properties for sets of schedulers.

The argument used to show the existence of limits in Theorem 3.1 (namely,
to obtain successive subsequences of the original one) is usual in the field
of Petri nets. In fact, this argument is used to show the existence of covering
trees [32] for these nets. In a more abstract setting, this argument is used to
show the existence of increasing sequences in well-quasi-orderings [111] and,
more generally, in Ramsey theory [85]. This suggests a connection between
limit schedulers and order theory. In fact, the “limit construction” in [45,
Sec. 4.3] is about partially defined schedulers, which are ordered in the sense
that “the greater the scheduler, the more defined it is”.

4
O N T H E E X P R E S S I V E P O W E R O F D I F F E R E N T C L A S S E S
O F S C H E D U L E R S

In the verification of probabilistic systems, the key problem is to find the
“worst-case probability”, that is, the maximum probability that the system
fails to correctly achieve its goal (or the minimum probability that it works
properly) quantifying over all possible schedulers. For full-history depen-
dent schedulers, it is well-known that the worst-case probability equals the
maximum probability quantifying over non-randomized schedulers (intro-
duced in Def. 1.8). This fact often comes in hand to simplify correctness
proofs: we can prove that a value v is greater than the probabilities yielded
for all schedulers (that is, v is an overestimation of the worst-case probabil-
ity), by proving that v is greater than the value yielded for all non-randomized
schedulers. Since these schedulers can be thought as functions mapping his-
tories to transitions, they happen to be technically easier to manipulate than
the arbitrary schedulers, which map to probability distributions. Given two
sets of schedulers S ⊆ S ′, we say that a set S is (at least) as expressive as the set
S ′ iff the worst-case probability over S coincides with the worst-case proba-
bility over S ′: intuitively, we want the schedulers in S to be “evil enough” so
that they can make the system fail with the worst probability. Note that, be-
cause of the set inclusion, the worst-case probability over S cannot be worse
than that over probability over S ′. In case S ′ is clear from the context (for
instance, if we are focusing on the set schedulers S ′ = DISTP([[·]])), we simply
say that the subset S is sufficiently expressive.

In this chapter, we consider subsets of distributed/strongly distributed
schedulers in order to study whether they are sufficiently expressive. After
considering non-randomized schedulers, we present Markovian schedulers,
in which the choice of the scheduler is based solely on the actual state. The
domain of these schedulers can be thought as the set of states of the sys-
tem, instead of the set of paths. We generalize Markovian schedulers to
N-Markovian schedulers, which choose according to the last N states in the
history, thus “forgetting” the states traversed before the last N steps ago.
Further generalization leads to the subset of finite memory schedulers, will
comprises all N-Markovian schedulers for all N.

Some of the questions we address in this chapter are: “Does randomiza-
tion add expressiveness to Markovian schedulers?”, “Are schedulers with
finite memory sufficiently expressive?”, “Given a system, can we find a
suitable N such that N-Markovian schedulers are sufficiently expressive?”.
Many of these questions are addressed only for the projection [[·]], since it is
the projection that has been used in previous works to model distributed sys-
tems. In fact, several of the results presented are of a “negative” nature, and
we only aim to show that the natural projection [[·]] yields different results to
the ones obtained by assuming that all information is available.

We start considering how randomization affects the power of distributed
schedulers. Then, we consider the restriction to finite memory.

61

62 on the expressive power of different classes of schedulers

4.1 non-randomized distributed schedulers

For the usual schedulers full-information schedulers, the worst-case proba-
bility that a failure state is reached is attained by the set of schedulers that
are both Markovian and non-randomized [25]. Then, when dealing with full-
information schedulers and reachability properties, the schedulers which are
functions mapping states to transitions are sufficiently expressive.

Unfortunately, these results do not hold in general for distributed sched-
ulers, since Markovian schedulers are not sufficiently expressive (not even
for the usual projection [[·]] and reachability properties), as we shall see
in Sec. 4.4. Moreover, in the setting of strongly distributed schedulers under
[[·]], non-randomized schedulers are not sufficiently expressive, as we show
later on in Subsection 4.2.1.

In contrast to these negative results, non-randomized distributed sched-
ulers are sufficiently expressive for all projections (and, in particular, for
[[·]]).

Theorem 4.1. For any set S of infinite traces, S being measurable, we have

sup
η∈NRDISTP([·])

PRη(S) = sup
η∈DISTP([·])

PRη(S) .

Corollary 4.1.

sup
η∈NRDISTP([[·]])

PRη(S) = sup
η∈DISTP([[·]])

PRη(S) .

The proof of Theorem 4.1 is quite long and, in fact, the remaining of this
section is devoted to it.

Notation 4.1. Given a non-randomized output scheduler Θ we write
Θ(σ) = g to indicate that Θ(σ)(g) = 1, and similarly for input and inter-
leaving schedulers.

First, we need some elements from probability theory. These definitions
and the proofs not given here can be found in [145].

Definit ion 4.1. Given a set Σ, a semi-ring is a set S ⊆ P(Σ) complying:

• ∅ ∈ S,

• S, T ∈ S =⇒ S∩ T ∈ S,

• S, T ∈ S =⇒ ∃n > 0,Qi ∈ S : S \ T =
⊎n
i=1Qi.

A ring is a set R ⊆ P(Σ) complying:

• ∅ ∈ R,

• S, T ∈ R =⇒ S∪ T ∈ S,

• S, T ∈ R =⇒ S \ T ∈ S.

The ring R(S) generated by a semi-ring S is the smallest ring containing S. It
can be proven that each element in the ring generated by a semi-ring S is of
the form

⊎n
i=1 Si with Si ∈ S.

4.1 non-randomized distributed schedulers 63

The set comprising all the sets (σ)↑ and the empty set is a semi-ring. In
the following, we denote this semi-ring by S. Since we only consider this
semi-ring, we write R for R(S).

In the definition of PRη (Definition 1.10), we mentioned that, by defining a
probability measure on extension sets, the probability of any measurable set
is uniquely defined. Next, we give an explicit definition of the probability
of a measurable set using the elements in R. Afterwards, we give a lemma
with an alternative definition that relies directly on the elements in S.

Definit ion 4.2. An R-cover of a set S is a set T = {Ti}
∞
i=1 where Ti ∈ R

and S ⊆
⋃∞
n=1 Ti. Let Z(S) be the set of all the R-covers of S. The probability The union

⋃∞
n=1 Ti

is not required to be
disjoint (see [145,
Exercise 19])

of a measurable set S in the σ-algebra generated by the semi-ring S is defined
as

inf
{Ti}

∞
i=1∈Z(S)

∞∑
i=1

PRη(Ti) .

The following lemma states that the probability of any measurable set can
be approximated as the probability of a countable disjoint union of sets of
extensions.

Lemma 4.1. Let Cω be the set

{ {Ui}
∞
i=1 | ∀i, j, i 6= j : Ui ∈ S ∧ Uj ∈ S ∧ Ui ∩Uj = ∅ } .

For every measurable set of infinite paths S, we have

PRη(S) = inf
{C∈Cω |S⊆

⊎
U∈CU}

∑
U∈C

PRη(U) .

Proof. Let T = {Ti}
∞
i=0 be an R-cover for S where each Ti is of the form⊎ni

k=0 T
i
k with T ik ∈ S (recall the definition of R(S)). We define CT ∈ Cω as

follows: U ∈ CT iff U = T ik for some i,k and there is no T i
′

k ′ such that T ik ⊂ T i
′

k ′ .
Since our semi-ring is the set of extension sets, in the construction of CT we
dropped the sets T ik = (σ)↑ such that there exists T i

′

k ′ = (σ ′)↑ with σ ′ < σ.
Then, we have

∞∑
i=1

PRη(Ti) =

∞∑
i=1

ni∑
k=0

PRη(T ik) >
∑
U∈CT

PRη(U)

In addition, CT is an R-cover of S, since in the construction of CT we only
dropped sets of extensions included in other sets of extensions.

So, for each R-cover T we found another R-cover CT ∈ Cω yielding less or
equal probability, thus completing the proof.

Let η be a scheduler, σi∗ be a local path and a ∈ ACTLABi∗ such that
0 < Υi∗(σi∗ ,a) < 1 (where Υi∗ is the input scheduler for atom Ai∗ in η).
Next, we show that we can transform η into another scheduler η ′ in which
the resolution for the input a in σi∗ is not randomized. Formally, the value
of Υ ′i∗(σi∗ ,a) in the resulting scheduler η ′ is a Dirac distribution, while all
the other resolutions of nondeterministic choices in η ′ remain the same as in
η. Moreover, given a set of the form S =

⊎M
m=1 (σm)↑, we can find a reactive

transition r∗ in such a way that, by defining Υ ′(σi∗ ,a)(r∗) = 1, the probabil-
ity of S under the resulting scheduler η ′ is not greater than the probability
under η.

64 on the expressive power of different classes of schedulers

Definit ion 4.3. Given η = (I, {Θ1, · · · ,ΘN}, {Υ1, · · · ,ΥN}) ∈ DISTP([·]), the
scheduler NR(η,σi∗ ,a, r∗) is defined as

(I, {Θ1, · · · ,ΘN}, {Υ1, · · · ,Υ ′i∗ , · · · ,ΥN})

where Υ ′i∗(σi∗ ,a)(r∗) = 1 and Υ ′i∗(σ
′
i∗ ,a

′) = Υi∗(σ
′
i∗ ,a

′) for all (σ ′i∗ ,a
′) 6=

(σi∗ ,a). Note that, for all r∗, NR(η,σi∗ ,a, r∗) ∈ DISTP([·]).

Lemma 4.2. For all η ∈ DISTP([·]), σi∗ , a ∈ ACTLABi∗ such that 0 < Υi∗(σi∗ ,a) <

1 (where Υi∗ is the input scheduler for atom Ai∗ in η), for all S =
⊎M
m=1 (σm)↑,

there exists r∗ such that NR(η,σi∗ ,a, r∗) complies with

PRNR(η,σi∗ ,a,r∗)(S) 6 PRη(S) .

Proof. Let T be the set of all the paths in {σm}Mm=1 such that a occurs in σi∗ ,
that is, T ⊆ {σm}Mm=1 and, if there exists kσ < LEN(σ) such that [σ↓kσ]Ai∗ =

σi∗ and LABEL(σ〈kσ〉) = a, then σ ∈ T . W.l.o.g., let kσ be the least such
number. The probabilities of the paths in T are the only ones that change
(since η and NR(η,σi∗ ,a, r∗) differ only in the resolution of the input a in
σi∗). Hence, the core of the proof is to find r∗ such that:

PRNR(η,σi∗ ,a,r∗)(
⊎
σ∈T

(σ)↑) 6 PRη(
⊎
σ∈T

(σ)↑) . (4.1)

Once we have been able to find such an r∗, the lemma follows from the
following calculation:

PRη(S)

= PRη(
⊎
σ∈T

(σ)↑) + PRη(
⊎

σ∈{σm}Mm=1\T

(σ)↑)

= PRη(
⊎
σ∈T

(σ)↑) + PRNR(η,σi∗ ,a,r∗)(
⊎

σ∈{σm}Mm=1\T

(σ)↑)

> PRNR(η,σi∗ ,a,r∗)(
⊎
σ∈T

(σ)↑) + PRNR(η,σi∗ ,a,r∗)(
⊎

σ∈{σm}Mm=1\T

(σ)↑)

= PRNR(η,σi∗ ,a,r∗)(S)

In the following, we find r∗ such that Eqn. (4.1) holds. Given σ ∈ T , let
Agσ be ACTIVE(σ〈kσ〉), gσ be the corresponding generative transition, and for
all Aj such that a ∈ ACTLABj let sσ,j = πj(σ(kσ)), s ′σ,j = πj(σ(kσ + 1)) For all
Aj ∈ REACTIVE(σ〈kσ〉), let rσj be the reactive transition executed by Aj when
a occurs in σ in the kσ-th step. We will focus on Υi(σi∗ ,a). The following
calculation helps us to isolate Υi(σi∗ ,a) from the rest of the factors in the
probability of a given path σ ∈ T .

PRη((σ)↑)

= PRη((σ↓kσ)
↑)

· η(σ↓kσ)(
c︷ ︸︸ ︷

σ〈kσ〉) · c (σ(kσ) , σ(kσ + 1))

·
LEN(σ)−1∏
t=kσ+1

η(σ↓t)(σ〈t〉) · σ〈t〉(σ(t),σ(t+ 1))

4.1 non-randomized distributed schedulers 65

= PRη((σ↓kσ)
↑)

· I(σ↓kσ)(Agσ) ·Θgσ([σ↓kσ]gσ)(gσ)

·
∏

Aj∈REACTIVE(σ〈kσ〉)

Υj([σ↓kσ]j,a)(rσj)

· gσ(sσ,gσ ,a, s ′σ,gσ)

·
∏

Aj∈REACTIVE(σ〈kσ〉)

rσj (sσ,j,a, s ′σ,j)

·
LEN(σ)−1∏
t=kσ+1

η(σ↓t)(σ〈t〉) · σ〈t〉(σ(t),σ(t+ 1))

= Υi∗([σ↓kσ]i∗ ,a)(rσi∗) · rσi∗(sσ,i∗ ,a, s ′σ,i∗)

· PRη((σ↓kσ)
↑)

· I(σ↓kσ)(Agσ) ·Θgσ([σ↓kσ]gσ)(gσ)

·
∏

Aj∈REACTIVE(σ〈kσ〉)\{Ai∗}

Υj([σ↓kσ]j,a)(rσj)

· gσ(sσ,gσ ,a, s ′σ,gσ)

·
∏

Aj∈REACTIVE(σ〈kσ〉)\{Ai∗}

rσj (sσ,i∗ ,a, s ′σ,i∗)

·
LEN(σ)−1∏
t=kσ+1

η(σ↓t)(σ〈t〉) · σ〈t〉(σ(t),σ(t+ 1))

Hence, we have,

∀η = (I, {Θ1, · · · ,ΘN}, {Υ1, · · · ,ΘN}) : ∀σ ∈ T :

PRη((σ)↑) = Υi∗(σi∗ ,a)(rσi∗) · rσi∗(sσ,i∗ ,a, s ′σ,i∗) ·Qησ , (4.2)

where

Qησ = PRη((σ↓kσ)
↑)

· I(σ↓kσ)(Agσ) ·Θgσ([σ↓kσ]gσ)(gσ)

·
∏

Aj∈REACTIVE(σ〈kσ〉)\{Ai∗}

Υj([σ↓kσ]j,a)(rσj)

· gσ(sσ,gσ ,a, s ′σ,gσ)

·
∏

Aj∈REACTIVE(σ〈kσ〉)\{Ai∗}

rσj (sσ,i∗ ,a, s ′σ,i∗)

·
LEN(σ)−1∏
t=kσ+1

η(σ↓t)(σ〈t〉) · σ〈t〉(σ(t),σ(t+ 1))

Note that, although one occurrence of the factor Υi∗(σi∗ ,a) in PRη((σ)↑) has
been left out ofQησ, other occurrences of the factor might appear inQησ, since
there might be several k ′ such that [σ↓k ′]i∗ = σi∗ and LABEL(σ〈k ′〉) = a. We
use property (1.11) (see p. 29) to show that no k ′ 6= kσ exists. Since kσ is

66 on the expressive power of different classes of schedulers

minimal, it should be k ′ > kσ for every such k ′, and so Υi∗(σi∗ ,a) might
appear in

LEN(σ)−1∏
t=kσ+1

η(σ↓t)(σ〈t〉) · σ〈t〉(σ(t),σ(t+ 1))

(more precisely, in η(σ↓k ′)(σ〈k ′〉)). However, by property (1.11), it must be
[σ↓k ′]i∗ 6= [σ↓kσ]i∗ : in effect, note that σ↓k ′ can be written as σ↓kσ · σq where
σq is a path such that LABEL(σq〈1〉) = a ∈ ACTLABi∗ . In conclusion, prop-
erty (1.11) implies that the factor Υi∗(σi∗ ,a) cannot appear in Qησ. Since η
and NR(η,σi∗ ,a, r) differ only with respect to the value of Υi∗(σi∗ ,a), we
have

∀σ ∈ T : Qησ = Q
NR(η,σi∗ ,a,r)
σ . (4.3)

Now, we calculate:∑
σ∈T PRη((σ)↑)

=
{

Definition of probabilities for cylinders
}∑

σ∈T Υi∗(σi∗ ,a)(rσi∗) r
σ
i∗(sσ,i∗ ,a, s ′σ,i∗) Q

η
σ

=
{

Rearrange sums
}∑

ri∗ ,si∗ ,s ′
i∗

∑
{σ∈T | rσ

i∗=ri∗
∧ sσ,i∗=si∗ ∧ s ′

σ,i∗=s
′
i∗}

Υi∗(σi∗ ,a)(ri∗) ri∗(si∗ ,a, s ′i∗) Q
η
σ

=
∑
ri∗

Υi∗(σi∗ ,a)(ri∗)
∑
si∗ ,s ′

i∗

∑
{σ∈T | rσ

i∗=ri∗
∧ sσ,i∗=si∗ ∧ s ′

σ,i∗=s
′
i∗}

ri∗(si∗ ,a, s ′i∗)Q
η
σ

Consider the reactive transition r∗ defined as:

r∗ = arg min
ri∗

∑
si∗ ,s ′

i∗

∑
{σ∈T | rσ

i∗=ri∗
∧ sσ,i∗=si∗ ∧ s ′

σ,i∗=s
′
i∗}

ri∗(si∗ ,a, s ′i∗)Q
η
σ .

Next, we show that Eqn. (4.1) holds.∑
σ∈T

PRη((σ)↑)

=
{

Previous calculation
}∑

ri∗

Υi∗(σi∗ ,a)(ri∗)
∑
si∗ ,s ′

i∗

∑
{σ∈T | rσ

i∗=ri∗
∧ sσ,i∗=si∗ ∧ s ′

σ,i∗=s
′
i∗}

ri∗(si∗ ,a, s ′i∗)Q
η
σ

>
{

Definition of r∗,
∑
ri∗
Υi∗(σ

∗,a)(ri∗) = 1
}∑

si,s ′i

∑
{σ∈T | rσ

i∗=r
∗ ∧ sσ,i∗=si∗ ∧ s ′

σ,i∗=s
′
i∗}

r∗(si∗ ,a, s ′i∗)Q
η
σ

=
{

Equation (4.3)
}∑

si∗ ,s ′
i∗

∑
{σ∈T | rσ

i∗=r
∗ ∧ sσ,i∗=si∗ ∧ s ′

σ,i∗=s
′
i∗}

r∗(si∗ ,a, s ′i∗)Q
NR(η,σi∗ ,a,r∗)
σ

=
∑

{σ∈T | rσ
i∗=r

∗}

r∗(sσ,i∗ ,a, s ′σ,i∗)Q
NR(η,σi∗ ,a,r∗)
σ

=
{
Υ ′i∗(σi∗)(r

∗) = 1 (by definition of NR(η,σi∗ ,a, r∗) –Definition 4.3)
}∑

{σ∈T | rσ
i∗=r

∗}

Υ ′i∗(σi∗(r
∗) r∗(sσ,i∗ ,a, s ′σ,i∗)Q

NR(η,σi∗ ,a,r∗)
σ

4.1 non-randomized distributed schedulers 67

=
{

Equation (4.2)
}∑

{σ∈T | rσ
i∗=r

∗}

PRNR(η,σi∗ ,a,r∗)((σ)↑)

=
{

PRNR(η,σi∗ ,a,r∗)((σ ′)↑) = 0 for all σ ′ such that rσ
′
i∗ 6= r∗

}∑
{σ∈T}

PRNR(η,σi∗ ,a,r∗)((σ)↑)

By repeated application of Lemma 4.2, we can transform any η in such a
way that the input scheduler for atom Ai is non-randomized, as stated in
the following lemma.

Lemma 4.3. For all Ai, S =
⊎M
m=1 (σm)↑, η = (I, {Θ1, · · ·,ΘN}, {Υ1, · · ·,ΥN}) ∈

DISTP([·]), there exists a non-randomized scheduler Υ ′i such that the scheduler

NR(η,Υ ′i) = (I, {Θ1, · · · ,ΘN}, {Υ1, · · · ,Υ ′i, · · · ,ΥN})

complies with PRNR(η,Υ ′i)(S) 6 PRη(S) and NR(η,Υ ′i) ∈ DISTP([·]).

Proof. Suppose ACTLABi = {a1, · · · ,an}. Then, by Lemma 4.2, there exist
r1, · · · , rn such that the scheduler NR(η,σi) defined as

NR(η,σi) = NR(NR(· · ·NR(NR(η,σi,a1, r1),σi,a2, r2) · · ·) ,σi , an , rn)

complies with

PRNR(η,σi)(S) 6 PRη(S) . (4.4)

Let U = {σ1i , · · · ,σNi } be the smallest set of local paths such that, if there
exists σ ∈ PATHS(P) complying with LEN(σ) 6 max16m6M LEN(σm) and
[σ]i = σi, then σi ∈ U. Consider the scheduler

ηM = NR(NR(· · ·NR(NR(η,σ1i),σ
2
i) · · ·) ,σNi) .

From Eqn. (4.4), we have PRη
M

(S) 6 PRη(S). Let ΥMi be the input scheduler
for Ai in ηM. Now, consider any input scheduler Υ ′i such that Υ ′i(σi,a) =

ΥMi (σi,a) for all a, σi ∈ U, and Υ ′i(σi,a) = 1 :rσi,a, where rσi,a is any tran-
sition, for all a, σi 6∈ U. The probabilities of the paths in S are not affected
by the nondeterministic resolutions for the paths having length greater than
max16m6M LEN(σm). Then, we have

PRNR(η,Υ ′i)(S) = PRη
M

(S) 6 PRη(S)

as desired.

The same transformation can be carried out on output schedulers, as for-
mally stated below.

Lemma 4.4. For allAi, S =
⊎M
m=1 (σm)↑, η = (I, {Θ1, · · · ,ΘN}, {Υ1, · · · ,ΥN}) ∈

DISTP([·]), there exists a non-randomized scheduler Θ ′i such that the scheduler

NR(η,Θ ′i) = (I, {Θ1, · · · ,Θ ′i, · · · ,ΘN}, {Υ1, · · · ,ΥN})

complies with PRNR(η,Θ ′i)(S) 6 PRη(S).

68 on the expressive power of different classes of schedulers

Proof. A result similar to Lemma 4.2 can be proven for output schedulers.
Then, we can apply the same argument as in Lemma 4.3.

Now, it remains to show how to transform the interleaving scheduler into
a non-randomized one. The proof for interleavings schedulers differs from
the proofs of Lemma 4.3 and 4.4 in that we need to consider global paths,
instead of local paths.

Definit ion 4.4. Given η = (I, {Θ1, · · · ,ΘN}, {Υ1, · · · ,ΥN}), the scheduler
NR(η,σ∗,Ai∗) is defined as

(I ′, {Θ1, · · · ,ΘN}, {Υ1, · · · ,ΥN})

where I ′(σ∗)(Ai∗) = 1 and I ′(σ) = I(σ) for all σ 6= σ∗.

Lemma 4.5. For all η, σ∗ ∈ PATHS(P), S =
⊎M
m=1 (σm)↑, there exists Ai∗ such

that NR(η,σ∗,Ai∗) complies with

PRNR(η,σ∗,Ai∗)(S) 6 PRη(S) .

Proof. Let T be the set of all the global paths σm such that σ∗ is a strict
prefix of σm (that is, σm↓LEN(σ∗) = σ∗ and LEN(σm) > LEN(σ∗)). Similarly as
in Lemma 4.2, the core of the proof is to find Ai∗ such that:

PRNR(η,σ∗,Ai∗)(
⊎
σ∈T

(σ)↑) 6 PRη(
⊎
σ∈T

(σ)↑) . (4.5)

and then the lemma follows from

PRη(S)

= PRη(
⊎
σ∈T

(σ)↑) + PRη(
⊎

σ∈{σm}Mm=1\T

(σ)↑)

= PRη(
⊎
σ∈T

(σ)↑) + PRNR(η,σ∗,Ai∗)(
⊎

σ∈{σm}Mm=1\T

(σ)↑)

> PRNR(η,σ∗,Ai∗)(
⊎
σ∈T

(σ)↑) + PRNR(η,σ∗,Ai∗)(
⊎

σ∈{σm}Mm=1\T

(σ)↑)

= PRNR(η,σ∗,Ai∗)(S) .

In the following, we find Ai∗ such that Eqn. (4.5) holds. For every σ ∈ T ,
let Agσ be the atom that performs an output in the k-th step (that is Agσ =

ACTIVE(σ〈k〉)), and gσ be the corresponding generative transition. Moreover,
let aσ be the label after the k-th step in σ and rj be the reactive transition
executed by Aj after the k-th step. Similarly as in the proof of Lemma 4.2,
we define:

Q
η
σ = PRη((σ↓k)

↑)

·
∏

Aj∈REACTIVE(σ〈kσ〉)

Υj([σ↓kσ]j,aσ)(rj)

·
∏

Aj∈REACTIVE(σ〈kσ〉)

rj(πj(σ(kσ)), aσ, πj(σ(kσ + 1)))

·
LEN(σ)−1∏
t=k+1

η(σ↓t)(σ〈t〉) σ〈t〉(σ(t),σ(t+ 1))

4.1 non-randomized distributed schedulers 69

and so we have

∀η = (I, {Θ1, · · · ,ΘN}, {Υ1, · · · ,ΥN}) : ∀σ ∈ T :

PRη((σ)↑) = I(σ∗)(Agσ) Θgσ([σ↓k]gσ)(g
σ) gσ(sσ,g,aσ, s ′σ,g) Q

η
σ . (4.6)

Note that the term I(σ∗) does not affect Qησ: if a factor of the form I(σ ′)

appears in PRη((σ↓k)
↑) or in

∏LEN(σ)−1
t=k+1 η(σ↓t)(σ〈t〉) σ〈t〉(σ(t),σ(t+ 1)) then we

have σ ′ < σ∗ (in the former case) or σ∗ < σ ′ (in the latter). Hence,

∀σ ∈ T : Qησ = Q
NR(η,σ∗,Ai∗)
σ . (4.7)

Let sσ,g = πgσ(σ(k)) and s ′σ,g = πgσ(σ(k+ 1)). Then:∑
σ∈T

PRη((σ)↑)

=
∑
σ∈T

I(σ∗)(Agσ) Θgσ([σ↓k]gσ)(g
σ) gσ(sσ,g,aσ, s ′σ,g) Q

η
σ

=
∑

Ai,gi,si,s ′i,a

∑
{σ∈T |Agσ=Ai ∧ gσ=gi ∧ aσ=a ∧ sσ,g=si ∧ s ′σ,g=s ′i}

I(σ∗)(Ai) Θgi([σ↓k]i)(gi)

gi(si,aσ, s ′i) Q
η
σ

=
∑
Ai

I(σ∗)(Ai)
∑

gi,si,s ′i,a ∑
{σ∈T |Agσ=Ai ∧ gσ=gi ∧ aσ=a ∧ sσ,g=si ∧ s ′σ,g=s ′i}

Θi([σ↓k]i)(gi) gi(si,a, s ′i)Q
η
σ

Consider the atom Ai∗ defined as follows:

Ai∗ = arg minAi
∑
gi,si,s ′i,a

∑
{σ∈T |gσ=gi ∧ aσ=a ∧ sσ,g=si ∧ s ′σ,g=s ′i}

gi(si,a, s ′i)Θi([σ↓k]i)(gi)Q
η
σ

Next, we show that Eqn. (4.5) holds.∑
σ∈T

PRη((σ)↑)

=
{

Previous calculation
}∑

Ai

I(σ∗)(Ai)
∑

gi,si,s ′i,a ∑
{σ∈T |Agσ=Ai ∧ gσ=gi ∧ aσ=a ∧ sσ,g=si ∧ s ′σ,g=s ′i}

Θi([σ↓k]i)(gi) gi(si,a, s ′i)Q
η
σ

>
{

Definition of Ai∗ ,
∑
Ai

I(σ∗)(Ai) = 1
}∑

gi∗ ,si∗ ,s ′
i∗ ,a ∑

{σ∈T |Agσ=Ai∗ ∧ gσ=gi∗ ∧ aσ=a ∧ sσ,g=si∗ ∧ s ′σ,g=s ′
i∗}

Θi∗([σ↓k]i∗)(gi∗) gi∗(si∗ ,a, s ′i∗)Q
η
σ

70 on the expressive power of different classes of schedulers

=
{

Equation (4.7)
}∑

gi∗ ,si∗ ,s ′
i∗ ,a ∑

{σ∈T |Agσ=Ai∗ ∧ gσ=gi∗ ∧ aσ=a ∧ sσ,g=si∗ ∧ s ′σ,g=s ′
i∗}

Θi∗([σ↓k]i∗)(gi∗) gi∗(si∗ ,a, s ′i∗)Q
NR(η,σ∗,Ai∗)
σ

=
∑

{σ∈T |Agσ=Ai∗}

Θi∗([σ↓k]i)(g
σ) gσ(sσ,g,aσ, s ′σ,g)Q

NR(η,σ∗,Ai∗)
σ

=
{

I ′(σ∗)(Ai∗) = 1 (by definition of NR(η,σ∗,Ai∗) –Definition 4.4)
}∑

{σ∈T |Agσ=Ai∗}

I ′(Ai∗)Θi∗([σ↓k]i)(g
σ) gσ(sσ,g,aσ, s ′σ,g)Q

NR(η,σ∗,Ai∗)
σ

=
{

Equation (4.6)
}

=
∑

{σ∈T |Agσ=Ai∗}

PRNR(η,σ∗,Ai∗)((σ)↑)

=
{

PRNR(η,σ∗,Ai∗)((σ ′)↑) = 0 for all σ ′ such that Agσ ′ 6= Ai∗
}∑

{σ∈T}

PRNR(η,σ∗,Ai∗)((σ)↑)

By repeated application of Lemma 4.5, we can construct a non-randomized
interleaving scheduler, as we show in the proof of the following theorem.

Lemma 4.6. For all S =
⊎M
m=1 (σm)↑, η = (I, {Θ1, · · · ,ΘN}, {Υ1, · · · ,ΥN}) ∈

DISTP([·]), there exists a non-randomized scheduler I ′ such that the scheduler

NR(η, I ′) = (I ′, {Θ1, · · · ,ΘN}, {Υ1, · · · ,Υ ′i, · · · ,ΥN})

complies with PRNR(η,I ′)(S) 6 PRη(S).

Proof. Let σ1, · · · ,σN be the set of all global paths having length less than or
equal to max16m6M LEN(σm). By Lemma 4.5, there exist atoms A1, · · · ,AN

such that the scheduler

ηM = NR(NR(· · ·NR(NR(η,σ1,A1),σ2,A2) · · ·) ,σN,AN)

complies with PRη
M

(S) 6 PRη(S). Let IM be the interleaving scheduler that
defines ηM. Now, consider any interleaving scheduler I ′ such that I ′(σ) =

IM(σ) for all σ such that LEN(σ) 6 max16m6M LEN(σm), and I(σ) = 1 :Aσ,
where Aσ is any atom, for all σ such that LEN(σ) > max16m6M LEN(σm).
The probabilities of the paths in S are not affected by the nondeterministic
resolutions for the paths having length greater than max16m6M LEN(σm).
Then, we have

PRNR(η,I ′)(S) = PRη
M

(S) 6 PRη(S)

as desired.

Lemma 4.7. For all η ∈ DISTP([·]), for all sets S =
⊎M
m=1 σ

m, there exists ηNR ∈
NRDISTP([·]) such that

PRη
NR

(S) 6 PRη(S) .

4.1 non-randomized distributed schedulers 71

Proof. Let η = (I, {Θ1, · · · ,ΘN}, {Υ1, · · · ,ΥN}) ∈ DISTP([·])P. By repeated ap-
plication of Lemmata 4.3 and 4.4, we can find non-randomized input sched-
ulers Υ ′1, · · · ,Υ ′N and non-randomized output schedulers Θ ′1, · · · ,Θ ′N. By
Lemma 4.6 we can find a non-randomized interleaving scheduler I ′ such
that the scheduler

ηNR = (I ′,Θ ′1, · · · ,Θ ′N,Υ ′1, · · · ,Υ ′N)

complies with PRη
NR

(S) 6 PRη(S).
Moreover, note that ηNR is non-randomized, that is, ηNR ∈ DISTP([·]).

The following lemma concerns “infinite-horizon” properties of the form⊎∞
m=1 (σm)↑. It shows that an optimal scheduler can be constructed from

schedulers ηN, whenever these schedulers are optimal for the “finite-horizon
approximations”

⊎
{(σm)↑ | LEN(σm) < N}. This optimal scheduler will be

used in the proof of Theorem 4.1. Note that the lemma is not specific to non-
randomized schedulers. We only require the set {ηN(σ) | 1 6 N 6 ∞} to
be finite for all σ, in order to ensure the existence of a limit of the sequence
{ηN}∞N=1.

Lemma 4.8. Given an arbitrary scheduler η ∈ SCHEDP and a set S =
⊎∞
m=1 (σm)↑,

let SN be the set
⊎N
m=1 (σm)↑. If there is a sequence {ηN}∞N=1 of schedulers such

that for all σ ∈ PATHS(P)

{ηN(σ) | 1 6 N 6∞} is finite

and for all N,

PRηN(SN) 6 PRη(SN) (4.8)

then there exists a scheduler ηNR such that

1. ηNR is a limit of {ηN} and

2. for all N exists N ′ > N complying ηNR(σ) = ηN ′(σ) for all path σ such that
LEN(σ) 6 N and

3. PRη
NR

(S) 6 PRη(S).

Proof. 1. By virtue of Theorem 3.1, the sequence {ηN} has at least one
limit. Let ηNR be a limit of {ηN}.

2. Given any N, we consider the set comprising all paths of length N.
Since such set of paths is finite, and ηNR is a limit, the existence of N ′

is ensured by definition of limit.

3. Suppose, towards a contradiction, that PRη
NR

(S) > PRη(S). Since

PRη
NR

(S) =

∞∑
m=1

PRη
NR

((σm)↑) ,

there exists N such that

PRη
NR

(
⊎
m

{(σm)↑ | LEN(σm) 6 N}) > PRη(S) (4.9)

72 on the expressive power of different classes of schedulers

By the previous property, there exists N ′ > N such that ηNR(σ) =

ηN ′(σ) for all paths σ such that LEN(σ) 6 N. Now, we reason

PRη
NR

(
⊎
m{(σm)↑ | LEN(σm) 6 N})

= PRηN ′ (
⊎
m{(σm)↑ | LEN(σm) 6 N})

6 PRηN ′ (
⊎
m{(σm)↑ | LEN(σm) 6 N ′}) .

(4.10)

In addition,

PRη
NR

(
⊎
m{(σm)↑ | LEN(σm) 6 N})

> PRη(
⊎
m (σm)↑)

> PRη(
⊎
m{(σm)↑ | LEN(σm) 6 N ′})

>
{

Inequation (4.8)
}

PRηN ′ (
⊎
m{(σm)↑ | LEN(σm) 6 N ′}) .

This contradicts (4.10).

The following lemma simply combines Lemma 4.7 and Lemma 4.8 in or-
der to show that non-randomized schedulers are sufficient to obtain the
infimum probability of an “infinite-horizon” property as before.

Lemma 4.9. For all η ∈ DISTP([·]), for all sets S =
⊎∞
m=1 (σm)↑ there exists

η∗ ∈ NRDISTP([·]) such that PRη
∗
(S) 6 PRη(S).

Proof. Let SN be as in the statement of Lemma 4.8. For each N, Lemma 4.7
ensures the existence of ηN ∈ NRDISTP([·]) such that PRηN(

⊎
σ∈SN (σ)↑) 6

PRη(
⊎
σ∈SN (σ)↑) . Since the schedulers ηN are non-randomized and the num-

ber of transitions in the system is finite (by Definitions 1.2 and 1.12) we have
that {ηN(σ)}∞N=1 is finite for all σ. So, Lemma 4.8 ensures the existence of a
scheduler ηNR such that PRη

NR
(S) 6 PRη(S).

The scheduler ηNR is indeed non-randomized, since it is a limit of non-
randomized schedulers. By Theorem 3.1, we have ηNR ∈ NRDISTP([·]).

Given two sets of schedulers S, S ′, we give a sufficient conditions as to
ensure supη∈S PRη(S) 6 supη ′∈S ′ PRη

′
(S) for all measurable S. In fact, we

require the schedulers in S ′ to improve the probability of the schedulers in
S for every set T of the form

⊎∞
m=1 (σm)↑, in the sense that

∀η ∈ S : ∃η ′ ∈ S ′ : PRη
′
(T) 6 PRη(T)

holds. Note the apparent contradiction between the hypothesis and conclu-
sion of the theorem: although we are dealing with the supremum, we require
PRη

′
(T) 6 PRη(T), instead of PRη

′
(T) > PRη(T). This is due to the fact that we

define PRη(S) as the infimum quantifying over all R-covers (see Def. 4.2), and
there is no symmetrical definition using suprema†. Later on, we will obtain
Theorem 4.1 by taking S, S ′ to be DISTP([·]) and NRDISTP([·]), respectively.

Theorem 4.2. Let S, S ′ be sets of schedulers such that for all set T =
⊎∞
m=1 (σm)↑,

∀η ∈ S : ∃η ′ ∈ S ′ : PRη
′
(T) 6 PRη(T) .

†It takes no effort to find an equivalent definition using suprema and complements of
R-covers, but R-covers are not closed under complement

4.2 non-randomized strongly distributed schedulers 73

Then, for all measurable S,

sup
η∈S

PRη(S) 6 sup
η ′∈S ′

PRη
′
(S) .

Proof. We prove the result by showing that, for all ε > 0, there exists η ′ ∈ S ′

such that supη∈S PRη(S) − PRη
′
(S) < ε.

Let ηs ∈ S be such that supη∈S PRη(S) − PRη
s
(S) < ε/2. By Lemma 4.1

(applied to the complement set S), there exists a sequence {(σm)↑}∞m=1 of
disjoint cylinders such that S ⊆

⊎
m (σm)↑ and

PRη
s
(
⊎
m

(σm)↑) − PRη
s
(S) < ε/2 . (4.11)

By hypothesis, there exists η ′ ∈ S ′ such that

PRη
′
(
⊎
m

(σm)↑) 6 PRη
s
(
⊎
m

(σm)↑) .

So, from (4.11) we have

PRη
′
(
⊎
m

(σm)↑) − PRη
s
(S) < ε/2 .

From which we obtain

1− PRη
′
(
⊎
m

(σm)↑) − (1− PRη
s
(S)) < ε/2 .

Simple arithmetic yields

PRη
s
(S) − PRη

′
(
⊎
m

(σm)↑) < ε/2 . (4.12)

Since S ⊆
⊎
m (σm)↑ we have

⊎
m (σm)↑ ⊆ S, and so PRη

′
(
⊎
m (σm)↑) 6 PRη

′
(S).

From (4.12) we obtain PRη
s
(S) − PRη

′
(S) < ε/2. Then,

sup
η∈S

PRη(S) − PRη
′
(S) = sup

η∈S

PRη(S) − PRη
s
(S) + PRη

s
(S) − PRη

′
(S)

= ε/2+ ε/2 = ε ,

as desired.

Proof (of Theorem 4.1). By virtue of Lemma 4.9, we are under the hypotheses
of Theorem 4.2 with S = DISTP([·]) and S ′ = NRDISTP([·]), and so

sup
η∈DISTP([·])

PRη(S) 6 sup
η∈NRDISTP([·])

PRη(S) .

Since NRDISTP([·]) ⊆ DISTP([·]), we have

sup
η∈NRDISTP([·])

PRη(S) 6 sup
η∈DISTP([·])

PRη(S)

and hence the result holds.

4.2 non-randomized strongly distributed schedulers

Corollary 4.1 establishes that, for the usual projection [[·]], non-randomized
distributed schedulers attain the same supremum probability as randomized
ones. Unfortunately, if in the statement of Corollary 4.1 we consider strongly
distributed schedulers, then the same claim is false.

74 on the expressive power of different classes of schedulers

4.2.1 Randomization adds power to strongly distributed schedulers

Consider the example in Fig. 4.1. Atoms A, B and C need to be “activated”
by labels eA, eB and eC, respectively. Atom E tosses a coin and activates A,
B and C if the output of the coin is l, or B and C (and, later on, A) if the
output of the coin is r. Atom R “remembers” the order in which the other
atoms execute. The aim of the scheduler is to reach some state in R marked
with ï̂. It is clear that any non-randomized scheduler yields a probability
of 0, 1/2 or 1. We show that there exists no η ∈ NRSDISTP([[·]]) reaching ï̂
with probability 1.

First, we note that, for non-randomized schedulers, the condition imposed
to a strongly distributed interleaving scheduler reduces to the following one:
for all atoms A 6= B there cannot be two paths σ, σ ′ such that

1. [σ]A = [σ ′]A ∧ [σ]B = [σ ′]B and

2. atom A is scheduled in σ and

3. atom B is scheduled in σ ′.

Formally:

∀A,B : A 6= B =⇒ ∀σ : 6 ∃σ ′ : [σ]A =
[
σ ′
]
A

∧ [σ]B =
[
σ ′
]
B

∧ I(σ) = A ∧ I(σ ′) = B . (4.13)

In order to yield a probability of 1, any scheduler η must reach ï̂for both
l and r. In case the first output is l, η must choose the transitions whose out-
puts are ea, eb and ec. Then, η should choose either a, b and c (in this order)
or b, a and c. In order to succeed when r is chosen, η must choose the tran-
sitions whose outputs are eb and ec. Note that the projections of atoms B
and C after r, eb and ec are the same as the projections after l, ea, eb and ec.
Since b must be chosen before c in case the first output is l, and η is strongly
distributed, Eqn. (4.13) implies that η must choose b before c in case the first
output is r. Therefore, after b, atom R should output w, and E should output
eA. At this point, both A and C may become active, and the projections of
these atoms are the same as in case the first output is l. Since η is strongly
distributed and a must be chosen before c in case the first output is l, a
must be chosen before c also when the first output is r. However, choosing a
before c does not lead to ï̂. Hence, there is no non-randomized strongly dis-
tributed scheduler yielding probability 1, and so the supremum quantifying
over non-randomized strongly distributed schedulers is 1/2. Nevertheless,
consider the scheduler in which

• If there is a transition enabled in E, then the transition in E is chosen

• If there is a transition enabled in R, then the transition in R is chosen
(note that it cannot be the case that there are transitions enabled both
in E and R)

• If there are neither transitions enabled in E nor in R, then the scheduler
chooses uniformly among the transitions a, b and c. That is, if a, b
and c are enabled, choose each one with probability 1/3, if b and c are
enabled, choose each one with probability 1/2, etc.

4.2 non-randomized strongly distributed schedulers 75

l! r!
1/21/2

eA !

eB !

eC !

eB !

eC !

w?

eB? eC?

E

l? r?

c?

a?b?

c?

a? b?

b? c?

eA?

eB?

eC?

eB?

eC?

R

eA?

a!

A

b!

B

c!

C

a?

a?,b?

c?

b?

a?

w!

c?

a?

c?

c?
eA !

ea?

c?
c?

Figure 4.1: Example showing that randomization adds power to strongly dis-
tributed schedulers

This scheduler is in SDISTP([[·]]), and yields a probability of 13/24 > 1/2.
Therefore, this example shows that randomized choices add power to schedulers
in SDISTP([[·]]).

From the same example, it is easy to see that the total order-based sched-
uler cannot emulate randomized strongly distributed schedulers in the realm
of [[·]]. A total order scheduler assigns a fixed order for a, b and c, and any
such order yields a probability of at most 1/2.

4.2.2 Expressive non-randomized strongly distributed schedulers

Although for the projection [[·]] non-randomized strongly distributed sched-
ulers are not as powerful as the randomized ones, we present two sufficient
conditions ensuring that non-randomized schedulers are sufficiently expres-
sive.

One of the sufficient conditions we propose involves the notion of traceable
projection. We explain traceable projections using a preliminary definition.
Given a path σ.c.s and an atom Ai such that [σ.c.s]i 6= [σ]i and ACTIVE(c) =

Aj, we say that the local path [σ]j leads to the local path [σ.c.s]i in σ.c.s. We
define the traceable projections as those in which, given a local path σi, the
local path σj that leads to σi is the same for all global paths σ.

Traceable projection
Definit ion 4.5 (Traceable projection). We say that a projection [·] is trace-
able if, for all Ai, σ.c.s, σ ′.c ′.s ′, such that

[σ.c.s]i =
[
σ ′.c ′.s ′

]
i

[σ.c.s]i 6= [σ]i[
σ ′.c ′.s ′

]
i
6=
[
σ ′
]
i

,

we have ACTIVE(c) = ACTIVE(c ′) = Aj and [σ]j = [σ ′]j for some Aj. If [σ.c.s]i
and [σ]j are as before, we write [σ.c.s]i " [σ]j.

Moreover, for all σ, we require

[σ.c.s]i 6= [σ]i =⇒ [σ.c.s]i 6= [INIT]i . (4.14)

Intuitively, σi " σj if each time the projection of a path becomes σi, the
output is performed by Aj, and the projection to Aj before the output is σj.

76 on the expressive power of different classes of schedulers

T G

h! t!
1/2 1/2

INITT INITG

a!a!

a?
s2T

s1G

s1T

s3T s4T

Figure 4.2: Projection [[·]] is not traceable

Equation (4.14) is needed in order to ensure that, if [σ]i " σj, then [σ]i 6=
[INIT]i. So, it holds that exactly one of these propositions is true: [σ]i = [INIT]i
or [σ]i " σj for some σj.

Example 4.1. The projection [[·]] is not traceable. Consider the system de-
picted in Fig. 4.2. Since each of the generative transitions assigns positive
probability to exactly one action label, and there is at most one reactive
transition enabled in each state, we do not name the transitions, using thus
action labels instead of transition names.

σ = (INITT , INITG).(h!).(s1T , INITG)

σ ′ = (INITT , INITG).(t!).(s2T , INITG)

c = c ′ = (a!,a?)

s = (s3T , s1G)

s ′ = (s3T , s1G)

We have

[[σ.c.s]]G = [[σ ′.c ′.s ′]]G = INITG.a.s1G
[[σ.c.s]]G = INITG.a.s1G 6= INITG = [[σ]]G

[[σ ′.c ′.s ′]]G = INITG.a.s1G 6= INITG = [[σ ′]]G

However, we have

[[σ]]ACTIVE(c) = σ.h.s1T 6= σ.t.s2T = [[σ ′]]ACTIVE(c ′)

Intuitively, the projection is not traceable because, given the local path σG =

σ.a.s1G, the scheduler cannot trace the local path that led to σG, it could be
either σ.h.s1T or σ.t.s2T .

The next example introduces a projection that is traceable, it is called visi-
ble prefix and denoted by [·]VP. We would meet this projection again in Sec. 6.2,
while developing an algorithm that is proven to be correct under the assump-
tion that the schedulers are in SDISTP([·]VP, 6).

Example 4.2. For each atom Ai, let [·]VP
i be the projection defined as fol-

lows:

• [INIT]VP
i = INIT,

4.2 non-randomized strongly distributed schedulers 77

• [σ.c.s]VP
i = σ.c.s if LABEL(c) ∈ ACTLABi and

• [σ.c.s]VP
i = [σ]VP

i , otherwise.

Let σ, σ ′, c, c ′ be as in the previous example. Since LABEL(c) = a ∈ ACTLABG,
we have

[[σ.c.s]]G = σ.c.s 6= σ ′.c ′.s ′ = [[σ ′.c ′.s ′]]G = INITG.a.s1G

Once G synchronizes with T , the schedulers is allowed to see all the history
of the system and, particularly, the history of T .

In order to give another example, we note that

[[σ.c.s]]G = σ.c.s 6= INIT = [[σ]]G

[[σ ′.c ′.s ′]]G = σ ′.c ′.s ′ 6= INIT = [[σ ′]]G

since neither h = LABEL(c) nor t = LABEL(c ′) are in ACTLABG.
We show that [·]VP is traceable. Let σ.c.s, σ ′.c ′.s ′ be such that [σ.c.s]VP

i =

[σ ′.c ′.s ′]VP
i , [σ.c.s]VP

i 6= [σ]VP
i and [σ ′.c ′.s ′]VP

i 6= [σ ′]VP
i . From [σ.c.s]VP

i 6= [σ]VP
i ,

we get [σ.c.s]VP
i = σ.c.s and, from [σ ′.c ′.s ′]VP

i 6= [σ ′]VP
i , we get [σ ′.c ′.s ′]VP

i =

σ ′.c ′.s ′. Hence, [σ.c.s]VP
i = [σ ′.c ′.s ′]VP

i yields σ.c.s = σ ′.c ′.s ′. Therefore, we
have ACTIVE(c) = ACTIVE(c ′) and [σ]VP

ACTIVE(c) = [σ ′]VP
ACTIVE(c), as desired.

Moreover, if [σ.c.s]VP
i 6= [σ]VP

i , then [σ.c.s]VP
=σ.c.s 6= [INIT]VP

i , as required in
the definition of traceable projections.

We introduced traceable projections in order to present one of the suffi-
cient conditions to ensure that non-randomized schedulers are sufficiently
expressive. The other sufficient condition we provide needs the notion of
projection equivalent for a set of atoms.

Projection
equivalent for a set
of atoms

Definit ion 4.6. Given a set of atoms A ∈ ATOMS(P), we say that projection
[·] is equivalent for A if, for all σ, σ ′, Ai,Ai ′ ∈ A, we have [σ]i = [σ ′]i =⇒
[σ]i ′ = [σ ′]i ′ .

Intuitively, [·] is equivalent for A if the projection of atom Ai ∈ A uniquely
determines the projection of all other atoms in A. The following example
shows a system for which projection [[·]] is equivalent for several sets of
atoms.

Example 4.3. Consider the system P = A ‖ B1 ‖ B2 ‖ B3 ‖ C1 ‖ C2
in Fig. 4.3. Since each path σ is univocally identified by the labels output in
σ, we use sequences of labels to refer to paths. The overall behaviour of P
is as follows. In the initial state, the only atom that can generate an output
is A. It outputs some sequence of the form {b, c}∗, until it outputs eB. Then,
the set of active atoms is B = {B1,B2,B3} until B3 generates eC. Once this
label has been output, the set of active atoms is C = {C1,C2}.

The atoms in B are able to see the b’s output byA, while the atoms in C are
able to see the c’s. In addition, each atom Bi ∈ B is able to see the outputs
of the other atoms in B. We show that the projection [[·]] is equivalent for B.
Let σ be a path in B. Then σ has a sequence of labels of the form

n1︷ ︸︸ ︷
b · · ·b

m1︷ ︸︸ ︷
c · · · c · · ·

nQ︷ ︸︸ ︷
b · · ·b

mQ︷ ︸︸ ︷
c · · · c eB

r1︷ ︸︸ ︷
k1 · · ·k1

t1︷ ︸︸ ︷
k2 · · ·k2 · · ·

rZ︷ ︸︸ ︷
k1 · · ·k1

tZ︷ ︸︸ ︷
k2 · · ·k2 eC px

78 on the expressive power of different classes of schedulers

eB?

k2?

c?

eC?

p1 ! p2?

C1

eB?

k2?

c?

eC?

p2 ! p1?

C2

k1?

0.5

0.5

eB !

b!

c!

eB?

k2?k1?

b?

eC !

eB?

k2 !k1?

b?

eC?

eB?

k1 !k2?

b?

eC?

A B3B2B1

Figure 4.3: The projection [[·]] is equivalent for the sets B = {Bi}
3
i=1 and C = {C1,C2}

where n1 > 0, nq > 0 for all 2 6 q 6 Q, mq > 0 for all 1 6 q < Q, mQ > 0,
r1 > 0, rz > 0 for all 2 6 z 6 Z, tz > 0 for all 1 6 z < Z, tZ 6 0 and x ∈ {1, 2}.
The projection [[σ]]Bi is the only path in the atom Bi whose labels are

n1+···+nQ︷ ︸︸ ︷
b · · ·b eB

r1︷ ︸︸ ︷
k1 · · ·k1

t1︷ ︸︸ ︷
k2 · · ·k2 · · ·

rZ︷ ︸︸ ︷
k1 · · ·k1

tZ︷ ︸︸ ︷
k2 · · ·k2 eC . (4.15)

Let σ ′ be such that [[σ]]Bi = [[σ ′]]Bi . Note that the number of c’s in σ ′ is
not necessarily the same as in σ, since the projection over Bi eliminates the
information concerning the number of c’s. On the contrary, the sequence of
k1’s and k ′2s and the number of b’s must coincide in both paths, since the
projection preserves this sequence. Then, σ ′ is of the form

n ′1︷ ︸︸ ︷
b · · ·b

m ′1︷ ︸︸ ︷
c · · · c · · ·

n ′
Q ′︷ ︸︸ ︷

b · · ·b
m ′
Q ′︷ ︸︸ ︷

c · · · c eB

r1︷ ︸︸ ︷
k1 · · ·k1

t1︷ ︸︸ ︷
k2 · · ·k2 · · ·

rZ︷ ︸︸ ︷
k1 · · ·k1

tZ︷ ︸︸ ︷
k2 · · ·k2 eC px ′

with n ′1 + · · ·+ n ′Q ′ = n1 + · · ·+ nQ (since the number of b’s coincides in
both σ and σ ′).

In order to prove that [[·]] is equivalent for B, we have to prove that, for all
Bj ∈ B, it holds [[σ]]Bj = [[σ ′]]Bj . Since all the atoms Bj ∈ B have the same
alphabet, we have that [[σ]]Bj is a path whose labels are as in (4.15). This
determines only one path in Bj. For the same reason, the labels of [[σ ′]]Bj
are as in (4.15), and so [[σ]]Bj and [[σ ′]]Bj are the same path in Bj. Therefore,
[[σ]]Bj = [[σ ′]]Bj .

A similar argument can be used to show that [[·]] is equivalent for C =

{C1,C2}. In effect, given a path σ as before, if [[σ]]C1 = [[σ ′]]C1 , then σ and σ ′

differ only with respect to the number of b’s. Since both C1 and C2 have the
same alphabet, we conclude that [[σ]]C2 and [[σ ′]]C2 correspond to paths in
C2 having the same labels. Given a sequence of labels, there is at most one
path in C2 with such labels, thus implying [[σ]]C2 = [[σ ′]]C2 .

The following theorem gives sufficient conditions as to ensure that non-
randomized strongly distributed schedulers are sufficiently expressive. More-
over, under these conditions, we have full expressiveness for the set of total
order-based schedulers (Def. 2.3).

Theorem 4.3. Let S be a set of schedulers and [·] be a projection such that either:

4.2 non-randomized strongly distributed schedulers 79

I. S = SDISTP([·], RATE) and [·] is traceable or

II. S = SDISTP([·]) and there exists a partition {A1, · · · , Az} on ATOMS(P) such
that [·] is equivalent for Al for all l = 1, · · · , z and

∀Ai,Ai ′ :
(
∃s :

∣∣Gi(s) ∣∣ > 0 ∧
∣∣Gi ′(s) ∣∣ > 0) =⇒ ∃l : Ai,Ai ′ ∈ Al

Then, for any set S of infinite traces, S being measurable, we have that

sup
η∈S

PRη(S) 6 sup
η∈SDISTP([·],6)

PRη(S)

(The proof can be found in Subsection 4.2.4 below.)

Corollary 4.2. Let [·] and {A1, · · · , Az} be as in case II in the previous theorem.
Then, for all measurable S,

sup
η∈SDISTP([·])

PRη(S) = sup
η∈SDISTP([·],6)

PRη(S)

Proof. By Theorem 4.3 (case II), we have

sup
η∈SDISTP([·])

PRη(S) 6 sup
η∈SDISTP([·],6)

PRη(S) .

The equality holds since SDISTP([·], 6) ⊆ SDISTP([·]) (by Theorem 2.8).

4.2.3 Full-communication version of a projection

The projection [[·]] is not traceable (Example 4.1), and so case (I) in Theo-
rem 4.3 does not apply to this projection. Hence, it would be useful to find
some set S of non-randomized schedulers giving us a safe estimation of
supη∈SDISTP([[·]],RATE) PRη(S). Formally, the set S should comply:

sup
η∈S

PRη(S) > sup
η∈SDISTP([[·]],RATE)

PRη(S) . (4.16)

The existence of S is ensured, provided the existence of a traceable projection
[·] ′ such that [[·]] v [·] ′: in fact, by Theorem 2.7 we have

sup
η∈SDISTP([[·]],RATE)

PRη(S) 6 sup
η∈SDISTP([·] ′,RATE)

PRη(S) ,

and by Theorem 4.3 (applied to [·] ′) we have

sup
η∈SDISTP([[·]],RATE)

PRη(S) 6 sup
η∈SDISTP([·] ′,6)

PRη(S) .

Then, we can assume that the schedulers are non-randomized, provided that
we relax the projection from [[·]] to [·] ′.

Given a projection [·], we present a general mechanism to obtain a trace-
able projection |[·]| such that [·] v |[·]|. In order to ensure [·] v |[·]|, we define
|[·]| in such a way that, if [σ.c.s]i 6= [σ]i, then |[σ.c.s]|i comprises all the in-
formation in [σ.c.s]i. In addition, we want |[·]| to be traceable: we will prove
traceability using the fact that |[σ.c.s]|i comprises all the information in the
local path |[σ.c.s]|ACTIVE(c). Note that this local path is in LOCALPATHS

|[·]|
ACTIVE(c),

while [σ.c.s]i is in LOCALPATHS
[·]
i .

Except for the paths σ such that [σ]i = [INIT]i, the projection |[·]| yields a
pair (σi,σ

|[·]|
j), where σi ∈ LOCALPATHS

[·]
i and σ|[·]|

j ∈ LOCALPATHS
|[·]|
j , where

Aj is the active atom in the last transition c such that [σ ′]i 6= [σ ′.c.s]i and
[σ ′.c.s]i v σ.

80 on the expressive power of different classes of schedulers

Definit ion 4.7. Given a projection [·], we inductively define the family of
functions |[·]|i:

• |[INIT]|i = [INIT]i

• |[σ.c.s]|i = ([σ.c.s]i , |[σ]|ACTIVE(c)) if [σ.c.s]i 6= [σ]i

• |[σ.c.s]|i = |[σ]|i, otherwise.

The projection |[·]| is called the full-communication version of [·].

We prove that [·] does in fact comply with the properties that motivated
its definition.

Theorem 4.4. Let [·] be a projection and |[·]| be the full communication version
of [·], then [·] v |[·]|.

Proof. We have to prove

|[σ]|i =
∣∣[σ ′]∣∣

i
=⇒ [σ]i =

[
σ ′
]
i

.

We proceed by induction on LEN(σ) + LEN(σ ′). If σ = σ ′ = INIT, we have
|[σ]|i = |[INIT]|i = |[σ ′]|i and [σ]i = [INIT]i = [σ ′]i.

If LEN(σ) + LEN(σ ′) = n+ 1 assume, w. l. o. g. , that LEN(σ) > 1 (the case
LEN(σ ′) > 1 is symmetrical). Let σ = σ ′′.c.s for some c, s. As in the definition
of |[·]|, we have two separate cases. In case [σ ′′]i = [σ]i, the definition of |[·]|
gives |[σ]|i = |[σ ′′]|i, and it allows to prove the desired implication:

|[σ]|i =
∣∣[σ ′]∣∣

i

=⇒
{

|[σ]|i = |[σ ′′]|i
}∣∣[σ ′′]∣∣

i
=
∣∣[σ ′]∣∣

i

=⇒
{

Induction, LEN(σ ′′) + LEN(σ ′) = LEN(σ) − 1+ LEN(σ ′) = n
}[

σ ′′
]
i
=
[
σ ′
]
i

=⇒
{

[σ ′′]i = [σ]i
}

[σ]i =
[
σ ′
]
i

In case [σ ′′]i 6= [σ]i, we have |[σ]|i = ([σ]i , |[σ]|ACTIVE(c)). Then, |[σ]|i =

|[σ ′]|i implies∣∣[σ ′]∣∣
i
= ([σ]i , |[σ]|ACTIVE(c)) . (4.17)

Note that, for all σ∗, the definition of |[·]| ensures |[σ∗]|i = (σi , σ|[·]|
j) =⇒

[σ∗]i = σi. Applying this implication in Eqn. (4.17), we have [σ ′]i = [σ]i, as
desired.

Theorem 4.5. For all projections [·], the full-communication version |[·]| is trace-
able.

Proof. Let σ.c.s, σ ′.c ′.s ′ be such that |[σ.c.s]|i = |[σ ′.c ′.s ′]|i , |[σ.c.s]|i 6= |[σ]|i
and |[σ ′.c ′.s ′]|i 6= |[σ ′]|i. From |[σ.c.s]|i 6= |[σ]|i, we get

|[σ.c.s]|i = ([σ.c.s]i , |[σ]|ACTIVE(c))

(see Def. 4.7) and from |[σ ′.c ′.s ′]|i 6= |[σ ′]|i we get∣∣[σ ′.c ′.s ′]∣∣
i
= (

[
σ ′.c ′.s ′

]
i

,
∣∣[σ ′]∣∣

ACTIVE(c ′)
) .

4.2 non-randomized strongly distributed schedulers 81

Hence, |[σ.c.s]|i = |[σ ′.c ′.s ′]|i yields ACTIVE(c) = ACTIVE(c ′) and |[σ]|ACTIVE(c) =

|[σ ′]|ACTIVE(c), thus implying |[σ]|ACTIVE(c) = |[σ ′]|ACTIVE(c), as desired.
Moreover, if |[σ.c.s]|i 6= |[σ]|i, we have

|[σ.c.s]|i = ([σ.c.s]i , |[σ]|ACTIVE(c)) 6= INITi .

Because of the previous theorems, by quantifying over the set of non-
randomized schedulers SDISTP(|[·]|, 6), we obtain a safe estimation of the
value SDISTP([·], RATE). This is formalized in the following theorem.

Theorem 4.6.

sup
η∈SDISTP([·],RATE)

PRη(S) 6 sup
η∈SDISTP(|[·]|,6)

PRη(S)

for all measurable S.

Proof. Theorems 4.4 and 2.7 imply

sup
η∈SDISTP([·],RATE)

PRη(S) 6 sup
η∈SDISTP(|[·]|,RATE)

PRη(S) .

Projection |[·]| is traceable (Theorem 4.5), and so Theorem 4.3 (applied to |[·]|)
yields

sup
η∈SDISTP([·],RATE)

PRη(S) 6 sup
η∈SDISTP(|[·]|,6)

PRη(S) .

4.2.4 Proof of Theorem 4.3

The overall structure of the proof resembles that of Theorem 4.1, in the
sense that we first consider the “finite-horizon” sets of the form

⊎
i (σi)

↑ and
then we extend the result to the supremum of arbitrary measurable sets
using Lemma 4.8.

Let η ∈ S. We start by proving

∃η ′ ∈ SDISTP([·], 6) : PRη
′
(

M⊎
m=1

(σm)↑) 6 PRη(
M⊎
m=1

(σm)↑) . (4.18)

The proof of Eqn. (4.18) resembles Lemma 4.7, since we give a construction
that, starting from η, delivers a new scheduler in each step. However, the
construction for interleaving schedulers in Lemma 4.7 cannot be used for
total order-based schedulers, since such construction does not ensure that
the resulting interleaving scheduler is total order-based. In order to produce
a total order-based scheduler, we transform the interleaving scheduler using
local paths, as explained in the following: in the first step, the scheduler is
η0 = η. At the q-th step in the construction we transform a scheduler

ηq = (Iq, {Θqi }i, {Υ
q
i }i)

into a scheduler

ηq+1 = (Iq+1, {Θqi }i, {Υ
q
i }i) . (4.19)

82 on the expressive power of different classes of schedulers

The transformation depends on a set SqG of global paths. The definition of
S
q
G is different for cases (I) and (II). First, we explain the rationale behind

both cases, and then we prove the particularities in Claims 4.1 (for case (I))
and 4.2 (for case (II)) below.

In both cases, SqG complies with (σ)↑ ∩ (σ ′)↑ = ∅ for all σ,σ ′ ∈ SqG, σ 6= σ ′

and

∀σ ∈ SqG,Ai,n < LEN(σ) : [σ↓n]i = [σ]i =⇒ I(σ↓n)(Ai) = 0 . (4.20)

Using SqG, we define the set

S
q
L = {[σ]i | σ ∈ SqG ∧ PRη

q
((σ)↑) > 0 ∧

∣∣Gi(LAST(σ))
∣∣ > 0}

comprising the local paths in SqG in which there are generative transitions
enabled. At each step q, we choose a local path σqi∗ ∈ S

q
L .

The interleaving scheduler Iq+1 in Eqn. (4.19) is defined as

Iq+1 = NR(Iq,SqG,σqi∗) , (4.21)

where NR(·) is defined as follows:

I. NR(I,SqG,σi∗)(σ)(Ai∗) = 1 if [σ]i∗ = σi∗ and σ ∈ SqG and

II. NR(I,SqG,σi∗)(σ)(Ai) = I(σ)(Ai) for all σ, Ai ∈ ATOMS(P), such that
either σ 6∈ SqG or [σ]i∗ 6= σ∗ and

III. NR(I,SqG,σi∗)(σ)(Ai) = 0 if [σ]i∗ = σi∗ , σ ∈ SqG and Ai 6= Ai∗ .

(Note that the definition does not depend on the particular q, and so we
dropped the superscript.)

Next, we explain how a total order can be constructed using the paths σqi∗ .
In Iq+1, the atom Ai∗ is chosen in all paths σ ∈ SqG such that [σ]i∗ = σ

q
i∗ ,

thus “winning” over all other paths in SqL . It suggests that the total order
must comply with:

∀σ ′j ∈ S
q
L : σ ′j 6= σ

q
i∗ =⇒ σ

q
i∗ < σ

′
j , (4.22)

that is, σqi∗ is smaller than all the paths in SqL . Local paths in SqL might appear
in Sq+n

L for some n > 1 and, in fact, it might be the case that σq+n
j∗ ∈ SqL . In

this case, by Eqn. (4.22),

σ
q
i∗ < σ

q+n
j∗

This suggests that we obtain a scheduler η ′ based on a total order in which

σ1i∗1
< · · · < σqi∗q (4.23)

for all steps q (later on, we show that the number of steps is finite).
We need to ensure the existence of a scheduler η ′ such that η ′ is based on

an order as in (4.23) and η ′ complies with (4.18). The existence of such an
η ′ is ensured by properties (i), (ii), (iii) below. The proof of these properties
depends on the set SqG, which in turn depends on whether we are under
the hypothesis (I) or (II). Later on, we prove these properties in Claims 4.1
and 4.2.

4.2 non-randomized strongly distributed schedulers 83

i. for all q, a proper σqi∗ ∈ S
q
L exists so that the resulting scheduler yields

less probability, that is,

PRη
q+1

(

M⊎
m=1

(σm)↑) 6 PRη
q
(

M⊎
m=1

(σm)↑) ,

where is ηq+1 is as in Eqn. (4.19) and Iq+1 is as in Eqn. (4.21).

ii. after a finite number Q of steps, the interleaving scheduler is non-
randomized for all paths σ such that LEN(σ) 6 maxm LEN(σm).

iii.

∀n > 1 : σ
q
i∗ 6∈ S

q+n
L . (4.24)

Suppose that σqi∗ ∈ S
q+n
L . Then, it might be the case that σq+n

j∗ 6= σ
q
i∗ .

Since the total order complies with (4.22) and (4.23) then

σ
q
i∗ < σ

q+n
j∗ < σ

q
i∗

Intuitively, we must ensure that the ”winning” path σqi∗ does not com-
pete anymore in the future, since it might be defeated by another path
σ
q+n
j∗ , and so 6 would not be a total order.

In the proof of claims 4.1 and 4.2, property (ii) is proved by showing the
following properties:

∀σi ∈ SqL : ∃σ ∈ SqG : [σ]i = σi ∧ 0 < Iq(σ)(Ai) < 1 (4.25)

and

∀σ,Ai : Iq(σ)(Ai) = 1 =⇒ Iq+1(σ)(Ai) = 1 , (4.26)

In fact, Eqn. (4.25) ensures that at least one randomized choice in Iq is non-
randomized in Iq+1 (namely, the one corresponding to σqi∗) and Eqn. (4.26)
ensures that the number of non-randomized choices cannot decrease during
the construction. Hence, property (ii) follows from the fact that there is a
finite number of paths having length at most maxm LEN(σm).

Properties (i), (ii) and (iii) above make it possible to transform η into a
scheduler η ′ such that η ′ complies with (4.18). Moreover, we can find a total
order 6 complying with (4.23) in such a way that η ′ is based on 6. Note
that (4.23) says nothing about the local paths σj such that σj 6= σ

q
i∗q

for all q.
For such paths σj, the order can be defined arbitrarily, since these paths do
not occur in global paths σ such that LEN(σ) 6 maxm LEN(σm), that is,

∀σ : LEN(σ) 6 max
m

LEN(σm) =⇒ [σ]j 6= σj .

Next, we generalize (4.18) to infinite families {σm}∞m=1:

∀η ∈ S : ∃η ′ ∈ SDISTP([·], 6) : PRη
′
(S) 6 PRη(S) (4.27)

for all S =
⊎∞
m=1 (σ)↑.

In order to prove (4.27), let SM =
⊎

{σ∈S | LEN(σ)<M} (σ)↑. Then, by (4.18),

∀η ∈ S : ∃ηM ∈ SDISTP([·], 6) : PRη
′
(SM) 6 PRη(SM) .

84 on the expressive power of different classes of schedulers

Since the ηM are non-randomized, Lemma 4.8 ensures that there exists ηd

such that ηd is a limit of {ηM}M and

PRη
d
(S) 6 PRη(S) .

Since, for all M, ηM ∈ SDISTP([·], 6), Theorem 3.1 implies ηd ∈ SDISTP([·], 6),
and so Eqn. (4.27) holds.

By virtue of Eqn. (4.27), we can apply Theorem 4.2, and so the result holds
provided that properties (i), (ii) and (iii) hold for both cases (I) and (II). Next,
we tackle each case separately.

Claim 4.1 (Case (I)). Properties (i), (ii) and (iii) in p. 83 hold under the hypothe-
sis (I) of Theorem 4.3.

Proof. First, we show how to construct the sets SqG. Such sets are obtained
from fringes.

Definit ion 4.8. A fringe F is a finite set {σm}m such that ∀m 6=m ′(σ)↑ ∩Fringe

(σ ′)↑ = ∅ and
⊎
m (σm)↑ = (INIT)↑. A subfringe is a finite set that only complies

(σ)↑ ∩ (σ ′)↑ = ∅. The spawn of a fringe F generated by F ⊆ F is the fringe

SPAWN(F)(F) = {σ ∈ F | σ 6∈ F}
⊎

{σ.c.s | σ ∈ F} .

We also say that F is spawned for all elements in F.
In addition, F v F ′ iff for all σm ∈ F there exists σ ′m ′ ∈ F ′ such that

σm v σ ′m ′ .

In each step of the construction, we consider a fringe Fq such that

∃Ai ∈ ATOMS(P),σ ∈ Fq : PRη
q
((σ)↑) > 0 ∧ 0 < Iq(σ)(Ai) < 1 . (4.28)

In order to construct F1, we start with the fringe F0+ = {INIT}. In general, we
will obtain Fq+1 from a fringe Fq+ as follows. If

∀σ ∈ Fq+ :
(

LEN(σ) 6 max
m

LEN(σm) =⇒ ∃Aiσ : Iq(σ)(Aiσ) = 1
)

,

we consider some local path σi ′ such that

∃σ ∈ Fq+ : LEN(σ) 6 max
m

LEN(σm) ∧ PRη((σ)↑) > 0

∧ [σ]i ′ = σi ′ ∧ Iq(σ)(Ai ′) = 1 .

Note that, since η is rate-based, Iq(σ)(Ai ′) > 0 implies Iq(σ ′)(Ai ′) > 0 for
all σ ′ such that [σ ′]i ′ = σi ′ , and so Iq(σ ′)(Ai ′) = 1 for all such σ ′ in Fq.

We spawn Fq+ for all the global paths σ such that [σ]i ′ = σi ′ , obtaining
Fq++. This spawning can be repeated until either all paths in the fringe
Fq+···+ have length greater than maxm LEN(σm) (and so we can finish the
construction by letting SQG = Fq+···+ —see property (ii)) or Eqn. (4.28) holds.
In order to obtain Fq+ from Fq, we consider the local path σi∗ obtained in
the q-th step and we spawn Fq for all paths σ such that [σ]i∗ = σi∗ .

In order to define SqG from Fq, we start by defining

S
q−

G = {σ ∈ Fq | ∃Ai : 0 < I(σ)(Ai) < 1 ∧ LEN(σ) 6 max
m

LEN(σm)

∧ PRη
q
((σ)↑) > 0} .

4.2 non-randomized strongly distributed schedulers 85

Equation (4.28) ensures that Sq−
G is nonempty. Then, let

S
q
G = S

q−

G ∪ {σ ∈ Fq | LEN(σ) 6 max
m

LEN(σm) ∧ PRη
q
((σ)↑) > 0

∧ ∃σ ′ ∈ Sq−
G ,Aj ∈ ATOMS(P) : [σ]j = [σ ′]j } .

Note that, by construction, the sets SqG comply with Eqn. (4.25).
Now we show that requirement (i) is fulfilled. To this end, we resort to the

following theorem, whose proof is in Appendix A.

Theorem 4.7. Let SG be a set of finite global paths such that, for all σm,σn ∈
SG, σm 6= σn it holds (σm)↑ ∩ (σn)↑ = ∅. Let η ∈ DISTP([·]) having interleaving
scheduler I, and let

SL = {[σ]i | σ ∈ SG ∧ PRη
q
((σ)↑) > 0 ∧

∣∣Gi(LAST(σ))
∣∣ > 0} .

If there exist functions Ri : SL ∩ LOCALPATHSi → R>0 such that

∀σ ∈ SG : I(σ)(Ai) =
Ri([σ]i)∑
i ′ Ri([σ]i ′)

,

then there exists σi∗ ∈ SL such that Ri∗(σi∗) > 0 and the scheduler η ′ in which I

is replaced by NR(I,SG,σi∗) complies with

PRη
′
(
⊎

σm∈SG

(σm)↑) 6 PRη(
⊎

σm∈SG

(σm)↑) .

Since the schedulers we are dealing with are rate based, we can take Ri =

RATEi for all i. Hence, the σq+1
i∗ we need is the one provided by the theorem.

In order to fulfill the requirement (ii), we resort to Equation (4.25) and
Equation (4.26). We have already shown that the former holds. The latter
holds since the scheduler Iq+1 is obtained using Theorem 4.7 (recall that
such theorem ensures Ri(σ

q
i∗) > 0).

With respect to the requirement (iii), we resort to the following lemma (for
the proof, see Appendix A).

Lemma 4.10. Let [·] be traceable. Let F1, · · · , FK be a set of fringes and η1, · · · ,ηK

be a set of schedulers such that, F1 = {INITP} and for all k, there exists σki∗ such
that

Fk+1 = SPAWN(Fk)({σ | [σ]i∗ = σki∗}) 6= Fk ,

and for all k ′ > k

∀σ ∈ Fk : [σ]i∗ = σki∗ =⇒ Ik
′
(σ)(Ai∗) = 1 (4.29)

and

∀σ : PRη
k ′

((σ)↑) > 0 =⇒ PRη
k
((σ)↑) > 0 . (4.30)

Then, for all k, 0 < n < K− k,

∀σ ∈ Fk+n : PRη
k+n

((σ)↑) > 0 =⇒ σki∗ 6= [σ]i∗ .

Because of the definition of SqG for this case, this lemma implies Eqn. (4.24).
The fringes Fk in the hypothesis are obtained exactly as in our construction,
and Eqn. (4.29) holds since, in each step, we change the value of I for the
values beyond the current fringe. Equation (4.30) holds since, in each step,
we take an atom Ai such that 0 < I(σ)(Ai) < 1 and define I(σ)(Ai) = 1. So,
in each new scheduler there are no new paths with positive probability.

86 on the expressive power of different classes of schedulers

Claim 4.2 (Case (II)). Properties (i), (ii) and (iii) in p. 83 hold under the hypoth-
esis (II) of Theorem 4.3.

Proof. Recall that we are dealing with sets of the form
⊎M
m=1 (σm)↑. Let σ

be such that LEN(σ) 6 maxm LEN(σm) and 0 < Iq(σ)(Ai) < 1 for some Ai.
Consider any other path σ ′ such that [σ]j = [σ ′]j for some Aj. If both Ai, Aj
have enabled transitions in σ, then [·] must be equivalent for these atoms,
and so [σ]i = [σ ′]i. Then (by (1.9)), Ai has also transitions enabled in σ ′. In
general, for all σ, σ ′, Aj such that

∣∣Gj(LAST(σ))
∣∣ > 0 and [σ]j = [σ ′]j, we

have

{Ai |
∣∣Gi(LAST(σ))

∣∣ > 0} = {Ai |
∣∣Gi(LAST(σ ′))

∣∣ > 0}
and

∀Ai :
∣∣Gi(LAST(σ))

∣∣ > 0 =⇒ [σ]i = [σ ′]i .

Hence, since we are dealing with strongly distributed schedulers,

∀Ai : Iq(σ)(Ai) = Iq(σ ′)(Ai) (4.31)

for all σ, σ ′, such that [σ]j = [σ ′]j for some Aj.
In each step, we start to construct SqG by selecting a path σs such that

LEN(σs) 6 maxm LEN(σm), σs is minimal with respect to the prefix order
and 0 < Iq(σs)(Ai) < 1. Then,

S
q
G = {σ | ∃Aj :

∣∣Gj(LAST(σs))
∣∣ > 0 ∧ [σs]j = [σ]j} .

So, the set SqL comprising all the local paths in SqG has at most one local path
for each atom.

We obtain the requirement (i) by using Theorem 4.7. For all σi ∈ SqL we
define Ri(σi) = Iq(σ∗)(Ai), where σ∗ is any path in SqG. We prove that these
functions are suitable for Theorem 4.7. In fact, if σ ∈ σqG, then

Ri([σ]i)∑
j Rj([σ]j)

=
{

Definition of Rj
}

Iq(σ∗)(Ai)∑
j I
q(σ∗)(Aj)

=
{ ∑

j I
q(σ∗)(Aj) = 1

}
Iq(σ∗)(Ai)

=
{

Equation (4.31)
}

Iq(σ)(Ai)

as required.
Requirement (ii) is proven via Eqn. (4.25) and Eqn. (4.26). Equation (4.25)

holds by construction of SqG and Eqn. (4.26) holds since the resulting sched-
uler is obtained using Theorem 4.7.

Next, we prove the requirement (iii). Suppose, towards a contradiction,
that σqi∗ ∈ S

q+k
L for some k > 0. Then, let σq+k be the path in Sq+k

L such that
PRη

q+k
((σq+k)

↑
) > 0 and [σq+k]i∗ = σ

q
i∗ . Since 0 < Iq+k(σq+k)(Ai∗) < 1, we

have σq+k 6∈ SqG (otherwise, it would be Iq+k(σq+k)(Az) = 1 for some Az).
Since in the construction of SqG we considered all the minimal paths whose

4.3 inexistence of a scheduler yielding the supremum probability 87

projection over Ai∗ is σqi∗ , there must be σ ′ such that σ ′ < σ and σ ′ ∈ SqG.
Since PRη

q+k
((σq+k)

↑
) > 0 and NR(Iq,SqG,σqi∗) chooses Ai∗ in σ ′, we have that

Ai∗ generates the transition after σ ′, i. e. ACTIVE(σq+k〈LEN(σ ′)〉) = Ai∗ . Then,
property (1.11) implies σi∗ = [σq+k]i∗ 6= [σ ′]i = σi∗ ,

4.3 on the (non)existence of a scheduler yielding the supre-
mum probability

In this section, as in the rest of this chapter (and the next chapter), we
consider the projection [[·]] since, as we explained explained in the intro-
duction, our aim is to show that some of the well-known properties for
full-information schedulers do not hold anymore if we restrict to the set of
distributed schedulers. In this section we stick to the usual projection [[·]], in
order to show that the loss of these properties is not a consequence of our
general approach to projections.

In the realm of full-information schedulers, for every reachability prop-
erty there exists a Markovian non-randomized scheduler attaining the supre-
mum probability [65]. This is not the case when restricting to the set of dis-
tributed schedulers. In fact, such maximizing distributed scheduler may not
exist at all.

0.5 0.5
t!t!

n?

n?g? sw

t!
s2sl

T

s1 g!

t?n!

G

g?

Figure 4.4: G has to guess that the coin has landed tails at least once

Consider the system consisting of atoms T and G in Fig. 4.4 (initial states
are indicated by an incoming arrow). We show that, in this particular system,
there is no distributed scheduler maximizing the probability of reaching
sw. The behaviour of this system can be seen as a game: T tosses a coin
without communicating the outcome to G, but communicating that the coin
has been tossed (this is represented by t!). Atom T moves to state s2 once
the coin lands tails. Atom G can stop the game. The aim of G is to stop the
game only if the coin has landed tails at least once. If G outputs n (where n
stands for “next”), then the coin is tossed again and the game continues. If
G believes that the coin has landed tails sometime before, then it outputs g
(which stands for “guess”). If T is in state s2 and G outputs g, then the goal
state sw is reached. Otherwise, if T receives g in state s1, the undesirable
state sl is reached. Let’s see what the supremum probability of reaching
sw is. If G waits for the occurrence of only one t before communicating g,
then the probability of reaching sw is 1/2. However, G may be smarter and
wait for two t’s, thus yielding a probability of 3/4. In general, waiting for k
occurrences of t yields a probability of 1− (1/2)k. In addition, it is easy to
see that there is no randomized distributed scheduler yielding probability
one. So, although the supremum is 1, there is no scheduler yielding such
probability.

88 on the expressive power of different classes of schedulers

4.4 finite-memory (and markovian) schedulers

In the setting of full-information schedulers, the supremum probability of a
reachability property can be calculated by considering only the set of Marko-
vian schedulers [65]. We show that, under partial information, this is not
true anymore.

In our setting, one may think of two types of Markovian schedulers: glob-
ally Markovian distributed schedulers, which choose the same distribution
on compound transitions whenever the global states coincide, and locally
Markovian distributed schedulers, which choose the same local transitions
whenever the local states coincide.

Definit ion 4.9. A scheduler is globally Markovian iff η(σ)(c) = η(σ ′)(c)

for all σ, σ ′ such that LAST(σ) = LAST(σ ′).

Definit ion 4.10. An input scheduler Υi is Markovian iff, for all a, r, it
holds Υi(σi,a)(r) = Υi(σ

′
i,a)(r) whenever LAST(σi) = LAST(σ ′i). The defini-

tion of Markovian output schedulers is similar. An interleaving scheduler I

is Markovian iff I(σ)(A) = I(σ ′)(A) whenever LAST(σ) = LAST(σ ′) for all atom
A. A scheduler η is locally Markovian iff the input, output and interleaving
schedulers defining η are Markovian.

Note that LAST(σ) = LAST(σ ′) iff ∀Ai : [[LAST(σ)]]i = [[LAST(σ ′)]]i which, in
turn, is equivalent to

∀Ai : [[σ]]i = σi · si ∧ [[σ ′]]i = σ ′i · si .

Hence, an interleaving scheduler I is Markovian iff

∀σ,σ ′ : ∀Ai : [[σ]]i = σi · si ∧ [[σ ′]]i = σ ′i · si =⇒ I(σ) = I(σ ′) . (4.32)

We profit from this equivalence in the definition of locally N-Markovian
schedulers.

Definit ion 4.11. A scheduler is globally N-Markovian if η(σ ·σ ′) = η(σ ′)

for all σ ′ of length N.

Note that the set of globally Markovian schedulers equals the set of glob-
ally 1-Markovian schedulers.

Definit ion 4.12. We say that an input scheduler Υi is N-Markovian iff
Υi(σi · σ ′i,a) = Υi(σ

′
i,a) for all a, σi and σ ′i such that LEN(σ ′i) = N. The def-

inition of N-Markovian output schedulers is similar. An interleaving sched-
uler is N-Markovian iff

∀σ,σ ′ : ∀Ai : [[σ]]i = σ1i · σ2i ∧ [[σ ′]]i = σ1
′
i · σ2i ∧ LEN(σ2i) = N

=⇒ I(σ) = I(σ ′) .

A scheduler η is locally N-Markovian iff the input, output and interleaving
schedulers defining η are N-Markovian.

Note that, by Eqn. (4.32), we have that an interleaving scheduler is 1-
Markovian iff it is Markovian according to Def. 4.10.

The following example show that the supremum probability obtained
among all possible locally Markovian schedulers does not agree with the
supremum probability obtained among all distributed schedulers.

4.4 finite-memory (and markovian) schedulers 89

r!

l!

A

l? r?

s3 s4

0.99

0.01

r?l?
s1 s2

s0

B′

l? r?

s3 s4

r?l?
s1 s2

B

sA

Figure 4.5: Atom A must lead B to the smiling state

Example 4.4. Consider the system comprising atoms A and B in Fig. 4.5.
First, we consider non-randomized schedulers. A non-randomized locally
Markovian scheduler must output the same label in every path. So, if we
quantify over non-randomized locally Markovian schedulers, the supremum
probability of reaching ï̂is 0. The supremum under locally Markovian
schedulers is 0.25, and is obtained by the scheduler that chooses l! with
probability 0.5 and r! with probability 0.5 for all σ. This implies that given a
fixed amount of memoryN, randomization adds power toN-Markovian schedulers.

For the same example, note that globally Markovian schedulers obtain prob-
ability 1: once the first l has been output, the global state is different and so
the scheduler can choose the transition that outputs r.

In the following example we show that globally Markovian schedulers are
less expressive than distributed schedulers for reachability properties.

Example 4.5. Consider the system comprising atoms A and B ′ in Fig. 4.5.
Again, the aim of the scheduler is to reach ï̂. Consider a scheduler η

such that η is non-randomized and globally Markovian. In the initial state
(sA, s0), atom A must output l. The label l must also be output in the path
(sA, s0).l!.(sA, s0), since the scheduler is globally Markovian. So, we have
ΘA((sA.l!.sA)) = l!. Since the scheduler is distributed, this implies that l
is also output in the path (sA, s0).l!.(sA, s1). The same reasoning allows to
conclude that ΘA(σ) = l! for every A-path σ. So, the existence of the loop in
s0 implies that the choices of the scheduler should coincide for every path.
Hence, the only globally Markovian distributed scheduler η reaches ï̂with
probability 0. The distributed scheduler that chooses l and then r reaches ï̂
with probability 0.99.

Although, for the sake of completeness, we have presented both globally
and locally Markovian schedulers, handling distributed globally Markovian
schedulers is quite difficult: we use Example 4.5 to illustrate that it is not
possible to characterize globally Markovian schedulers in terms of the in-
put/output schedulers. Consider any distributed scheduler ηd that chooses
l and then r (regardless of the state of B): it is the loop in s0 what causes
the scheduler to be non-Markovian for A ‖ B ′. Recall that this scheduler
is indeed globally Markovian in the system A ‖ B. This shows that the set
of globally Markovian schedulers is very sensitive to the structure of the
system under consideration.

In addition, there is no condition in terms of the local schedulers to check
that a globally Markovian scheduler is distributed: consider the globally

90 on the expressive power of different classes of schedulers

Markovian scheduler ηm choosing l! if B is in state s0, and r! if B is in state
s1. This scheduler is not distributed because the loop implies the existence
of the paths σ1 = (sA, s0).l.(sA.s0) and σ2 = (sA, s0).l.(sA.s1) complying
[[σ1]]A = [[σ2]]A, while ηm chooses l! for one of the paths and r! for the other:
the fact that the scheduler is not distributed is a consequence of the loop.

These issues make it difficult to deal with globally Markovian schedulers,
and so in the rest of this Chapter we restrict to locally Markovian schedulers.

We say that a scheduler has (local) finite memory if it is (locally) N-
Markovian for some N. We denote the finite-memory distributed schedulers
of a system P by LFINMEM(P) and the non-randomized finite-memory sched-
ulers by NRLFINMEM(P). We illustrate the limitations of finite-memory sched-
ulers using atom A in Fig. 4.5. Suppose that we are interested in the proba-
bility of the path having the sequence of labels lrlrrlrrr · · · , that is, each l is
followed by a sequence of r’s, and the number of r’s is exactly the previous
number plus 1. There are no finite-memory schedulers yielding probabilities
arbitrarily close to 1 for this path. Intuitively, an optimal scheduler should
remember how much r’s were in the previous sequence, and the number of
r’s grows arbitrarily.

We have seen that locally Markovian schedulers cannot attain worst-case
probabilities even for simple reachability properties, and we have seen that
finite-memory schedulers are strictly less expressive than (infinite-memory)
distributed schedulers. However, if we consider only reachability properties,
we obtain the following theorem.

Theorem 4.8.

∀U ⊆ STATES(P) : sup
η∈DISTP([[·]])

PRη(REACH(U))

= sup
η∈NRLFINMEM(P)

PRη(REACH(U)) . (4.33)

Proof. We prove the result by showing that, for all ε, there exists ηm ∈
NRLFINMEM(P) such that supη∈DISTP([[·]]) PRη(REACH(U)) − PRη

m
(REACH(U)) 6

ε.
Let ε > 0, and let ηs ∈ DISTP([[·]]) be a scheduler such that

sup
η∈DISTP([[·]])

PRη(REACH(U)) − PRη
s
(REACH(U)) < ε/2 .

We denote by REACHN(U) the set of paths that reach some element in U be-
fore the N steps. Let N∗ be such that PRη

s
(REACH(U)) − PRη

s
(REACHN∗(U)) <

ε/2. Such an N∗ is ensured to exist since

PRη
s
(REACH(U)) = lim

N→∞ PRηS(REACHN(U)) .

The set REACHN∗ can be written as a disjoint finite union of sets of cylinders:
in fact,

REACHN∗=
⊎{

(σ)↑ | LEN(σ) 6 N∗ ∧ LAST(σ) ∈ U ∧ ∀k < LEN(σ) : σ(k) 6∈ U
}

.

By Corollary 4.1, we know that

sup
η∈NRDISTP([[·]])

PRη(REACHN∗(U)) = sup
η∈DISTP([[·]])

PRη(REACHN∗(U)) .

4.5 discussion 91

Moreover, since for the set REACHN∗ the only relevant resolutions of the non-
determinism are those before the N∗-th step (and since the schedulers in
NRDISTP([[·]]) are non-randomized), we have that the set {PRη(REACHN∗(U)) |

η ∈ NRDISTP([[·]])} is finite, and so there exists ηNR ∈ NRDISTP([[·]]) such that

PRη
NR

(REACHN∗(U)) = sup
η∈DISTP([[·]])

PRη(REACHN∗(U)) > PRη
s
(REACHN∗(U)) .

Let ΘNR
i , ΥNR

i and INR be the schedulers that define ηNR. Then, we can
consider the (uniquely defined) N∗-Markovian schedulers Θmi , Υmi and Im

that coincide with the schedulers for ηNR up to the N∗-th step. The scheduler
ηm obtained by composing Θmi , Υmi and Im is N∗-Markovian, and we have:

sup
η∈DISTP([[·]])

PRη(REACH(U)) − PRη
m

(REACH(U))

= sup
η∈DISTP([[·]])

PRη(REACH(U)) − PRη
s
(REACH(U))

+ PRη
s
(REACH(U)) − PRη

m
(REACH(U))

< ε/2+ PRη
s
(REACH(U)) − PRη

m
(REACH(U))

= ε/2+ PRη
s
(REACH(U)) − PRη

s
(REACHN∗(U))

+ PRη
s
(REACHN∗(U)) − PRη

m
(REACH(U))

< ε/2+ ε/2+ PRη
s
(REACHN∗(U)) − PRη

m
(REACH(U))

6 ε+ PRη
NR

(REACHN∗(U)) − PRη
m

(REACH(U))

= ε+ PRη
m

(REACHN∗(U)) − PRη
m

(REACH(U))

6 ε+ PRη
m

(REACH(U)) − PRη
m

(REACH(U))

= ε .

Theorem 4.8 is false in case strongly distributed schedulers are consid-
ered: the example in Fig. 4.1 is also a counterexample for this theorem. This
theorem can also be contrasted with the fact that, given a fixed amount of
memory, randomized schedulers are needed.

4.5 discussion

As the familiar reader would expect, we found that Markovian schedulers
fail to attain worst-case probabilities. Surprisingly, when considering strongly
distributed schedulers, we found examples in which non-randomized strongly
distributed schedulers are strictly less expressive than strongly distributed
schedulers, that is, randomization adds power to strongly distributed sched-
ulers. Hence, randomization leads to higher (or lower) values in the worst-
case probabilities than the non-randomized version.

However, as an interesting result, we proved that non-randomized dis-
tributed schedulers are equally expressive as distributed schedulers for any
measurable property. Since traditional schedulers for MDPs are a particular
case of distributed schedulers (just consider a distributed system having
only one component) we conclude that non-randomized traditional sched-
ulers attain extreme probabilities for any measurable set. In the setting of
MDPs, this result has been proven only forω-regular sets —see, e.g. [25, 133].

92 on the expressive power of different classes of schedulers

As pointed out in [38], the generalization to measurable sets (only for the
particular case of total information schedulers) can also be derived from very
non-trivial results in Borel games [122]. Our proof is, however, much simpler
and suited to the MDP setting (and also valid for distributed schedulers).

The model checking problem considering only distributed schedulers has
been proven to be undecidable in general [78]. So, one may think that unde-
cidability can be overcome by restricting the schedulers to have finite mem-
ory. In this case, an obvious question is how much memory the scheduler
should have in order to accurately approximate the worst-case value. We
show that the amount of memory needed to get an approximation of the
worst-case value cannot be calculated. In addition, we show that random-
ized schedulers are more powerful than non-randomized schedulers given
a fixed amount of memory.

summary Table 1 summarizes some of the results in this chapter. It in-
dicates whether or not a given subset is as expressive as the set of all
distributed schedulers (strongly distributed schedulers, resp.). For exam-
ple, the

√
corresponding to “Distributed”, “Infinite Memory” and “Non-

randomized” indicates that non-randomized distributed schedulers are as
powerful as distributed schedulers. The projection considered is [[·]].

Non-randomized Possibly randomized

N-Markovian × ×
Distributed Finite memory ×/

√∗ ×/
√∗

Infinite memory
√ √†

N-Markovian × ×
Strongly distributed Finite memory × ×

Infinite memory ×
√†

∗:
√

for reachability properties, × for general properties.
†: trivially true. This subset is the set of all distributed (strongly distributed, resp.)
schedulers.

Table 1: Expressive subsets of schedulers

5
U N D E C I D A B I L I T Y

In this chapter, we address the automatic calculation of the worst-case prob-
ability. In particular, we investigate to which extent such calculation is pos-
sible in case the information available to each of the components is partial,
and we find several negative results.

We start with a quantitative problem, namely, to calculate the supremum
probability that a state in a given set U is reached. Then, we consider the
qualitative problem of deciding whether there exists a scheduler reaching
some state in U with probability 1.

As in Sections 4.3 and 4.4, we restrict ourselves to projection [[·]], in order
to show that undecidability is not a consequence of our general approach to
projections. Hence, our results also hold in other frameworks in which the
projections are similar to [[·]] [45, 64].

5.1 quantitative case

Let REACH(U) denote all infinite paths ω such that ω(i) ∈ U for some i. The
aim of this section is to prove the following theorem:

Theorem 5.1 (Approximation of the maximum reachability problem is un-
decidable). Given an IPIOA P, a set U of states and δ > 0, there is no algorithm
that computes r such that |r− supη∈DISTP

PRη(REACH(U))| < δ.

In this theorem, the number δ plays the role of an error threshold. The the-
orem states that there is no algorithm to compute supη∈DISTP

PRη(REACH(U))

within a given threshold δ. Then, the value supη∈DISTP
cannot even be ap-

proximated.
The proof of Theorem 5.1 is based on the reduction of the maximum ac-

ceptance problem on probabilistic finite-state automata (PFA) [118] to the
maximum reachability problem on IPIOA. Since the PFA maximum accep-
tance problem is undecidable, this reduction implies the undecidability of
the maximum reachability problem on IPIOA.

Definit ion 5.1. A PFA is a quintuple (Q,Σ, l,qi,qf) where Q is a finite
set of states with qi,qf ∈ Q being the initial and accepting state respectively,
Σ is the input alphabet, and l : Σ×Q → (Q → [0, 1]) is the transition function
s.t. l(α,q) ∈ PROB(Q) for all α ∈ Σ and q ∈ Q. As in [118], we assume that
qf is absorbing, i.e. l(α,qf)(qf) = 1 for all α ∈ Σ.

Notice that l is a total function, thus implying that all labels are enabled
in all states.

Before introducing the PFA maximum acceptance problem, we present the
translation of PFA into IPIOA. By doing so, we can define the probability of
accepting a word on a PFA using the translated model, thus avoiding a
definition of probabilistic semantics specific to PFA.

The IPIOA we construct has two atoms A and B. The set of labels of
both atoms is Σ. The sets of states of atom A is the set Q. Moreover, A

93

94 undecidability

1/22/3 1/3
1/22/3

1/3 1/2

1/2

IPIOAProbabilistic finite state automata

α

α!

β

α? β?

A
β!

BB

Figure 5.1: From PFA to IPIOA

encodes the transition function l using reactive transitions. Atom B is the
one that outputs labels and introduces the nondeterminism. Notice that A is
deterministic in the sense that, at every state, each label uniquely determines
the transition to execute. Hence, a word w over Σ is equivalent to the non-
randomized scheduler for B that chooses the symbols in w.

The definition of PA for each PFA A is formalized in the following.

Definit ion 5.2 (PA and the probability of accepting a word). Atom AA

is defined as the tuple (Q,Σ,GA,RA,qi). Both GA and RA have local en-
abledness conditions, and so we define them in terms of the local states
(recall Def. 1.2, and contrast with Def. 1.12): GA(q) = ∅ for all q, RA(s,α) =

{l(α, s)} for all α ∈ Σ.
Atom BA is defined as the tuple ({INITB},Σ},GB,RB, INITB). Atom BA has

also local enabledness conditions:

GB(INITB) = {1 : (α, INITB)}α∈Σ

and RB(INITB,α) = {1 : INITB}. (This definition of RB is needed by require-
ment Eqn. (1.1).)

The IPIOA PA has ATOMS(PA) = {AA,BA}. Let U = {(qf, INITB)} be the
set of accepting states. Then, the probability PR(accept w) of accepting an
infinite word w = α1α2 · · · of symbols from Σ is PRη(REACH(U)), where η is
the only possible scheduler defined by the output scheduler ΘB such that

ΘB(

n times︷ ︸︸ ︷
INITB · · · INITB) = 1 : (αn, INITB) .

Atom A is input deterministic, since it has exactly one enabled transition
at every pair state/label. Hence there exists only one possible input sched-
uler for A (the scheduler choosing the only possible transition). In addition,
it is also worth noting that, although we are dealing with infinite words, our
criterion for acceptance is to pass through the accepting state using the word
(i.e., a word is accepted iff a finite prefix reaches the accepting state). Note
that, since qf is absorbent (by Def. 5.1), this is equivalent to the criterion for
Büchi automata.

Figure 5.1 shows a simple PFA and its corresponding IPIOA module.
Stated in terms of Def. 5.2, Corollary 3.4 in [118] becomes:

Theorem 5.2 (Corollary 3.4 in [118]). For any fixed 0 < ε < 1, the following
problem is undecidable: Given a module PA as in Def. 5.2 such that either

1. PA accepts some word with probability greater than 1− ε, or

2. PA accepts no word with probability greater than ε;

5.1 quantitative case 95

decide whether case 1 holds.

In [118] it is pointed out that, as a consequence of Theorem 5.2, the approx-
imation of the maximum acceptance probability is also undecidable. This
statement is formalized in the following corollary.

Corollary 5.1 (Approximation of the maximum acceptance probability
is undecidable). Given PA as in Def. 5.2 and δ > 0, the following problem is
undecidable: find r such that |r− supw PR(accept w)| < δ.

Proof. Note that, for an instance in Theorem 5.2 either supw PR(accept w) >

1− ε (iff case 1 holds) or supw PR(accept w) 6 ε (iff case 2 holds).
We will assume, w.l.o.g., that ε < 1/4. Suppose, towards a contradiction,

that we can solve the problem for δ = 1/8. We prove that, if the answer r is
less than 1/2, then case 2 holds. Otherwise, case 1 holds.

Let S = supw PR(accept w). If r < 1/2 then

S

<
{

Condition imposed to r by the specification of the algorithm
}

r+ 1/8

<
{

We assumed that r < 1/2
}

1/2+ 1/8 = 5/8 < 3/4 < 1− ε.

This is the opposite of case 1, and so case 2 holds.
If r > 1/2 then S > ε, this is the opposite of case 2, and so case 1 holds.

So far, we outlined the results in [118]. In order to prove Theorem 5.1,
we show that infinite words can be seen as non-randomized schedulers
(Lemma 5.1). Hence, the problem of finding the supremum over the set of
words is equivalent to the problem of finding the supremum over the set
of non-randomized distributed schedulers. By Corollary 4.1, this problem is
equivalent to that of finding the supremum over the set of all distributed
schedulers.

We note that, given the result in [118], the proof for non-randomized
schedulers is not quite a relevant contribution. Our main contribution is
to show that the undecidability result also holds for randomized schedulers,
as a consequence of Corollary 4.1. (In [78], we prove this result using a re-
stricted version of Corollary 4.1.)

The following lemma states that each word in the PFA A can be seen as a
non-randomized scheduler in PA and vice versa.

Lemma 5.1 (Words and schedulers). Given PA as in Def. 5.2, each word w
corresponds to a non-randomized scheduler η and vice versa, in the sense that
PR(accept w) = PRη(REACH(U)).

Proof. By definition, PR(accept w) = PRη(REACH(U)), where η is defined by
ΘB as in Def. 5.2.

Conversely, let η be a non-randomized scheduler for PA. Let ΘB be the
scheduler that defines η. For any n > 0, there is exactly one local path σB
having probability greater than 0 in η and LEN(σB) = n. This is due to the
fact that BA has no probabilistic transitions. Then, take w = w1 ·w2 · · · to
be the word defined by wn = LABEL(σB〈n〉).

96 undecidability

Now we are ready to prove Theorem 5.1.

Proof (of Theorem 5.1). As a consequence of Lemma 5.1 and Corollary 5.1
the computation of the maximum reachability probability restricted to non-
randomized schedulers is an undecidable problem in general, since it is un-
decidable for the particular case of IPIOA obtained from PFA as in Def. 5.2.

By Corollary 4.1, we have

sup
η∈NRDIST(P)

PRη(REACH(U)) =
∑

η∈DISTP

PRη(REACH(U)) .

Hence, if we were able to compute
∑
η∈DISTP

PRη(REACH(U)) we would able
to compute supw PR(accept w), thus contradicting Corollary 5.1.

extension to strongly distributed schedulers Note that, in the
systems PA obtained in the reduction, only one of the atoms has generative
transitions. So, for all A we have

DISTPA
= SDISTPA

= SDISTPA
([[·]], RATE) = SDISTPA

([[·]], 6) .

This equality yields the following theorem.

Theorem 5.3. Let S be one of SDISTP, SDISTP([[·]], RATE), or SDISTP([[·]], 6). There
is no algorithm that computes r such that |r− supη∈S PRη(REACH(U))| < δ for all
IPIOA P, set U and δ > 0

5.2 finite memory schedulers

Theorem 4.8 states that, for reachability properties, the supremum under
finite memory non-randomized schedulers is the same as under general
distributed schedulers. Together with Theorem 5.1 we get that the supre-
mum reachability problem is still undecidable if we restrict to finite-memory
schedulers.

The problem for non-randomized schedulers having at most N memory
is decidable, since this set of schedulers is finite, and so the supremum can
be found by exhaustive exploration. However, if we want to use such sched-
ulers to approximate the value under general distributed schedulers, the
amount of memory N needed in order to get an accurate approximation of
the probability under cannot be calculated. Formally, let NRLFINMEMN(P) be
the set of non-randomized locally N-markovian schedulers for P. Then:

Theorem 5.4. Given ε > 0, there is no algorithm computing N such that
supη∈DISTP([·]) PRη(REACH(U)) − supη∈NRLFINMEMN(P) PRη(REACH(U)) < ε .

Proof. Suppose, towards a contradiction, that the problem is decidable. Since
NRLFINMEMN(P) is finite, then there exists an algorithm to find a value r
such that supη∈DISTP([·]) PRη(REACH(U)) − r < ε . Such algorithm proceeds in
two steps: first, it computes N. Then it performs an exhaustive search on
NRLFINMEMN(P) in order to look for the scheduler yielding the maximum
probability (note that NRLFINMEMN(P) is a finite set). The existence of such
algorithm contradicts Theorem 5.1. Since Theorem 5.1 holds also if we re-
strict to systems having only two atoms, we cannot compute N even for
systems having only two atoms.

5.2 finite memory schedulers 97

Given that this theorem holds also if we restrict the problem to systems
having only two atoms, it holds also in case we consider strongly distributed
schedulers.

Even if we can obtain a suitable N (for instance, the choices after step
N are irrelevant to the problem, or we are able to prove the probability of
reaching U after N steps are negligible), then the problem of calculating
NRLFINMEMN(P) is still complex, as shown by the following theorem.

Theorem 5.5. Let S be one of LFINMEM1(P), NRLFINMEM1(P) GFINMEM1(P),
NRGFINMEM1(P). The problem of computing supη∈S PRη(REACH(U)) is NP-hard.

Proof. We reduce the 3SAT problem to the supremum reachability prob-
lem. The following reduction was suggested by Peter Niebert [123]. Let
c1 ∧ c2 ∧ · · · ∧ cm be an instance of the 3SAT problem where each ci
is a clause of the form l1i ∨ l2i ∨ l3i and each lji is a literal (it is either a vari-
able vk or the negation ¬vk). We construct two atoms C and V . Intuitively,
C chooses a clause and a literal in the clause, and V chooses a variable and
a value for this variable. Atoms C and V do not synchronize at all. The set
of states of C is

{INIT, c1, · · · , cm, l11, . . . , l31 , · · · , l1m, . . . , l3m} .

The set of states of V is

{INIT , (v1, UNDEF) , · · · , (vn, UNDEF) , (v1, TRUE) , · · · , (vn, TRUE) ,

(v1, FALSE) , · · · , (vn, FALSE)} .

In the initial state, atom C has enabled only one transition. Such a transition
probabilistically chooses one of the clauses, and it outputs a label a not
visible to V . We write this generative transition as

c =
1

m
: (a, c1) + · · · + 1

m
: (a, cm) .

In addition in each of the states ci there are transitions h1i ,h2i ,h3i leading to
the respective literals:

h
j
i = 1 : (a, lji) .

The generative structure of C is thus given by GC(INIT) = {c}, GC(ci) =

{h1i ,h2i ,h3i } and GC(s) = {} for all other s. Note that a scheduler for C de-
fines a set of literals lj11 , · · · , ljmm (one for each clause cj). Atom V chooses a
variable probabilistically, and then nondeterministically assigns a value to
this variable. We write the transition that chooses the variable as

v =
1

n
: (b, (v1, UNDEF)) + · · ·+ 1

n
: (b, (vn, UNDEF)) .

The generative structure of V assigns this transition to the initial state:

GV(INIT) = {v} .

For each state of the form (vk, UNDEF) we have two transitions

FALSEk = 1 : (b, (vk, FALSE)) and TRUEk = 1 : (b, (vk, TRUE)) .

98 undecidability

Then,

GV(vk, UNDEF) = {FALSEk, TRUEk} .

Each output scheduler for V can be seen as a valuation for the set of variables.
The set of states U is the set in which the value assigned to variable in V does
not disagree with the literal chosen by C, that is,

U = {(ljr, (vk, FALSE)) | ljr 6= vk} ∪ {(ljr, (vk, TRUE)) | ljr 6= ¬vk} .

Therefore, supη PRη(REACH(U)) = 1 iff there exist a set of literals lj11 , · · · , ljmm
and a valuation such that all the literals hold in the valuation (in other words,
iff the formula is satisfiable). Note that the number of states of the system
comprising atoms C and V is polynomial in the number n of variables. Then,
the problem is NP-hard. Note that, since the system has no cycles, the set
of Markovian distributed schedulers coincides with the set of comprising all
schedulers.

5.3 qualitative case

Section 4.3 presents an example in which the supremum of a reachability
property is 1, while there is no scheduler yielding such probability. Hence,
the problem of calculating whether the supremum is 1 is different to the
problem of calculating whether there is a scheduler yielding probability 1.
Unfortunately, both problems are undecidable.

The proofs in this section reduce the Post Correspondence Problem (PCP)
to the qualitative reachability problem for IPIOA.

The PCP problem can be stated as follows: given words u1, . . . ,un and
v1, . . . , vn over an alphabet S. Is there a finite non-empty sequence of indices
k = k1 · · ·km such that uk1 · · ·ukm = vk1 · · · vkm?

Intuitively, we can think that we are given n blocks with two words, as
shown in the following example:

aba

a

c

bacab

1 2

In this example, u1 = aba, u2 = c, v1 = a and v2 = bacab. The sequence
of indices 1, 2, 1 is a solution, since u1 · u2 · u1 = abacaba = v1 · v2 · v1.

We say that (w,k) is an upper pair iff w = uk1 · · ·ukn . We say that (w,k)
is a lower pair iff w = vk1 · · · vkn . Note that a word w can appear in an
upper pair (in this case, we say that the word is an upper word) iff w is in
the regular language (u1+ . . .+un)∗ (which we call the upper language), and
similarly for the words that can appear in a lower pair. We denote by WL(w)WL(w)

the length of a word w.
Then, an instance of the PCP problem has a solution iff there exists an

upper pair (w,k) such that (w,k) is also a lower pair.

5.3.1 Distributed schedulers

In this subsection, we prove undecidability under distributed schedulers.
Subsection 5.3.2 deals with strongly distributed schedulers.

5.3 qualitative case 99

Theorem 5.6. The following problems are undecidable: Given an IPIOA P and a
set of states U,

1. decide whether or not supη∈DISTP
PRη(REACH(U)) = 1.

2. decide whether or not there exists η ∈ DISTP such that PRη(REACH(U)) = 1.

Proof. Our proof strategy is similar to the one in [144]: we reduce the Post
correspondence problem (PCP), which is known to be undecidable.

Given a PCP instance u1, . . . ,un, v1, . . . , vn, we construct three atoms
W, S, I. Roughly speaking, W probabilistically chooses either “upper” or
“lower”. If W chooses “upper”, then W probabilistically chooses an upper
word w , communicating the symbols in w to S and the indices ki to I (and
similarly if W chooses “lower”). Once w ends (the end of w is also decided
probabilistically), then W outputs stop. After stop, I is able to output any se-
quence of indices to S (some of the behaviours we are interested in are those
in which I communicates the indices it has received from W). Then, S has to
guess whether W has chosen either “upper” or “lower”. The set of states U
is the set in which S has guessed correctly.

The set ACTLABW is S ∪ {1, · · · ,n} ∪ {stop, τW}.† The behaviour of W is as
follows: W has no nondeterministic choices. In the initial state there is a
probabilistic output transition:

1

2
: (τW , initUp) +

1

2
: (τW , initLo) .

The states initUp and initLo represent the fact that W has chosen “upper” or
“lower” respectively. In initUp there is a probabilistic output transition

1

n
: (1, startU1) + · · ·+ 1

n
: (n, startUn) .

Note that the number k in 1
n

: (k, startUk) is a label in ACTLABW (recall that
{1, · · · ,n} ⊆ ACTLABW). The states startUi represent the fact that the word
w will start with ui. Similarly, the states startLi represent the fact that word
w will start with vi. In each state startUi there is a transition 1 : (ui1 , Ui1),
where ui1 is the first symbol in ui ‡ and Ui1 represents the fact that the
first symbol in Ui has been output. From each state Uij with j < WL(ui) − 1

there is a transition 1 : (uij+1 , Uij+1). In the state UiWL(ui)−1
, there is a transition

1
2(uiWL(w)

, initUp) + 1
2(uiWL(w)

, outputStopWU). In state outputStopWU, the atom
just goes to state endWU by outputting stop, that is, it has only one transition:
1 : (stop, endWU). The state endWU indicates that the upper word has ended.
We omit the symmetric definitions for the case in which W chooses “lower”
(in this case the respective states are startLi, Lij , outputStopWL and endWL).
Since W must be input-enabled, each state has input transitions for each
l ∈ ACTLABW . However, because of the definition of the atoms, the paths
in which the labels are output by other atoms have probability 0 for all
schedulers, and so the definitions of the input transitions are irrelevant.

For atom I, we have

ACTLABI = S∪ {1, · · · ,n}∪ {1 ′, · · · ,n ′}∪ {stop, stop’} .
†As usual, the label τW is a placeholder for the output of internal transitions, that is,

τi 6∈ ACTLABj if i 6= j.
‡For simplicity, we omitted the case in which some of the words uk (vk, resp.) are empty.

In this case, when the index k is output in the state initUp, W returns to initUp instead of
moving to startUk.

100 undecidability

The labels {1 ′, · · ·n ′} are indices to be communicated to S. However, such
labels must be different from the labels {1, · · · ,n} output by W, since S is
not allowed to observe such labels. We need the label stop’ for the same
reason: I needs to indicate the other atoms when it has stopped, and the
construction is easier if the label used to indicate the stop is not the same as
in W. In the initial state INITI, atom I reacts to all 1 6 i 6 n using the input
transition 1 : INITI, and it reacts to stop with the transition 1 :outputI. Other in-
put transitions are irrelevant. In the state outputI there are output transitions
1 : (i ′, outputI) for each 1 6 i 6 n, and also a transition 1 : (stop’, endI).

The set ACTLABS is S∪ {1 ′, · · · ,n ′}∪ {stop’, τS}. In the initial state S reacts to
the labels in S ∪ {1 ′, · · · ,n ′} using the input transition 1 : INITS, and it reacts
to stop’ with the transition 1 :guessS. In guessS there are two output transitions:
1 : (τS, tryUp) and 1 : (τS, tryLo).

So, the set U to be reached is

U = {(endWU, endI, tryUp) , (endWL, endI, tryLo)} .

We prove the following: the instance of the PCP problem does not have a
solution iff there exists a distributed scheduler such that PRη(REACH(U)) = 1.
In addition, the problem has no solution iff supη∈DISTP

PRη(REACH(U)) = 1.
Suppose that the problem has no solution. Then every pair (w,k) can be an

upper or a lower pair, but it cannot be both. We can construct the following
distributed scheduler for P: input and output schedulers for W are uniquely
defined (there are no nondeterministic choices). The output scheduler for
I chooses the transitions that output the indices in the same order as they
were output by W. The output scheduler for S has to decide only between
going to tryUp or going to tryLo. The only paths with probability greater
than 0 in which this choice is performed have a sequence of action labels
of the form a1 · · ·aqk ′1 · · ·k ′rstop ′. If (a1 · · ·aq , k ′1 · · ·k ′r) is an upper pair,
then the output scheduler chooses tryUp, otherwise it chooses tryLo. If the
path has positive probability, and a1 · · ·ark ′1 · · ·k;q is an upper pair then, by
construction of W, W is in state endWU. Conversely, if a1 · · ·ark ′1 · · ·k ′q is a
lower pair, then W is in state endWL, and so the scheduler we constructed
reaches U with probability 1.

Now assume that the PCP problem has a solution. Suppose (towards a
contradiction) that supη∈DISTP

PRη(REACH(U)) = 1 (to get case 2 in the theo-
rem statement, suppose that there exists η ∈ DISTP such that PRη(REACH(U)) =

1). Then, by Theorem 4.1 for every ε > 0 there exists a non-randomized dis-
tributed scheduler ηε such that

PRη
ε
(REACH(U)) > 1− ε . (5.1)

Since the PCP problem has a solution, let (w,k = k1 · · ·kr) be an upper pair
that is also a lower pair. Then, there exist two paths σ, σ ′ whose projection
to I is of the form k1 · · ·krstop and, in one of them W has chosen “upper”
while in the other one it has chosen “lower”. By construction, we have

PRη
ε
((σ)↑) = PRη

ε
((σ ′)

↑
) =

1

2

(
1

n

1

2

)r+1
(5.2)

for all ε. We denote the probabilities in Eqn. (5.2) by δ. Note that these
probabilities do not depend on the scheduler, since the nondeterministic

5.3 qualitative case 101

choice occurs after the word (as well as the indices output by I) is completed.
Then, δ depends only on the PCP instance.

We show that PRη
ε
(REACH(U)) 6 1− δ. AfterW has completed a word, the

output scheduler for I starts to choose indices. It can either choose infinitely
many indices, or finally output stop ′. If stop’ is never output after [[σ]]I, then
a state in U cannot be reached after σ, and so the scheduler reaches U with
probability less than or equal to 1 − δ as desired. If stop’ is finally output,
let l1 · · · lr ′ stop’ be the sequence of labels output by I after it has observed
[[σ]]I (note that lk ∈ {1 ′, · · · ,n ′} for all k). In both σ, σ ′ the projection to S
is wl1 · · · lr ′ stop’. Hence, if the output scheduler for W chooses “upper” in
σ, then it also chooses “upper” in σ ′. By construction, the set U cannot be
reached after choosing “upper” in σ ′, and so ηε reaches U with probability
less than or equal than 1− δ. In symbols:

PRη
ε
(REACH(U)) 6 1− δ .

The same happens in case the scheduler for W chooses “lower”.
By taking any ε < δ, we obtain PRη

ε
(REACH(U)) 6 1− ε, thus reaching a

contradiction of (5.1).

5.3.2 Strongly distributed schedulers

This subsection is devoted to prove the following analogous of Theorem 5.6.

Theorem 5.7. The following problems are undecidable: Given an IPIOA P and a
set of states U,

1. decide whether or not supη∈SDISTP
PRη(REACH(U)) = 1.

2. decide whether or not there exists η ∈ SDISTP such that PRη(REACH(U)) = 1.

3. decide whether or not supη∈SDISTP([[·]],6) PRη(REACH(U)) = 1.

4. decide whether or not there exists a scheduler η ∈ SDISTP([[·]], 6) such that
PRη(REACH(U)) = 1.

Proof. We use the same idea as in the case of distributed schedulers. When
proving such result, we defined three atoms W, S and I. Here, we reuse
the atom W, except for a little modification explained later. The atom S is
replaced by two atoms SUp and SLo. Atom I is replaced by a set of atoms
{Ii}

n
i=1 ∪ {Istop}. The intended meaning is that SUp and SLo are a team that

must guess whether the word is an upper or a lower one, according to
the same information that S receives in the other reduction (namely, the
sequence of symbols output by W and the sequence of indices output by
I, such sequence being now output by the team comprising atoms {Ii}

n
i=1).

Atoms SUp and SLo take the guess in the following fashion: if SUp believes
that it is an upper word, then it outputs u. Conversely, if SLo believes that it
is a lower word, then it outputs l. So, both SUp and SLo behave as S, until
the point in which S decides, i.e. at the state guessS. In this state, SUp has
enabled the output transition 1 : (u, tryUp), and SLo has enabled the transi-
tion 1 : (l, tryLo). In W, the state endWU reacts to u with the input transition
1 :good and reacts to l with 1 :bad. Conversely, the state endWL reacts to u with
the input transition 1 :bad and reacts to l with 1 :good. Then, the state good is

102 undecidability

reached in the cases in which “the set of atoms {SUp,SLo}” guesses correctly
“upper” or “lower”.

Each atom Ii has all the input transitions in I. In addition, in the initial
state there is an input transition 1 : endIi reacting to stop’. The atom Istop has
all the input transitions in I, and only one output transition 1 : (stop’, endIstop).
So, once Istop decides to stop, all the Ii reach the state endIi. Each atom Ii
has enabled the output transition 1 : (i ′, INITI).

Note that the set of atoms in this new reduction can be partitioned into
the subsets A = {W}, B = {Ii}

n
i=1 ∪ {Istop} and C = {SUp,SLo}. At every state,

all the atoms in exactly one of these sets have an output transition enabled.
Moreover, [[·]] is a projection equivalent for A, B and B. The equivalence forNote that the IPIOA

under consideration
resembles that
of Example 4.3, p 77

A is trivial since A has only one element. The equivalence for B holds since,
at every state, the projection for all the Ii and Istop gives the symbols output
by W. The equivalence for C holds since, at every state, the projection for
both SUp and SLo gives the symbols output by W and the indices output by
the Ii. Then, Corollary 4.2 gives that SDISTP([[·]]) and SDISTP([[·]], 6) have the
same expressive power.

Therefore, we can repeat the argument in the proof for distributed sched-
ulers in order to prove that the supremum probability of reaching good is 1
(there exists a scheduler reaching good with probability 1, resp.) iff the PCP
problem has no solution.

5.4 comparison with existing results

Theorem 5.1 also holds for the probabilistic modules in [64] (indeed, this
is the framework we used in [78]), for the Switched PIOA in [46] and for
the schema of partial information presented in [63] (we already discussed
these frameworks in Sec. 1.4). The proof for Switched PIOA is essentially the
same as ours, since the difference between both frameworks is related to the
interleaving and interleaving is not an issue in our reduction.

In [63] the lack of information is modelled using a equivalence relation ∼

on states. Two paths σ, σ ′ are equivalent iff they have the same length and
σ(i) ∼ σ ′(i) for all i. The maximum acceptance problem for PFA can be re-
duced to this framework by taking ∼ to be the relation such that s ∼ s ′ for all
s. Using this relation, the scheduler must decide the next action to perform
based solely on the number of actions executed before, and so each sched-
uler in [63] is equivalent to a scheduler for the atom B as Def. 5.2. Hence,
the problem of finding the maximum reachability probability is equivalent
to the problem of finding the maximum reachability probability for an IP-
IOA as in Def. 5.2.

We remark that [63] defines a model checking algorithm, but it calculates
the supremum corresponding to Markovian partial-information policies, i.e.,
to the subset of partial-information policies restricted to choose (distribu-
tions on) actions by reading only the (corresponding portion of the) current
state rather than the full past history.

Probabilistic Büchi Automata (PBA [20]) are similar to PFA, but they have
a different acceptance criterion. A path is accepting iff infinitely many states
are accepting. A word is accepted iff the probability of the accepting paths
is positive. In [16, 86], it is proven that both the emptiness problem (that is,
whether the language accepted by an automaton is empty or not) and the

5.4 comparison with existing results 103

specification problem (that is, whether a finite transition system satisfies a
PBA-specification) are undecidable.

Part II

T E C H N I Q U E S A N D A L G O R I T H M S

6
A L G O R I T H M S

Existing algorithms for verification of probabilistic systems are based on
the compose-and-schedule approach explained in Subsection 0.1.3. In this
approach, the system is verified under total information schedulers for the
compound system.

In this chapter, we explore how model checking techniques can be adapted
to deal with partial information. In Chapter 5, we have shown that there is
no algorithmic solution to the general problem of verification under partial
information. Despite of this negative result, we present two algorithms. One
of them calculates an overestimation of the maximum probability that the
system fails. The other one exhaustively explores the set of non-randomized
distributed Markovian schedulers, in order to look for schedulers in which
the probability of a failure is not acceptable. We present a branch-and-bound
technique to elide some subsets of schedulers during the exploration.

The algorithms we present translate an IPIOA P into a Markov Decision
Process (MDP) M. The aim of the translations in these algorithms is that the
analysis of M under total information is useful to analyse P under partial
information. Then, our algorithms for IPIOA profit from the well-known
algorithms for MDPs under total information.

In this chapter, we make extensive use of the following definitions.

Definit ion 6.1 (MDP). An MDP is a tupleM = (S, ACTIONS,P, INIT), where
S is a finite set of states, ACTIONS is a finite set of actions identifiers, P : (S×
ACTIONS× S) → [0, 1] is the (three-dimensional) probability matrix, INIT ∈ S

is the initial state. ACTIONS(s) denotes the set of actions enabled in state s,
i.e. the set of actions α such that P(s,α, t) > 0 for some t ∈ S. For every
state s ∈ S, we require that ACTIONS(s) 6= ∅ and

∑
s ′∈S P(s,α, s ′) = 1 for

every action α ∈ ACTIONS(s). (In particular, we assume that M does not have
terminal states.)

To shorten notation, we often write α(s, s ′) instead of P(s,α, s ′).
A path in an MDP is a sequence s1.α1. · · · .αn−1.sn. Schedulers for MDPs

map paths to probability distributions on ACTIONS. The probability PRη((σ)↑)

of a path σ = s0.α1.s1 · · ·αn.sn is defined inductively: the probability of
the initial state is 1. The probability of a path σ.αn.sn is PRη(σ) · η(σ)(αn) ·
P(LAST(σ),αn, sn). SCHEDM denotes the set of schedulers for the MDP M.

Assumption 6.1. In this chapter, we restrict to simple IPIOA, that is, IP-
IOA as defined in Sec. 1.1. Simple IPIOA can be seen as general IPIOA
complying with certain restrictions (see Subsection 1.2.3).

6.1 from ipioa to mdps

Before introducing our algorithms, we present a straightforward translation
from IPIOA to MDP. This translation is useful to follow that compose-and-
schedule approach: the resulting MDP is the composition of the atoms in

107

108 algorithms

the IPIOA, and the schedulers for the MDP correspond to full-information
schedulers for the IPIOA.

Given an Interleaved PIOA P, we construct an MDP MDP(P). The systems
P and MDP(P) are equivalent, in the sense that

sup
η∈SCHEDP

PRη(S) = sup
η∈SCHEDMDP(P)

PRη(S) .

Since there is no concept of action labels in the MDP setting, the states
of the MDP contain the action label that led the MDP to such a state. A
fictitious label aINIT 6∈ ACTLABP needs to be introduced, since the initial state
has no previous label.

Definit ion 6.2. The set of states of MDP(P) is S = (ACTLAB ∪ {aINIT}) ×∏
i Si, where aINIT is a fictitious label introduced because the initial state has

no previous label. Each action in the MDP specifies a generative transition
and, in addition, it specifies how the other atoms react to this generative tran-
sition. So, each element in ACTIONS has the form (gi, f1, · · ·, fi−1, fi+1, · · ·, fN),
where gi is a generative transition of the atom i and

fj : ACTLABj ∩ ACTLAB(gi)→ TRj

where ACTLAB(gi) = {a | ∃s, s ′ : gi(s,a, s ′) > 0} and TRj is the set of reactiveACTLAB(gi)

transitions in Aj. Each action α of the form (gi, f1, · · · , fi−1, fi+1, · · · , fN)

corresponds to several compound transitions: namely, there is one com-
pound transition cα,a for each label a ∈ ACTLABi. Such compound transition
is defined as (gi,a, fr1(a), · · · , frk(a)), where r1, · · · , rk are the atoms that
react to a. An action α in the MDP is enabled in s iff the corresponding
compound transitions are enabled in the Interleaved PIOA. The probability
matrix is defined as

P((a, s) , (gi, f1, · · · , fi−1, fi+1, · · · , fN) , (a ′, (s ′1, · · · , s ′N))) =

gi(s,a ′, s ′i) ·
m∏
k=1

fjk(a
′)(s,a ′, s ′jk) . (6.1)

The initial state is (aINIT, INIT), where INIT is the initial state of the IPIOA. In
order to comply with the restriction ACTIONS(s) 6= ∅, if s has no transitions
enabled, we define ACTIONS(s) = {ας } where P(s,ας , s) = 1 and P(s,ας , s ′) =

0 for all s ′ 6= s.

In case the MDP arises from an IPIOA, each state is of the form (a, s). In
this case, we write

s1.α1.a2.s2. · · · .αn1 .an.sn

instead of s1.α1.(a2, s2). · · · .αn1 .(an, sn). In addition, we write α(s,a, s ′)
instead of α(s, (a, s ′)).

Note that, while IPIOA paths involve compound transitions, MDP paths
involve actions. So, in order to draw a link between both formalisms, we
have to restrict to properties that are sensitive only to states.

Definit ion 6.3. We say that set of infinite paths S is state-based iff

∀ω,ω ′ : (∀k :ω(k)=ω ′(k)) =⇒ ω ∈ S ⇐⇒ ω ′ ∈ S .

6.2 an overestimation for total order-based schedulers 109

The following theorem allows us to calculate extremal probabilities for a
IPIOA under total information by calculating extremal probabilities for the
corresponding MDP.

Theorem 6.1. Let S be a measurable, state-based set of infinite paths. Then,

sup
η∈SCHEDP

PRη(S) = sup
η∈SCHEDMDP(P)

PRη(S) .

6.2 an overestimation for total order-based schedulers

In this section, we present an algorithm for reachability properties on I/O de-
terministic IPIOA, that is, on IPIOA such that

∣∣Gi(s) ∣∣ 6 1 and
∣∣Ri(s,a)

∣∣ = 1

for all i, s, a.
The correctness of our algorithm involves the total order-based schedulers

under the projection [·]VP w [[·]]. We have seen such projection already in Ex-
ample 4.2, as an example of a traceable projection. The definition is restated
below.

Definit ion 6.4. For each atom Ai, the visible prefix projection [·]VP is de-
fined as follows:

• [INIT]VP
i = INIT,

• [σ.c.s]VP
i = σ.c.s if LABEL(c) ∈ ACTLABi and

• [σ.c.s]VP
i = [σ]VP

i , otherwise.

Given an IPIOA P and a set of states U, the algorithm constructs an
Markov decision process M and a set of states M(U) and performs a reach-
ability analysis on M assuming total information. We prove that the results
of the reachability analysis for M overestimate the result for P assuming
schedulers in SDISTP([·]VP, 6), that is:

sup
η∈SDISTP([·]VP,6)

PRηP(REACH(U)) 6 sup
η∈SCHEDM

PRηM(REACH(M(U))) .

Note that, by Theorem 4.3 (case (I)), we have

sup
η∈SDISTP([·]VP,RATE)

PRη(REACH(U)) 6 sup
η∈SDISTP([·]VP,6)

PRη(REACH(U)) .

In addition, by Theorem 2.7 we have

sup
η∈SDISTP([[·]],RATE)

PRη(REACH(S)) 6 sup
η∈SDISTP([·]VP,RATE)

PRη(REACH(S)) ,

for all measurable S. Hence, the value calculated by the algorithm is also an
overestimation of supη∈SDISTP([[·]],RATE) PRη(REACH(U)), that is,

sup
η∈SDISTP([[·]],RATE)

PRη(REACH(U)) 6 sup
η∈SCHEDM

PRηM(REACH(M(U))) (6.2)

We use the following example in order to illustrate how the MDP con-
structed by our algorithm simulates the original IPIOA P. Suppose that ABC
Corp. is planning two meetings. Each member of ABC Corp. must assist to

110 algorithms

exactly one of these meetings. ABC Corp. has a business and a technical
division. The aim of ABC Corp. is to foster collaboration among people
belonging to different divisions. They plan to assign a meeting to each mem-
ber using a computer program. Such program randomly selects one of the
meetings (with probability 1/2 each) without showing the selection. Each
member of ABC Corp. is required to use the program during the course of
the week, in order to know the meeting which he/she is assigned to. When a
member asks the program, the program assigns to this member the meeting
previously selected. Then, the program randomly selects another meeting to
be assigned to the next member.

We would like the members in each meeting to be well-balanced with re-
spect to the division they belong to. Suppose that a member of ABC Corp.
decides to check the probability that all members of the technical division
are assigned to the same meeting by analysing all possible orderings for the
members of ABC Corp. Then, he discovers that, if the members ask the pro-
gram in order m1, · · · ,mN (where N is the total number of members) then
the membermi is assigned with probability 1/2 to each meeting, for all i. So,
the probability that all members of the technical division are assigned to the
same meeting is 1/2NT for all cases, where NT is the number of members of
the technical division. Roughly speaking, the order is selected beforehand
and the system is verified by assuming that the atoms execute in the selected
order. This analysis must be carried out for every possible order.

The scenario is a bit more complex if we allow the members of ABC corp.
to ask the computer for a second time in case they do not like the meeting
they were assigned to. Suppose that we fix an order as before. Once the
first member asks the computer, we must consider the cases in which the
member asks for a second time immediately, the case in which it waits until
another member has asked, etc. So, once the member asks the computer, we
can obtain several new orders by “inserting” the member at different places
in the previous order.

In this way, the MDP constructed starts by choosing among all the possible
orders on atoms. The selected order is kept as part of the state. Then, each
time a transition is executed, the MDP updates the order of all the atoms
participating in the transition. Each possible order corresponds to a different
nondeterministic option. The next atom to execute a transition is determined
by the current order.

In the following, we show how to construct the MDP M from the IPIOA
P. The MDP M starts with a nondeterministic choice. This choice selects a
total order on the atoms having enabled generative transitions in the their
initial state. (In general, for any state s, we call these atoms the enabled atoms
–denoted by ENATOMS(s)). The interpretation of such order is that the atomsENATOMS(s)

will perform outputs according to it. After this first choice has been per-
formed, M has several available transitions. All of these transitions execute
the generative transition corresponding to the atom on the bottom of the or-
der, but, in addition, each transition determines how the atoms are ordered
after the transition has been executed. If the order prior to the execution is
o1, then the new order o2 must comply Ai <o1 Aj =⇒ Ai <o2 Aj for all
Ai, Aj such that the label a output by the generative transition is neither
in ACTLABi nor in ACTLABj. That is, the order of atoms that are not aware
of a does not change. By repeating this mechanism, M picks the maximum
atom (according to the current order) and reorders the atoms. Note that the

6.2 an overestimation for total order-based schedulers 111

Algorithm 1 Overestimation of supremum probabilities under total order-
based schedulers

1: OVERESTIMATE(P,U) : R>0

2: Using P, construct an MDP M according to Def. 6.6
3: Calculate S ← supη∈SCHEDM

PRη(REACH({(a, s,o) | s ∈ U}))

4: Return S

restriction on the reordering ensures that, if at some point of the execution
it holds that Ai <o Aj, then Aj will not execute after Ai unless Ai or Aj get
new information.

In general, the decision of whether Ai executes before Aj is taken right
after the last step in which Ai or Aj receives information. So, this choice
cannot depend on subsequent probabilistic choices (thus reflecting the moti-
vation we used to define total order-based schedulers).

Let OP be the set comprising all total orders on subsets of ATOMS(P). More-
over, given S ⊆ ATOMS(P), let O(S) be the set comprising all total orders on
S.

Definit ion 6.5. Given an order o, a reordering function for o is a function
ro : ACTLAB×

∏
i Si → OP such that:

(1) ro(a, s) ∈ O(ENATOMS(s)) and
(2) (Ai <o Aj ∧ a 6∈ ACTLABi ∧ a 6∈ ACTLABj) =⇒ ∀s : Ai <ro(a,s) Aj .

Let Ro denote all the reordering functions for o.

Definit ion 6.6. The set of states ofM is S = ((ACTLAB∪ {aINIT})× (
∏
i Si)×

OP) ∪ {INITM}, where aINIT is a fictitious label (aINIT 6= ACTLAB), and INITM 6∈
SP is the initial state of M. The set of actions in INITM is defined by:

ACTIONS(INITM) = {αINITM,o | o ∈ O(ENATOMS(INITP))},

with P(INITM,αINITM,o, (aINIT, INITP,o)) = 1. For the remaining states, we have

ACTIONS((a, s,o)) = {αs,o,ro | ro ∈ Ro} .

where αs,o,ro is defined as follows. Given a state s = (s1, · · · , sN), an enabled
atom i and a label a ′, let cs,i,a ′ be the compound transition

cs,i,a ′ = (Gi(si),a ′,Rj1(sj,a
′), · · · ,Rjm(sjm ,a ′)) .

Then,

P((a, s,o),αs,o,ro , (a ′, s ′,o ′)) = cs,min<oi Ai,a ′(s, s
′)

if ro(a ′, s ′) = o ′. Otherwise, P((a, s,o),αs,o ′,r, (a ′, s ′,o ′′)) = 0. For the states
in which ENATOMS(s) = ∅, we define ACTIONS(s) = {ας } with P(s,ας , s) = 1.

Our algorithm simply translates the IPIOA P to an MDP M and applies
the algorithm in [25] to calculate supη∈SCHEDM

PRη(REACH(M(U))), where

M(U) = {(a, s,o) | s ∈ U} .

This is summarized in Algorithm 6.2 (for simplicity, the figure shows only
the supremum, but it also applies to the infimum).

In Sec. 8.2 we analyse the model of a protocol using our algorithm, and
obtain results more realistic than those obtained by analysing MDP(P) as
obtained by Def. 6.2.

The correctness of Algorithm 6.2 is stated in the following theorem.

112 algorithms

Theorem 6.2. Given a PIOA P, let M be the MDP constructed as in Def. 6.6.
Then,

sup
η∈SDISTP([·]VP,6)

PRηP(REACH(U)) 6 sup
η∈SCHEDM

PRηM(REACH(M(U)))

and inf
η∈SCHEDM

PRηM(REACH(M(U))) 6 inf
η∈SDISTP([·]VP,6)

PRηP(REACH(U)) .

The following corollary is deduced from (6.2).

Corollary 6.1.

sup
η∈SDISTP([[·]],RATE)

PRηP(REACH(U)) 6 sup
η∈SCHEDM

PRηM(REACH(M(U)))

and inf
η∈SCHEDM

PRηM(REACH(M(U))) 6 inf
η∈SDISTP([[·]],RATE)

PRηP(REACH(U)) .

For the proof of Theorem 6.2, we need an ancillary lemma.

Lemma 6.1. Given a PIOA P, let M be the MDP constructed as in Def. 6.6. For
all schedulers η in SDISTP([·]VP, 6), there exists a scheduler η ′ ∈ SCHEDM and a
bijection hη mapping the finite paths with positive probability in η to the finite
paths with positive probability in η ′ having length greater than 1. Moreover, hη
complies with the following properties:

1. LEN(hη(σ)) = LEN(σ) + 1 for all σ,

2. PRη((σ)↑) = PRη
′
((hη(σ))↑),

3. Let 6η be the total order that defines the interleaving scheduler in η. Then,
LAST(hη(σ)) = (a, s,o), where a is the last action label in σ (or aINIT in case
σ = INITP), s = LAST(σ), and o is the order such that

Ai <o Aj iff [σ]VP
i <

η [σ]VP
j . (6.3)

In particular, we have LAST(σ) ∈ U iff LAST(hη(σ)) ∈M(U).

Proof. Given η, we define η ′ and hη by induction on the path length. The
properties for hη are proved inductively along the definition. The base case
of the induction concerns all the paths of length 1 (namely INITP). First, let
oINIT be the order Ai <oINIT Aj iff [INITP]VP

i <
η [INITP]VP

j . Then, we define

η ′(INITM) = αINITM,oINIT

hη(INITP) = INITM.αINITM,oINIT .(aINIT, INITP,oINIT) .

Note that, so far, hη is mapping all paths of length 1 in P to all paths of
length 2 having positive probability in η ′. Property (1) holds by definition
of hη. With respect to property (2):

PRη
′
((hη(INITP))↑) = PRη

′
((INITM.αINITM,oINIT .(aINIT, INITP,oINIT))

↑)

= 1 = PRη((INITP)
↑) .

Property (3) holds by definition of oINIT.
For the inductive case, assume that we have defined η ′ for all paths of

length N+ 1 (that is, hη maps all the paths of length N in P). Let σ.c.s be
a path of length N+ 1 in P. By inductive hypothesis, we have hη(σ.c.s) =

6.2 an overestimation for total order-based schedulers 113

σ ′.α.(a, s,o), for some a, s, and o complying Eqn. (6.3) for σ.c.s. Recalling the
definition of M, we find that the transitions enabled in hη(σ) are of the form
αs,o,ro . Let Ai∗ be the atom such that I(σ.c.s) = 1 :Ai∗ and, for all a ′, let c∗a ′
be the compound transition (Θi∗(σ.c.s),a ′,Υj1(σ.c.s,a ′), · · · ,Υjm(σ.c.s,a ′)).
Moreover, for all a ′, s ′, let

σa ′,s ′ = σ.c.s.c∗a ′ .s
′ .

We define the function r ′o as r ′o(a ′, s ′) = o ′, where Ai <o ′ Aj iff [σa ′,s ′]
VP
i <

η

[σa ′,s ′]
VP
j for all Ai,Aj ∈ ENATOMS(s).

We show that r ′o is a reordering function. By definition,

r ′o(a
′, s ′) ∈ O(ENATOMS(s)) .

In addition, if Ai <o Aj and a ′ 6∈ ACTLABi and a ′ 6∈ ACTLABj, then we
have [σ.c.s]VP

i <
η [σ.c.s]VP

j (since o complies with Eqn. (6.3)). Moreover, since
a ′ 6∈ ACTLABi (since a ′ 6∈ ACTLABj, resp.), we conclude [σa ′,s ′]

VP
i = [σ.c.s]VP

i

for all s ′ ([σa ′,s ′]VP
j = [σ.c.s]VP

j for all s ′, resp.) and hence

[σa ′,s ′]
VP
i = [σ.c.s]VP

i <
η [σ.c.s]VP

j = [σa ′,s ′]
VP
j .

Therefore, Ai <o ′ Aj.
Since r ′o is a reordering function, the following definitions are legitimate:

η ′(hη(σ.c.s)) = αs,o,r ′o

hη(σa ′,s ′) = hη(σ.c.s).αs,o,r ′o .(a ′, s ′, r ′o(a
′, s ′))

Property (1) is easily verified:

LEN(σa ′,s ′) = 1+ LEN(σ.c.s) = 1+ (1+ LEN(hη(σ.c.s))) =

1+ LEN(hη(σ.c.s).αs,o,r ′o .(a ′, s ′, r ′o(a
′, s ′))) = 1+ hη(σa ′,s ′) .

Property (3) holds by definition of r ′o.
Next, we prove property (2). Since 6η is the total order for interleaving

scheduler I that defines η and Eqn. (6.3) holds for σ.c.s, we have

Ai∗ = min<oAi . (6.4)

Then,

PRη
′
((hη(σa ′,s ′))

↑)

=
{

Definition of hη(σa ′,s ′)
}

PRη
′
((hη(σ.c.s)↑) · P((a, s,o) , αs,o,r ′o , (a ′, s ′, r ′o(a

′, s ′)))

=
{

Inductive hypothesis
}

= PRη((σ.c.s)↑) · P((a, s,o) , αs,o,r ′o , (a ′, s ′, r ′o(a
′, s ′)))

=
{

Definition of P(·,αs,o,ro , ·)
}

PRη((σ.c.s)↑) · cs,min<o Ai,a ′(s, s
′)

=
{

Equation (6.4), definition of c∗a ′
}

PRη((σ.c.s)↑) · c∗a ′(s, s ′)
=
{

I(σ.c.s) = Ai∗
}

= PRη((σa ′,s ′)
↑)

114 algorithms

Proof of Theorem 6.2. First, we consider the case of the supremum. Let η ∈
SDISTP([·]VP, 6) and ε > 0. We show that there exists η ′ ∈ SCHEDM such that
PRη

′
(REACH(M(U))) > PRη(REACH(U)) − ε. This η ′ is precisely the scheduler

whose existence is ensured by Lemma 6.1. Let

R = {σ | LAST(σ) ∈ U ∧ ∀k < LEN(σ) : σ(k) 6∈ U}

and Rk = {σ ∈ R | LEN(σ) = k} . Since REACH(U) =
⊎
σm∈R (σm)↑, we have

PRη(REACH(U)) =
∑
σm∈R

PRη((σm)↑) = lim
N→∞

N∑
k=1

∑
σ∈Rk

PRη((σ)↑) .

Hence, there exists Nε such that

PRη(REACH(U)) −

Nε∑
k=1

∑
σ∈Rk

PRη((σ)↑) < ε .

To prove the result, we show that

PRη
′
(REACH(U)) >

Nε∑
k=1

∑
σ∈Rk

PRη((σ)↑) .

By Lemma 6.1 (property (2)), we have

Nε∑
k=1

∑
σ∈Rk

PRη (σ)↑ =

Nε∑
k=1

∑
σ∈Rk

PRη
′
(hη(σ)

↑)

From property (3) and the fact that hη is a bijection, we conclude that
(hη(σ))↑ ∩ (hη(σ

′))↑ = ∅ whenever σ,σ ′ ∈ R and σ 6= σ ′: otherwise, it should
be hη(σ) < hη(σ

′), implying hη(σ ′) (LEN(σ)) = LAST(hη(σ)) ∈ M(U) and
in turn σ ′(LEN(σ)) ∈ U, which is clearly false since LEN(σ) < LEN(σ ′) and
σ ∈ R (recall the paths σ in R are required to not have states in U, except for
LAST(σ)).

Then,

Nε∑
k=1

∑
σ∈Rk

PRη
′
(hη(σ)

↑) = PRη
′
(

Nε⊎
k=1

⊎
σ∈Rk

(hη(σ))↑) .

Property (3) in Lemma 6.1 implies

Nε⊎
k=1

⊎
σ∈Rk

(hη(σ))↑ ⊆M(U)

and so

PRη
′
(REACH(M(U))) > PRη

′
(

Nε⊎
k=1

⊎
σ∈Rk

(hη(σ))↑) =

Nε∑
k=1

PRη(REACH(Rk))

as desired.
With respect to the infimum, we again consider η ∈ SDISTP([·]VP, 6), and

the corresponding scheduler η ′ obtained in the previous lemma. Now, we
show that PRη

′
(REACH(U)) 6 PRη(REACH(U)). Let

R = {σ | LAST(σ) ∈ ∧ ∀k < LEN(σ) : σ(k) 6∈}

6.3 underestimation of probabilities under distributed schedulers 115

and Rk = {σ ∈ R | LEN(σ) = k}. Next we show that, for all N,

N∑
k=1

∑
σ∈Rk

PRη
′
((σ)↑) 6 PRη(REACH(U)) ,

and hence the result is implied by the equality

PRη
′
(REACH(U)) = lim

N→∞
N∑
k=1

∑
σ∈Rk

PRη
′
((σ)↑) .

The justifications of the following calculation are the same as for the supre-
mum.

N∑
k=1

∑
σ∈Rk

PRη
′
((σ)↑)

=

N∑
k=1

∑
σ∈Rk

PRη((h−1
η (σ))

↑
)

= PRη(
N⊎
k=1

⊎
σ∈Rk

(h−1
η (σ))

↑
)

6 PRη(REACH(U))

6.3 underestimation of supremum reachability probabilities

under distributed schedulers

Section 6.2 presents an algorithm that is useful to prove that a given model is
correct in the sense that: if the supremum value V computed by the algorithm
is less than or equal to the greatest admissible value S, then the model can be
deemed as correct. However, in case V > S we cannot ensure that the model
is incorrect, since the computed values are overestimations of the supremum
quantifying over SDISTP([[·]], 6) (Sec. 6.2), and so it might be the case that all
the schedulers yielding probabilities greater than V are not in SDISTP([[·]], 6).

In this section, we devise an algorithm that can be used to ensure that a
model is incorrect with respect to a reachability property under distributed
schedulers. Specifically, given the greatest admissible value S, the algorithm
can be used to show that supη∈DISTP

PRη(REACH(U)) > S. To this aim, the al-
gorithm successively calculates the probability of reaching U for each sched-
uler in a representative subset of Markovian schedulers. If some Markovian
scheduler yielding probability greater than S is found, then the system is
incorrect. On the contrary, if no scheduler is found, it might be the case that
there exists a non-Markovian scheduler (or a randomized Markovian sched-
uler) yielding probability greater than S, and so we are not assured that the
system is correct.

In order to ease explanations, we start by presenting a basic algorithm
to calculate the value for all Markovian schedulers. Then, we present an
improvement that allows to safely discard some sets of schedulers, and so
not all values need to be calculated. This improvement uses the branch-and-
bound technique.

116 algorithms

For the basic algorithm, we consider a transformation P[C ← O] on IP-
IOA. This transformation has two parameters (aside from the IPIOA P on
which the transformation is carried out). The first parameter is a nonde-
terministic choice C. Formally, C is a state s∗ such that

∣∣Gi(s∗) ∣∣ > 0 (a
pair (s∗,a∗) such that

∣∣Ri(s∗,a∗) ∣∣ > 0, resp.) The second parameter is one
of the available options O for such a choice. Formally, O is a generative
transition g∗ ∈ Gi(s

∗) (a reactive transition r∗ ∈ Ri(s
∗,a∗), resp.). The

transformation fixes the transition O to be always chosen in C. Formally,
P[C ← O] is an IPIOA that coincides with P except for the generative struc-
ture GP[C←O]

i for the atom Ai (the reactive structure RP[C←O]
i , resp.). This

generative structure is defined as GP[C←O]
i (s) = G(s) for all s 6= s∗ and

G
P[C←O]
i (s∗) = {g∗} (RP[C←O]

i (s,a) = R(s,a) for all (s,a) 6= (s∗,a∗) and
R
P[C←O]
i (s∗,a∗) = {r∗}, resp.). Note that, if P ′ is obtained by resolving all

I/O nondeterministic choices in P, the only nondeterminism remaining in
P ′ is due to interleaving. Since we aim to check the model under distributed
schedulers (in which the interleaving scheduler has total information), we
can calculate the supremum for P ′ assuming total information. We assume
that a procedure SUPTOTALINFO exists to calculate supη∈SCHEDP

PRη(REACH(U)),
by considering the translation to MDPs in Sec. 6.1. This procedure can be
found in e. g. [25]. Moreover, from [25], we know that the scheduler η∗

yielding the supremum probability for P ′ is globally Markovian and non-
randomized, and so η∗ corresponds to a locally Markovian non-randomized
scheduler ηP for P: the interleaving † scheduler IP resolves the remaining
nondeterminism just like η∗ does, and the output and input schedulers
choose the only transition that remains enabled in P ′.

Algorithm 2 Explore all non-randomized distributed Markovian schedulers
1: Global MAXSUP ← −1

2: SUPMARKOVIAN(P) : {INCORRECT , UNDETERMINED}

3: If P has an I/O nondeterministic choice C Then /*Expandable node*/

4: For All options O for C Do /*Backtrack*/

5: P ′ ← P[C← O]

6: If SUPMARKOVIAN(P ′) = INCORRECT Then

7: Return INCORRECT

8: End If

9: End For

10: Else /*P is I/O deterministic*/

11: sP ← SUPTOTALINFO(P)

12: MAXSUP ← max(sP, MAXSUP)

13: If MAXSUP > S Then

14: Return INCORRECT

15: End If

16: End If

17: Return UNDETERMINED

The backtracking algorithm SUPMARKOVIAN performs a depth-first search
on the space of all distributed Markovian non-randomized schedulers (for
an introduction to backtracking algorithms, see [27]). If the algorithm finds

†Note that, with respect to the interleaving scheduler, the restrictions for both locally and
globally Markovian schedulers coincide

6.3 underestimation of probabilities under distributed schedulers 117

a distributed Markovian scheduler yielding probability greater than S, then
it returns INCORRECT. Otherwise, it returns UNDETERMINED. In the search, each
node expansion corresponds to a nondeterministic choice (line 3), and each
branch corresponds to an option in this choice. If the algorithm finds a
value greater than S, then it returns INCORRECT (line 7). Otherwise, the al-
gorithm backtracks by trying another option for the choice (line 4). If none
of the choices can find a value greater than S, then UNDETERMINED is returned
(line 17). In case P is I/O deterministic, the algorithm calculates the supre-
mum value quantifying over all possible interleavings (line 11) and this
value is stored in sP. The greatest value obtained so far is stored in the vari-
able MAXSUP, and so this variable is updated in case sP > MAXSUP (line 12). In
addition, if MAXSUP > S, then the algorithm returns INCORRECT (line 14).

In order to avoid considering all the possible schedulers, we improve this
algorithm by pruning some branches using the branch-and-bound technique.
In this technique, the algorithm calculates an upper bound for the values on
the branch to be explored. If this bound is less than or equal to the maxi-
mum value achieved so far, the algorithm does not explore branch. In our
particular case, each branch corresponds to an option in a nondeterministic
choice. The bound obtained in our algorithm corresponds to the supremum
probability quantifying over all schedulers. We justify the bound using the
following lemma. In the following, let MARKOVIAN(P) denote the set of all MARKOVIAN(P)

distributed non-randomized locally Markovian schedulers for P.

Lemma 6.2.

sup
η∈MARKOVIAN(P ′)

PRη(REACH(U)) 6 sup
η∈SCHEDP ′

PRη(REACH(U)) .

Moreover, if P ′ is obtained from P by successive applications of P[· ← ·], we have

sup
η∈SCHEDP ′

PRη(REACH(U)) 6 sup
η∈SCHEDP

PRη(REACH(U)) .

Proof. The first inequation holds by the set inclusion

MARKOVIAN(P ′) ⊆ SCHEDP ′ .

For the second inequation, we note that each scheduler η ′ for P ′ is also a
scheduler for P. Then,

SCHEDP ⊆ SCHEDP ′

and the lemma follows.

Algorithm 3 uses the procedure PRUNE in order to decide whether a given
branch is pruned. This procedure returns True iff the supremum quantifying
over all schedulers for P is less than or equal to MAXSUP. By Lemma 6.2, for
every P ′ obtained by applying P[· ← ·], we have

sup
η∈MARKOVIAN(P ′)

PRη(REACH(U)) 6 sup
η∈SCHEDP

PRη(REACH(U)) .

So, in case PRUNE returns True we have

sup
η∈MARKOVIAN(P ′)

PRη(REACH(U)) 6 MAXSUP . (6.5)

118 algorithms

Algorithm 3 Discard some fruitless sets of schedulers
1: Global MAXSUP ← −1

2: PRUNE(P) : Boolean

3: tP ← SUPTOTALINFO(P)

4: If tP 6 MAXSUP Then

5: Return True

6: Else

7: Return False

8: End If

9: SUPMARKOVIAN(P) : {INCORRECT , UNDETERMINED}

10: If P has an I/O nondeterministic choice C Then /*Expandable node*/

11: For All options O for C Do /*Backtrack*/

12: P ′ ← P[C← O]

13: If PRUNE(P ′) Then

14: Try next O
15: Else If SUPMARKOVIAN(P ′) = INCORRECT Then

16: Return INCORRECT

17: End If

18: End For

19: Else /*P is I/O deterministic*/

20: sP ← SUPTOTALINFO(P)

21: MAXSUP ← max(sP, MAXSUP)

22: If MAXSUP > S Then

23: Return INCORRECT

24: End If

25: End If

26: Return UNDETERMINED

Note that MAXSUP is either −1 or it is the value yielded by a scheduler in
MARKOVIAN(P). In the former case, we have

sup
η∈MARKOVIAN(P)

PRη(REACH(U)) > MAXSUP ,

and so there is no pruning and this algorithm behaves as the previous one.
For the latter case, we note that MAXSUP is updated only in case a scheduler
yields a value greater than the current MAXSUP (line 21). Hence, Eqn. (6.5)
ensures that the values for the systems P ′ will not alter the value of MAXSUP.
Therefore, the return value of SUPMARKOVIAN is not affected by the values aris-
ing from such P ′. The modified procedure SUPMARKOVIAN profits from this
fact and, as soon as it creates a new system P ′, it checks whether PRUNE(P ′)

returns True. In this case, this system P ′ is disregarded and the algorithm
tries another nondeterministic option (line 14).

6.4 further work

One of the drawbacks of the algorithm in Sec. 6.2 is that the results obtained
are still quite pessimistic. In fact, we have proven that the results obtained
are safe bounds with respect to the projection [·]VP. Intuitively, the algorithm
assumes that, once an atom executes, it is able to see the full history of the
system. We would like to generalize this algorithm to consider projections

6.4 further work 119

other than [·]VP, in such a way that, given a projection [·], the results obtained
are safe estimations for [·] (but not necessarily for other projections [·] ′ such
that [·] v [·] ′).

The generalization to other projections is also a pending task for the algo-
rithm in Sec. 6.3. Contrarily to the algorithm in Sec. 6.2 (for which a practical
application is shown in Chapter 8) we have not used Algorithm 3 in practice.
Some questions will remain open until we have an implementation of the
algorithm. For instance, the real impact of the branch-and-bound optimiza-
tion cannot be measured until we analyse a significant set of existing models
using this technique.

7
P A R T I A L O R D E R R E D U C T I O N

Partial order reduction (POR) [83, 56] is a well-known technique to cope with
the state explosion problem. Given a system and a property, the technique
of partial order reduction yields another system with less transitions. This
decrement in the amount of transitions results in faster analyses, since the
amount of reachable states is thus also decreased.

The reduction exploits the structure of the product model naturally intro-
duced when interleaving the components. The idea is to eliminate redun-
dant states and transitions but keeping some representative ones. Such states
and transitions are representative in the sense that, if a given path of the orig-
inal system is relevant to the property being checked, then a corresponding
path should be found in the reduced system. To ensure that representative
states and transitions remain in the reduced model, the reduced model must
comply with certain conditions [56].

POR for probabilistic model checking of LTL\{NEXT} properties was simul-
taneously introduced in [12] and [57]. In the probabilistic case, states and
transitions in the reduced system must be representative in the sense that,
given a scheduler in the original system, a corresponding scheduler in the re-
duced system must exist. The probabilities of the paths relevant to the prop-
erty being checked must coincide for both schedulers. The works [12, 57]
show that, in the setting of total information schedulers, the reduced model
should meet one extra condition apart from those of the non-probabilistic
case. This condition (call it A5) is quite technical and non-intuitive, and it
has been introduced precisely to not eliminate the behaviour introduced by
non-distributed schedulers.

We take advantage of the fact that, under distributedness assumptions, not
all schedulers need to be preserved in the original system. As a consequence,
condition A5 can be relaxed for distributed schedulers and eliminated for
strongly distributed schedulers.

7.1 partial order reduction and restricted schedulers

The reduced system is constructed by traversing the state space. When ex-
panding a given state, not all the transitions enabled are considered. A set of
transitions, called the ample set, is calculated for each state s, and only tran-
sitions in the ample set are considered during the traversal. POR techniques
impose restrictions on the ample sets to ensure that, for each property, the
reduced system complies with the property iff the original system does.

We focus on the case of LTL properties not containing the next operator.
Given a set AP of atomic propositions and a labelling function L : S→ P(AP),
the set of LTL\{NEXT} formulae are generated by the following grammar.

φ ::= TRUE | l | ¬φ |φ1 ∧ φ2 |φ1Uφ2 ,

where TRUE is a constant and l ∈ AP. For all φ and for all infinite path ρ, we
define ρ |= φ (read ρ satisfies φ) The definition proceeds by induction on φ.

121

122 partial order reduction

• ρ |= TRUE

• ρ |= l ⇐⇒ l ∈ L(ρ(1))

• ρ |= ¬φ ⇐⇒ ρ 6|= φ

• ρ |= φ1 ∧ φ2 ⇐⇒ ρ |= φ1 ∧ ρ |= φ2

• ρ |= φ1Uφ2 ⇐⇒ ∃M : ρ↑m |= φ2 ∧ ∀m <M : ρ(m) |= φ1

Intuitively, an infinite path ρ satisfies φ1Uφ2 (denoted by ρ |= φ1Uφ2) iff
there is a position in ρ in which φ2 holds, and φ1 holds in all intermediate
positions of ρ from the beginning until the position in which φ2 holds.

Note that the verity of ρ |= φ depends only on the trace of ρ, that is, the
sequence TRACE(ρ) = L(ρ(1)) L(ρ(2)) · · · .TRACE

The following abbreviations are usual: Fφ ≡ TRUEUφ, Gφ ≡ ¬F¬φ. The
intuitive meaning of F is that there exists a state in ρ such that φ holds
(Finally, φ holds), while the intuitive meaning of G is that φ holds for all
states in ρ (φ holds Globally). We write PRη(φ) for PRη({ρ | ρ |= φ}).

Since existing model checkers use MDPs, the partial order reduction may
be applied on the MDP underlying a given IPIOA (recall Sec. 6.1). So, we ex-
plain the technique from the point of view of MDPs. Hence, it is convenient
to consider the schedulers for P as if they were schedulers for MDP(P). To
this end, we first explain how to transform a path σ in MDP(P) into a path
IPIOA(σ) in P in the obvious way:

• IPIOA((aINIT, INIT)) = INIT

• IPIOA(σ.(gi, f1, · · · , fN).a.s) = IPIOA(σ).(gi,a, fj1(a), · · · , fjm(a)).s

Because of Theorem 4.1, in the remaining of this chapter we deal only with
I/O non-randomized schedulers, and so we define ηMDP(P) only for I/O non-
randomized η (that is, neither Θ nor Υ have randomized resolutions).

Definit ion 7.1. Given an I/O non-randomized scheduler η for P, we de-
fine the corresponding scheduler ηMDP(P)(σ) for MDP(P) as follows:

ηMDP(P)(σ)(

α︷ ︸︸ ︷
(gi, f1, · · · , fN)) = I(IPIOA(σ))(Ai)

if Θi(IPIOA(σ)) = gi and Υj(IPIOA(σ),a) = fj(a) for all j. Otherwise,

ηMDP(P)(σ)(α) = 0 .

Notation 7.1. Given η ∈ SCHEDP and α ∈ ACTIONS(MDP(P)), we write
η(σ)(α) for ηMDP(P)(IPIOA(σ))(α).

Restrictions on the ample set are based on the notion of independence.
Given an action α = (gi, · · ·), let INV(α) be the set of all atoms involved
in the execution of α. Formally,

INV(α) = {Aj | ∃a ∈ ACTLABj : ∃s, s ′i : gi(s,a, s ′) > 0} .

Definit ion 7.2. We say that two actions α, β are independent iff (∃s :

{α,β} ∈ ACTIONS(s)) =⇒ INV(α)∩ INV(β) = ∅.

7.1 partial order reduction and restricted schedulers 123

So, two actions are independent only if the execution of one of them does
not interfere with the execution of the other one. Note that the order of
execution is irrelevant and that neither of them can disable the other. Notice
also that this definition is of a more structural nature than the one in [12]. For
variable-based IPIOA, we can use a more permissive notion of independence
that allows better reductions, see Sec. 9.1.

We need some additional definitions before presenting the restrictions for
POR. A compound transition α is stutter iff α(s,a, s ′) = 0 for all s such that
α ∈ ACTIONS(s) and s ′ such that L(s) 6= L(s ′), for all a. An end component is a
pair (T ,A) where A : T → P(ACTIONS) and T is a set of states such that:

1. ∅ 6= A(s) ⊆ ACTIONS(s) for all s ∈ T ,

2. α(s,a, t) > 0 implies t ∈ T , for all s∈T , α ∈ A(s), a ∈ ACTLAB

3. for every s, t ∈ T there exists a path from s to t.

The restrictions for the ample sets of [12] to preserve LTL\{NEXT} proper-
ties under unrestricted full-history dependent schedulers are listed below.
Ŝ denotes the set of reachable states in the reduced system P̂ †, which is
constructed by taking AMPLE(s) to be the set of enabled actions in s ∈ Ŝ.

(A1) For all states s ∈ S, ∅ 6= AMPLE(s) ⊆ ACTIONS(s),

(A2) If s ∈ Ŝ and AMPLE(s) 6= ACTIONS(s) then each action α ∈ AMPLE(s) is stutter,

(A3) For each path σ = s.α1.a1.s1.α2. · · · .αn.an.sn.γ · · · in MDP(P) where s ∈
Ŝ and γ is dependent on AMPLE(s) there exists an index 1 6 i 6 n such that
αi ∈ AMPLE(s),

(A4) If (T ,A) is an end component in P̂, then

α ∈
⋂
t∈T

A(t) =⇒ α ∈
⋃
t∈T

AMPLE(t) .

(A5) If s.α1.a1.s1.α2.a2.s2. · · · .αn.an.sn.γ.an+1.sn+1 is a path in MDP(P)

where s ∈ Ŝ, α1, · · · ,αn,γ 6∈ AMPLE(s) and γ is probabilistic (that is, there ex-
ist s ′, a ′, t ′ such that 0 < γ(s ′,a ′, t ′) < 1) then

∣∣AMPLE(s)
∣∣ = 1.

Recall Example 1.4. In order to ease reading, we repeat some of the graph-
ics here. Let’s see to which extent we can reduce the system in Fig. 7.3. For
the sake of simplicity, we identify an action with its generative transition
in case no ambiguity arises. By condition A1, AMPLE(INIT‖) cannot be empty.
Condition A3 prevents the set comprising only the action αT = 1/2h! +1/2t!,
since this action is dependent of gh! and gt!, and these actions cannot be ex-
ecuted without executing αT . Condition A3 also requires ch! to be in the am-
ple whenever ct! is (and vice versa). According to the restrictions taken into
account so far, we have only two candidates: ACTIONS(INIT‖) (i. e. no reduc-
tion) and Ac = {ch!, ct!}. Now, we note that Ac is prevented by condition A5,
since in the initial state we can execute the probabilistic action 1/2h! + 1/2t!
and Ac has two actions. So, according the restrictions in [12, 57], it must be
AMPLE(s) = ACTIONS(s).

If we reduce the system using {ch!, ct!}, we obtain the system in Fig. 7.4.
Note that the total information scheduler in Fig. 7.2 cannot be simulated in

†Since we reduce MDP(P), it would be correct to write M̂DP(P), but is looks quite ugly.

124 partial order reduction

T G

h! t!
1/2 1/2

gh?gt? gt?

INITT
INITGgh? gt?

gh?

s1
Gs1

T

ch ! ct !
s2

Gs2
T

s3
T

gh ! gt !

s3
G s4

Gs4
T

Figure 7.1: T tosses a coin, G

guesses heads or tails

init‖

gh! gt!

1/2 1/2

ch! ct!

h! t!

Figure 7.2: A total information
scheduler

1/21/2

init‖

h! t!
ch ! ct !

ch !ct !

t!
1/2

h!
1/2 t!

1/2
h!

1/2

ch ! ct !

gh !

gh !

gt !

gt !

gt !gh !

Figure 7.3: System P = T ‖ G

înit‖
ch ! ct !

t!
1/2

h!
1/2 t!

1/2
h!

1/2

gh ! gt ! gh ! gt !

gt !gh !

Figure 7.4: A POR based reduction

Figure 7.5: POR and distributed schedulers

the reduced system. In fact, there is no scheduler leading to i_¨ in the re-
duced system. However, the supremum probability considering distributed
schedulers is the same in both systems.

Hence, one may wonder to which extent A5 is needed in case the sched-
ulers are assumed to be distributed, and/or strongly distributed. We show
that A5 can be weakened in case distributed schedulers are assumed, and it
can be disregarded under strongly distributed schedulers. In particular, the
ample AMPLE(INIT‖) = Ac is valid under both settings. In some examples,
this weakening results in better reductions, as shown in Chapter 9.

7.2 an improvement for restricted schedulers

In this section, we present two theorems (one for distributed schedulers,
and the other for strongly distributed ones) to ensure the correctness of our
improved partial order reduction. We also show how these theorems for
distributed schedulers articulate with existing model checking approaches
based on total information. The theorems are stated for simple IPIOA (as de-
fined in Sec. 1.1). The theorem for strongly distributed schedulers admits a
more complicated formulation that allows us to deal with generalized IPIOA
(as in Sec. 1.2). In Sec. 9.1, we show how to use such general formulation in
order to cope with (generalized) IPIOA arising from PRISM models.

Our first theorem concerns distributed schedulers. In this setting of these
schedulers, we can replace A5 by

(A5 ′) If s.α1.a1.s1.α2.a2.s2 · · ·αn.an.sn.γ.an+1.sn+1 is a path in MDP(P) such
that s ∈ Ŝ, α1,· · ·,αn,γ 6∈ AMPLE(s) and γ is probabilistic then ACTIVE(β) =

ACTIVE(β ′), for all β,β ′ ∈ AMPLE(s)

as formalized in the following theorem.

7.3 correctness of our techniques 125

Theorem 7.1. Let φ be an LTL\{NEXT} formula and P be a simple IPIOA. Let P̂ be
a reduction of MDP(P) complying with conditions A1–A4, A5 ′. Then,

sup
η∈DISTP

PRη(φ) 6 sup
η∈SCHED

P̂

PRη(φ) .

In case we assume strongly distributed schedulers, A5 can be disregarded.

Theorem 7.2. Let φ, P be as in Theorem 7.1. Let P̂ be a reduction of MDP(P)

complying with conditions A1–A4. Then,

sup
η∈SDISTP

PRη(φ) 6 sup
η∈SCHED

P̂

PRη(φ) .

Let’s examine the example in Fig. 7.5 in the light of Theorems 7.1 and 7.2.
Let ηw be the scheduler in Fig. 7.2. According to Theorem 7.1, the reduc-
tion in Fig. 7.2 is correct in case distributed schedulers are assumed. How-
ever, in the original system P we have PRη

w
(F i_¨) = 1, while in P̂ we have

PRη(F i_¨) 6 1
2 for all η. This is due to the fact ηw is not distributed. In fact,

the supremum over all distributed schedulers in P is 1
2 , which coincides

with supη∈SCHED
P̂

PRη(F i_¨). Recall now the example in Fig. 2.1 with atoms
T , A, B and Z. We mentioned that the scheduler of Fig. 7.2 is distributed in
this setting. Call this scheduler ηd. If we assume strongly distributed sched-
ulers, the reduction in Fig. 7.4 is allowed, and there is no scheduler yielding
probability 1 in the reduced system. This is correct, since the scheduler ηd

is not strongly distributed. However, if we want to preserve all distributed
schedulers (even those that are not strongly distributed) then condition A5 ′

prevents the reduction in Fig. 7.4, since ch! and ct! are generated by atoms
A and B, resp. This is exactly what we want, since the scheduler ηd is a valid
distributed scheduler for T ‖ A ‖ B ‖ Z, and so a corresponding scheduler
yielding probability 1 must exist in the reduced system.

7.3 correctness of our techniques

The proofs of 7.1 and 7.2 are quite technical and several details are involved.
However, these proofs rely on the same principle as in the non-probabilistic
case. We profit from this similarity to give the reader an overall description
of the proof strategy, so that the reader has a previous knowledge of the
general picture before facing the technical details. In this description, we
assume that the schedulers are non-randomized. In the detailed proof, we
show how to overcome the issues introduced by randomized schedulers.

7.3.1 Overview of the proof

In the non-probabilistic case, the standard argument is as follows. For every
property φ, we need to prove that φ is satisfied in all paths in P if and only
if φ is satisfied in all paths in P̂. Since P̂ is a subgraph of P, one implication
is trivial. For the other implication, the conditions on the reduction are used
to prove that, if some path ρ in P does not satisfy φ, then ρ̂6|=

P̂
φ for some ρ̂.

Similarly, in our case it is sufficient to prove that, for each scheduler η in
the original system, there exists a corresponding η̂ in the reduced system.
The probability values for η and η̂ must coincide for all paths relevant to φ.
We prove that, for each distributed (strongly distributed, resp.) scheduler, there

126 partial order reduction

is a corresponding scheduler in the reduced system that yields the same
probability value. As a consequence, it may be the case that, for some non-
distributed schedulers, there are no corresponding schedulers in the reduced
system. However, this causes no harm since schedulers are assumed to be
distributed.

Given a non-probabilistic system P, let ρ = s1.α1.a1.s2.α2.a2. · · · and φ
such that ρ 6|=

P̂
φ. We sketch how the corresponding path ρ̂ is constructed

in the standard approach. If α1 ∈ AMPLE(s1), then ρ̂ starts with s1.α1.a1
and the construction continues from s2.α2.a2. · · · . On the contrary side, if
α1 6∈ AMPLE(s1), then ρ̂ cannot start with s1.α1.a1, since α1 is not enabled
for s1 in P̂. However, condition A1 ensures that AMPLE(s) 6= ∅. For simplicity,
let’s consider the case in which some β ∈ AMPLE(s1) is eventually executed
in ρ. W.l.o.g., we can take such a β to be the first transition αn in ρ such that
αn ∈ AMPLE(s1). Then, by condition A3 and definition of independence, we
have that ρ ′ = s1.αn.an.s ′2.α1.a1. · · · .s ′n−1.αn−1.an−1.sn.αn+1. · · · is a path
in P. (Here, s ′i denotes the state such that αi−1(s ′i,ai, s

′
i+1) = 1, since the

system is non-probabilistic.) Let `i = L(si) for all i. Then, since A2 requires
the transitions in AMPLE(s) to be stuttering, the sequence L(ρ) of labels in
ρ has the form `1 · · · `n`n`n+2 · · · . Condition A2 can be used to prove that
L(ρ ′) = `1`1`2 · · · . So, since L(ρ) and L(ρ ′) differ only in the amount of
times that each `i appears, and LTL\{NEXT} formulae are stuttering-invariant,
φ 6|=P ρ ′. Having found ρ ′, we let ρ̂ start with s1.αn.an and continue the
construction using s ′2.α1.a1. · · · .s ′n−1.αn−1.an−1.sn.αn+1. · · · . The case in
which no transition β is executed in ρ is similar (see [56]).

In summary, the key step of the construction is to “move” β across the
αi’s so that it executes immediately after s1. In the probabilistic case, we
must deal with schedulers (which have a tree-like structure) instead of mere
paths, and so it is not clear how a transition can be moved. Consider the
scheduler η in Fig. 7.6 and the reduction in Fig. 7.4. The corresponding
scheduler in T̂ ‖ G cannot start with the probabilistic transition 1

2h! + 1
2t!,

since it is not enabled in ÎNIT‖. However, the same probabilistic effect is
obtained by the scheduler η̂ that executes ch! in the first place, as illustrated
in Fig. 7.7. In this figure, ch! is moved across both h! and t!. In the general
case, the transition in the ample set is moved across the transitions in all
branches. Note that, in order to move ch! after INIT, we rely on the fact that
ch! is executed after both h! and t!. In fact, there is no way to transform the
non-distributed scheduler in Fig. 7.2 into a scheduler for the reduced system
in Fig. 7.4, since ch! and ct! are transitions in AMPLE(INIT‖), but ch! is chosen
in one of the branches, while ct! is chosen in the other.

Groesser et al. [12] showed how schedulers for the original system can
be mapped to schedulers in the reduced system. They require condition A5
because the transformation is not possible for some schedulers and some
reductions, even if such reductions comply with A1–A4. However, we show
that a similar transformation can be carried out for all schedulers η comply-
ing with the following condition:

η(σ)(α) ∈ AMPLE(s1) ∧ η(σ ′) ∈ AMPLE(s1) =⇒ η(σ) = η(σ ′) (7.1)

for all σ = s1.α1. · · · .αn−1.sn, σ ′ = s1.α ′1. · · · .α ′n ′−1.s ′n ′ such that the αk’s
and the α ′k’s are independent from AMPLE(s1). Roughly speaking, the first
ample transition must be the same in all branches in which an ample transi-
tion appears.

7.3 correctness of our techniques 127

gh?gh?

init‖

h! t!

ch ! ch !

1/2 1/2

Figure 7.6: A distributed
scheduler

gh?

init‖
ch !

t!
h!

gh?

1/2
1/2

Figure 7.7: The corresponding scheduler
in the reduced system

Next we show how to ensure Eqn. (7.1) in the cases of non-randomized dis-
tributed and strongly distributed schedulers. First, we show that Eqn. (7.1)
holds whenever A5 ′ does and η is distributed. Let I be ∪β∈AMPLE(s1)INV(β)

and let σ, σ ′ be as in (7.1). Since the actions αk (and the actions α ′k) are
independent from all the transitions in AMPLE(s1), we have I ∩ INV(αk) =

I ∩ INV(αk ′) = ∅ for all k. Then, [[σ]]i = [[σ ′]]i = πi(s1) for all Ai ∈ I. By
A5 ′, we have ACTIVE(η(σ)) = ACTIVE(η(σ ′)). Let Ai = ACTIVE(η(σ)) and let Θi
be the output scheduler that defines η. Then, Θi([[σ]]i) = Θi([[σ

′]]i), and so
the generative transition is the same in both η(σ) and η(σ ′). The same argu-
ment can be used to show that the reactive transitions are the same in both
η(σ) and η(σ ′), and so η(σ) = η(σ ′). In conclusion, (7.1) holds whenever the
schedulers are assumed to be distributed and A5 ′ holds.

In case η is strongly distributed, let

Ai = ACTIVE(η(σ)) and Ai ′ = ACTIVE(η(σ ′)) .

Then, if σ, σ ′ are as in (7.1), we have [[σ]]i = [[σ ′]]i and [[σ]]i ′ = [[σ ′]]i ′ .
Since η is strongly distributed, we have Ai = ACTIVE(η(σ ′)) = Ai ′ . Follow-
ing the same reasoning as in the case of distributed schedulers, we have
Θi([[σ]]i) = Θi([[σ

′]]i) and the similarly for input schedulers. So, η(σ) = η(σ ′)

as required.
The bottom line is that the restrictions imposed to schedulers (together

with A5 ′, in case distributed schedulers are assumed) allow to transform
every scheduler in P into a scheduler in P̂ without requiring A5.

7.3.2 Proof of the correctness theorems

We prove Theorem 7.2 using a generalized notion of independence. This
generalization allows us to consider independence relations that are specific
for some classes of IPIOA. Particularly, in Chapter 9, we consider an inde-
pendence relation for IPIOA in which the state of the system is given by a
set of variables.

In our proof, the notion of independence is very close to the notion of
projection, and our generalization concerns not only the independence rela-
tion but also the projection under which the schedulers are assumed to be
distributed.

Remark 7.1. We prove a variation on Theorem 7.2 that holds for projections
other than [[·]] and independence relations other than the one in Def. 7.2. On
the contrary, we prove Theorem 7.1 without further generalization, that is, it
holds for the independence relation in Def. 7.2 and the projection [[·]].

128 partial order reduction

In addition to the projections for atoms used throughout the thesis, we
need to introduce projections for each action α.

Definit ion 7.3. Given an action α, a pair (πα,π¬α) with πα : SP → SαP
and π¬α : SP → S¬α

P is called an α-projection if there exists a bijection h :

SP → SαP × S¬α
P such that h(s) = (πα(s),π¬α(s)). Given a state s, we write

(sα, s¬α) for (πα(s),π¬α(s)) = h(s). Moreover, we identify s and h(s), thus
yielding s = (sα, s¬α).

Given a state s, sα represents the portion of the state affected by the ex-
ecution of α, and s¬α represent the portion that remains unaffected. Recall
that INV(α) is the set of atoms Ai such that α outputs a label in ACTLABi.
Then, a very natural α-projection can be obtained using INV(α). Later on, we
use these α-projections, and we find them closely related to [[·]]. Hence, we
denote the functions as πα,[[·]] .

Definit ion 7.4. For all α, let πα,[[·]]((s1, · · · , sN)) = (si1 , · · · , sim) with
{Ai1 , · · · ,Aim} = INV(α) and π¬α,[[·]]((s1, · · · , sN)) = (sj1 , · · · , sjm ′) with
{Aj1 , · · · ,Ajm ′ } = INV(α).

Note that Sα,[[·]] =
∏
Ai∈INV(α) Si and S¬α,[[·]] =

∏
Ai 6∈INV(α) Si. Hence, the

bijection from SP =
∏
Ai

Si to
∏
Ai∈INV(α) Si ×

∏
Ai 6∈INV(α) simply reorders a

tuple.
The generalization to projections other than [[·]] and independence rela-

tions other than the one in Def. 7.2 is possible only if the projections and the
relations comply with certain conditions. Such conditions also involve a set
of α-projections being suitable for the projection and the relation under con-
sideration. If the independence relation, the α-projections and the projection
comply with these conditions, they form an independence structure.

Definit ion 7.5. An independence structure for a system P is a triple

(RI, {(πα,π¬α)}α∈ACTIONS, [·])

where RI is a symmetric relation (called the independence relation) and, for
each α, (πα,π¬α) is an α-projection. If αRI β, we require:

1. α(s,a, s ′) > 0 =⇒ (β ∈ ACTIONS(s ′) ⇐⇒ β ∈ ACTIONS(s))

2. α((sα, s¬α) , a , (s ′α, s ′¬α)) > 0 =⇒ s¬α = s ′¬α . Intuitively, α can
only change the portion of the state modelled by Sα.

3. β((sα, s¬α) , a , (s ′α, s ′¬α)) > 0 =⇒ sα = s ′α Intuitively, since β is
independent from α, it cannot change the part of the state changed by
α. Together with the previous property, we obtain the following result:
let αkRI β for all k = 1, · · · ,n, then

σ = s0.α1.a1.s1. · · · .αn.an.sn.β.a.sn+1

=⇒ ∃sβ, s ′β, s0
¬β

, · · · , sn
¬β

:

σ = (sβ, s0
¬β

).α1.a1.(sβ, s1
¬β

)

· · · .αn.an.(sβ, sn
¬β

).β.a.(s ′β, sn
¬β

)

(7.2)

This implication reflects the fact that none of the αk can change the
part of the state changed by β, and that β can change only the part

7.3 correctness of our techniques 129

of the state corresponding to sk
β

. We make explicit another similar
implication:

σ = s0.β.a.s1.α1.a1.s2. · · · .αn.an.sn+1

=⇒ ∃sβ, s ′β, s0
¬β

, · · · , sn
¬β

:

σ = (sβ, s0
¬β

).β.a.(s ′β, s0
¬β

).α1.a1.(s ′β, s1
¬β

)

· · · .αn.an.(s ′β, sn
¬β

)

(7.3)

4.

α((sα, s¬α) , a , (s ′α, s¬α)) ·β((s ′α, s¬α) , b , (s ′α, s ′′¬α))

= β((sα, s¬α) , b , (sα, s ′′¬α)) ·α((sα, s ′′¬α) , a , (s ′α, s ′′¬α) .

That is, the order of α and β can be exchanged yielding the same
probabilities.

5. If αRI β, then ACTIVE(α) 6= ACTIVE(β).

6. If αkRI β for all 1 6 k 6 n, then
[
σ.α1.a1.s1. · · · .αn.an.sn

]
i
= [σ]i for

all Ai such that Ai ∈ AFFECT(β), where

AFFECT(β) = {Aj | ∃s,a ∈ ACTLAB(β) :
∣∣Rj(s,a)

∣∣ > 1}∪ {ACTIVE(β)} .

This set comprises all the atoms whose schedulers might change the
probability that β is scheduled. Note that, if

∣∣Rj(s,a)
∣∣ = 1 and β out-

puts a, then Aj does not choose how to react to a (since there is only
one option), and so Aj does not affect the probability that β is exe-
cuted.

By imposing this restriction, the schedulers of the atoms in AFFECT(β)

cannot change the probability for β by looking to the actions αk inde-
pendent from β.

7. If LAST(σ) = (sβ, s¬β), then[
σ.α1.a1.(sβ, s1

¬β
) · · ·αn.an.(sβ, sn

¬β
)
]
i

6=
[
σ.α ′1.a ′1.(sβ, s ′1

¬β
) · · ·α ′n ′ .a ′n ′ .(sβ, s ′n

′¬β
)
]
i

=⇒ [
σ.β.a.(tβ, s¬β).α1.a1.(tβ, s1

¬β
) · · ·αn.an.(tβ, sn

¬β
)
]
i

6=
[
σ.β.a.(t ′β, s¬β).α ′1.a ′1.(t ′β, s ′1

¬β
) · · ·α ′n ′ .a ′n ′ .(t ′β, s ′n

′¬β
)
]
i

(7.4)

Any reasonable projection should comply with this condition: we need
to require it explicitly since our definition of projection is very general.
It says that, if a transition is inserted in two distinguishable paths (that
is, in two paths having different projections), then the resulting paths
are still distinguishable. In usual projections, the information available
to an atom comprises the information (if any) that each of the transi-
tions allows the atom to observer: the more the number of transitions,
the more the information available, and so the insertion of a transition
cannot turn two distinguishable paths to be undistinguishable.

130 partial order reduction

8. Let LAST(σ) = (sβ, s¬β). For all Ai, for all

σ1 = σ.α1.a1.(sβ, s1
¬β

) · · ·αn.an.(sβ, sn
¬β

).β.a.(tβ, sn
¬β

)

.γ1.b1.u1. · · · .γm.bm.um

σ2 = σ.α ′1.a ′1.(sβ, s ′1
¬β

) · · ·α ′n ′ .a ′n ′ .(sβ, s ′n
′¬β

).β.a.(t ′β, s ′n
′¬β

)

.γ ′1.b ′1.u ′1. · · · .γ ′m
′
.b ′m

′
.u ′m

′

(with possibly m = 0 and/or m ′ = 0) such that
[
σ1
]
i
6=
[
σ2
]
i
, it must

be [
σ.β.a.(tβ, s¬β).α1.a1.(tβ, s1

¬β
) · · ·αn.an.(tβ, sn

¬β
)

.γ1.b1.u1. · · · .γm.bm.um
]
i

6=
[
σ.β.a.(t ′β, s¬β).α ′1.a ′1.(t ′β, s ′1

¬β
) · · ·α ′n ′ .a ′n ′ .(t ′β, s ′n

′¬β
)

.γ ′1.b ′1.u ′1. · · · .γ ′m
′
.b ′m

′
.u ′m

′]
i

Intuitively, if two paths can be distinguished, then they remain distin-
guishable if β is moved after σ in both paths.

Let RINV
I denote the independence relation in Def. 7.2. Then:

The proofs of all the
remaining lemmata
are in Appendix C

Lemma 7.1. For all simple IPIOA P, the triple (RINV
I , {(πα,[[·]] ,π¬α,[[·]])}α, [[·]]) is

an independence structure.

We prove Theorem 7.2 by proving the variation below. Note that it uses
a general independence structure, and it requires the projection to be trace-
able.

Theorem 7.3. Let φ be an LTL\{NEXT} formula, P be an (extended) IPIOA, [·]
be traceable, and (RI, {(πα,π¬α)}α, [·]) be an independence structure. Let P̂ be a
reduction of MDP(P) complying with conditions A1–A4, by taking the independence
relation to be RI. Then,

sup
η∈SDISTP([·])

PRη(φ) 6 sup
η∈SCHED

P̂

PRη(φ) .

Since the projection [[·]] is not traceable, Theorem 7.2 is not a particular
case of Theorem 7.3. First, we show that Theorem 7.3 implies Theorem 7.2,
and then we focus on the proofs of Theorems 7.1 and 7.3. Recall that the full-
communication version of a projection (Def. 4.7) is traceable (Theorem 4.5).
The first step in the proof of Theorem 7.2 is to show that |[[·]]| also yields an
independence structure.

Lemma 7.2. For all simple IPIOA P, the triple (RINV
I , {(πα,[[·]] ,π¬α,[[·]])}α, |[[·]]|) is

an independence structure.

Note that, according to Lemma 7.2, the functions πα,[[·]] for [[·]] are also
suitable for the full-communication version |[[·]]|.

Proof of Theorem 7.2 (Assuming Theorem 7.3). Let φ, P and P̂ be as in Theo-
rem 7.2. By considering the independence structure in Lemma 7.2 we are
under the hypothesis of Theorem 7.3, since Theorem 4.5 ensures that |[[·]]| is

7.3 correctness of our techniques 131

a traceable projection, and simple IPIOA are a particular case of generalized
IPIOA Subsection 1.2.3. Hence, Theorem 7.3 (applied to |[[·]]|) yields

sup
η∈SDISTP(|[[·]]|)

PRη(φ) 6 sup
η∈SCHED

P̂

PRη(φ) .

Theorems 4.4 and 2.3 give

sup
η∈SDISTP

PRη(φ) 6 sup
η∈SDISTP(|[[·]]|)

PRη(φ) ,

and so

sup
η∈SDISTP

PRη(φ) 6 sup
η∈SCHED

P̂

PRη(φ) ,

which is what we want to prove.

The proof of Theorems 7.1 and 7.3 starts by formally defining the transfor-
mation on schedulers discussed in Subsection 7.3.1. In the general case, the
transformation takes a global path σs and a scheduler η, and yields a sched-
uler η ′ such that η ′(σs)(β) = 1 for some β ∈ AMPLE(LAST(σs)). This scheduler
is denoted by η[σs ← β]. Intuitively, the transformation obtains η[σs ← β]

by moving β across the actions that η schedules before β. In Subsection 7.3.1,
we discussed the case of non-randomized schedulers and, in order to carry
the transformation out, we imposed a restriction on the schedulers (namely,
Eqn. (7.1)). Now, we impose restrictions on randomized schedulers.

In Sec. 4.1 we have seen that input and output schedulers can be trans-
formed into non-randomized schedulers without increasing/decreasing the
probability of the property being checked (Lemma 4.3 and Lemma 4.4).
Hence, we can assume that the schedulers are I/O non-randomized (that
is, the input and output schedulers are non-randomized). In addition to this
assumption, we show that we can restrict to schedulers complying with a
generalization of Eqn. (7.1). In this restriction, we require the action in the
ample set to be chosen with probability 1.

η(

σ︷ ︸︸ ︷
σs.α1.s1. · · · .αn.sn)(β) > 0 ∧ β ∈ AMPLE(LAST(σs))

∧ η(

σ ′︷ ︸︸ ︷
σs.α ′1.s ′1. · · · .α ′n

′
.s ′n

′
)(β ′) > 0 ∧ β ′ ∈ AMPLE(LAST(σs))

=⇒ η(σ) = η(σ ′) = 1 :β = 1 :β ′

(7.5)

where αk,αk
′ 6∈ AMPLE(LAST(σs)) for all k, k ′, and σs is the path to which we

apply the transformation, that is, we want η[σs ← β](σs)(β ′′) = 1 for some
β ′′ ∈ AMPLE(LAST(σs)).

Since the schedulers we are dealing with are I/O non-randomized, in or-
der to get η(σ)(β) = 1 it suffices to ensure I(σ)(ACTIVE(β)) = 1. For the
proof of Theorem 7.1 (concerning distributed schedulers), we can assume
that the interleaving scheduler is non-randomized (Theorem 4.1). By prop-
erty (6) of independence structures (Def. 7.5), we have [σ]i = [σ ′]i = [σs]i for
all Ai ∈ AFFECT(β). Moreover by A5 ′, we have ACTIVE(β) = ACTIVE(β ′). Using
these equalities, and the fact that η is distributed, we deduce β = β ′ in the
same way as we did for Eqn. (7.1). Note that, in order to make Eqn. (7.5)
hold, the restriction η ∈ DISTP([·]) is unnecessarily strong: in fact, Eqn. (7.5)
holds if Θi(σ) = Θi(σ

′) for all σ, σ ′ such that [σ]i = [σ ′]i and σs v σ, σs v σ ′
(and similarly for input schedulers). This motivates the following definition.

132 partial order reduction

Definit ion 7.6. We say that a scheduler η = (I, {Θi}i, {Υi}i) ∈ SCHEDP is
distributed after σs iff for all Ai, Θi(σ) = Θi(σ

′), Υi(σ,a) = Υi(σ
′,a) when-

ever σ,σ ′ comply with [σ]i = [σ ′]i and σs v σ, σs v σ ′.
We say that a scheduler η ∈ SCHEDP is strongly distributed after σs iff η is

distributed after σs and for all Ai, Aj,

I(σ)(Ai)

I(σ)(Ai) + I(σ)(Aj)
=

I(σ ′)(Ai)

I(σ ′)(Ai) + I(σ ′)(Aj)

whenever σ,σ ′ comply with PRη((σ)↑) > 0, PRη((σ ′)↑) > 0 [σ]i = [σ ′]i, [σ]j =

[σ ′]j and σs v σ, σs v σ ′.

In the setting of strongly distributed schedulers we have seen that ran-
domized resolutions of nondeterminism add expressive power to interleav-
ing schedulers (Subsection 4.2.1), and so we cannot ensure that the action
β in the ample set is scheduled with probability 1 in η, as required by (7.5).
Next, we present a lemma allowing us to assume that strongly distributed
schedulers after σs comply with Eqn. (7.5).

Lemma 7.3. Let S be a measurable set of infinite paths, let [·] be a traceable projec-
tion and

A = {A ∈ ATOMS(P) | ∃α ∈ AMPLE(LAST(σs)) : A = ACTIVE(α)} .

If η = (I, {Θi}i, {Υi}i) is strongly distributed after σs under [·], then there exists
Ai∗ ∈ A, η∗ = (I∗, {Θi}i, {Υi}i) such that all the following properties hold:

I. PRη
∗
(S) > PRη(S)

II. η∗ is strongly distributed after σs

III. for all Aj ∈ A, σ ′ w σs, we have

PRη
∗
((σ ′)

↑
) > 0 ∧ I∗(σ ′)(Aj) > 0

=⇒ ∃σ ′′ : σs v σ ′′ v σ ′ ∧ I∗(σ ′′)(Ai∗) = 1

IV. for all σ, either I∗(σ) = I(σ) or I∗(σ)(Aj) = 1 for some Aj. Moreover
η∗(σ) = η(σ) for all σ such that σs 6v σ.

We show how that the scheduler η∗ complies with Eqn. (7.5). Let η∗ be as
in the previous lemma, and let σ, σ ′, β, β ′ be as in Eqn. (7.5). Since β (β ′,
resp.) is in the ample set, property (5) of independence structures implies
that β is the first action in σ generated by ACTIVE(β) after σs (otherwise, if
ACTIVE(αk) = ACTIVE(β) for some k then, by (5) implies αk 6 RIβ, thus con-
tradicting A3). The same holds for β ′, σ ′, ACTIVE(β ′). Moreover, β (β ′, resp.)
is the first action in the ample executed after σs (recall that, in Eqn. (7.5),
we have αk,αk

′ 6∈ AMPLE(LAST(σs))). Since ACTIVE(β), ACTIVE(β ′) ∈ A, prop-
erty (III) ensures that ACTIVE(β) = ACTIVE(β ′) = Ai∗ and so

I∗(σ)(ACTIVE(β)) = I∗(σ ′)(ACTIVE(β ′)) = 1 .

The choice of the interleaving scheduler coincides for both paths. The choices
of the output and input schedulers coincide, since η∗ is distributed after σs

((II)), and so the argument for distributed schedulers applies here as well.
Then, η∗(σ) = 1 :β = 1 :β ′.

7.3 correctness of our techniques 133

So far we have shown that, under the hypotheses of Theorems 7.1 and 7.3,
we can assume that Eqn. (7.5) holds. Note that Eqn. (7.5) does not require
an action in AMPLE(LAST(σs)) to be chosen by η (it requires that, if an action
in the ample set is chosen, then the same action must be chosen in σ, σ ′).
Given η and σs, if there exists β as in Eqn. (7.5), we define η[σs ← β] in such
a way that η[σs ← β](σs)(β) = 1. If no such β exists, we define η[σs ← β ′′]

in such a way that η[σs ← β](σs)(β ′′) = 1, for some β ′′ ∈ AMPLE(LAST(σs)).
Hence, it suffices to define η[σs ← β] for all η, σs, β ∈ AMPLE(LAST(σs))

such that Eqn. (7.5) holds and

η(σ.α1.s1. · · · .αn.sn)(β ′) = 1 ∧ β ′ ∈ AMPLE(LAST(σs)) =⇒ β ′ = β

whenever αk 6∈ AMPLE(LAST(σs)), and β ′ ∈ AMPLE(LAST(σs)).
The scheduler η[σs ← β] is defined using a correspondence among paths.

To each path in η we assign a set of paths, as illustrated in Fig. 7.8. First,
we explain the figure, and then we give a formal definition of the correspon-
dence C. If β occurs in a path σ, then C(σ) is a singleton set {σ ′}, where
σ ′ coincides with σ except for the fact that β is chosen after σs. Consider
the path σ = σs.α1.a1.s1. · · · .αn.an.sn.β.sn+1 in Fig. 7.8. From the implica-
tion (7.2), we have

σ = σs.α1.a1.(sβ, s1
¬β

). · · · .αn.an.(sβ, sn
¬β

).β.a.(s ′β, sn
¬β

) .

In the figure, the x-lines represent changes arising from the execution of the
actions αk: in other words, these lines represent the sequence s1

¬β · · · sn¬β
.

The dotted lines (as well as the dashed lines) represents changes arising from
the execution of β: it represents the transition from sβ to s ′β. The dashed
line represents another possible outcome of β. A different outcome of α1

may lead to a different extension of σs: this extension is represented as an o-
line. Note that the arrow comprising the x-line and the dotted line in η maps
to the path σ ′ in which the outcome of β are the dots, and σ ′ continues with
x. The same happens for all possible combinations of x, o, dots and dashes.
In the lowermost path σl, the action β does not occur. For such paths, we
define the set C(σl) as

{ σs.β.a1.(s1
β

, s1
¬β

). · · · .(s1
β

, sn
¬β

)

σs.β.a2.(s2
β

, s1
¬β

). · · · .(s2
β

, sn
¬β

)

· · ·
σs.β.aQ.(sQ

β
, s1

¬β
). · · · .(sQ

β
, sn

¬β
) }

where all the aq, sq
β

are possible outcomes of β. In the figure, the path
made up of + maps to a set comprising

• a path comprising a +-line (representing the sequence s1
¬β · · · sn¬β

)
and a dotted line (representing the outcome a1, s1

β
) and

• a path comprising a + line and a dashed line (representing another
outcome of β).

Definit ion 7.7. Let LAST(σs) = s = (sβ, s¬β) for some β ∈ AMPLE(s), and
let α1 · · ·αn 6∈ AMPLE(s). Then,

1. If σ is of the form

134 partial order reduction

•
•

•

ℓ
n

,·
·
·
,ℓ

2

α
n

,·
·
·
,α

2

•

ℓ
3
,·
·
·
,ℓ

n
−

1

α
2
,·
·
·
,α

n
−

1
α

n

x
x

x
x

x
x

x
x

•

β
.
.
.
.
.
.
.
.
.
.

ℓ
n

ℓ
2

ℓ
n

•
•

•
•

α
1

x
x
x
x
x
x
x
x

o
o
o
o
o
o
o
o

+
+
+
+
+
+
+
+

•
               

•
•

ℓ
′ n
′
,·
·
·
,ℓ

′ 2

α
′ n
′
,·
·
·
,α

′ 2

ℓ
1

•
σ
∗

•

α
1

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x

o
o

o
o

o
o

o
o

+
+
+
+
+
+
+
+
+
+
+

•
o

o
o

o
o

o
o

o
•

β
.
.
.
.
.
.
.
.
.
.

•

β
.

.

.

.

.

.

.

.

.

•
σ
∗

ℓ
1

•
•

•
ℓ
1

•
•

•

α
1

x
x
x
x
x
x
x
x

o
o
o
o
o
o
o
o

+
+
+
+
+
+
+
+

•

ℓ
′ 3
,·
·
·
,ℓ

′ n
′
−

1

α
′ 2
,·
·
·
,α

′ n
′

•
ℓ
1

ℓ
′ 2

ℓ
′ n
′

•
•

ℓ
′ n
′
,·
·
·
,ℓ

′ 2

α
′ n
′
,·
·
·
,α

′ 2

Figure 7.8: Mapping paths in η to paths starting with β

7.3 correctness of our techniques 135

σs.α1.a1.(sβ, s1
¬β

). · · · .αn.an.(sβ, sn
¬β

) /α.

we define

C(σ) = {σs.β.a.(s ′β, s¬β).α1.a1.(s ′β, s1
¬β

). · · · .αn.an.(s ′β, sn
¬β

)

| β(s,a, (s ′β, s¬β)) > 0} .

We consider the case in which σ = σs as a particular case of this one.
So,

C(σs) = {σs.β.a.(s ′β, s¬β) | β(s,a, (s ′β, s¬β)) > 0} .

In the following, we write σ ∼ /α. to indicate that σ has the form of σ ∼ /α.

the path marked with /α. above.

2. If σ is of the form

σs.α1.a1.(sβ, s1
¬β

). · · · .αn.an.(sβ, sn
¬β

).β.a.(s ′β, sn
¬β

) /αβ.

then

C(σ) = {σs.β.a.(s ′β, s¬β).α1.a1.(s ′β, s1
¬β

). · · · .αn.an.(s ′β, sn
¬β

)} .

(Note that, in this case, C(σ) is a singleton set.)

In the following, we write σ ∼ /αβ. to denote that σ has the form of
the path marked with /αβ. above.

3. If σ is of the form

σs.α1.a1.(sβ, s1
¬β

). · · · .αn.an.(sβ, sn
¬β

).

β.a.(s ′β, sn
¬β

).γ1.b1.t1. · · · .γm.bm.tm /αβγ.

then

C(σ) = {σs.β.a.(s ′β, s¬β).α1.a1.(s ′β, s1
¬β

). · · · .αn.an.(s ′β, sn
¬β

)

.γ1.b1.t1. · · · .γm.bm.tm }.

(Again, C(σ) is a singleton set.)

In the following, we write σ ∼ /αβγ. to denote that σ has the form
of the path marked with /αβγ. above.

4. If σs 6v σ, we define C(σ) = {σ}.

In the following, we write σ ∼ /¬σs. to indicate that σs 6v σ.

We write σ 6∼ /α. to denote σ ∼ /αβ. or σ ∼ /αβγ. or σ ∼ /¬σs. . σ 6∼ /α.

Prior to the definition of η[σs ← β] in terms of C, we need to discuss
some properties of C. If neither σ ′ nor σ ′′ are of the form /αβ. , we have
C(σ ′)∩ C(σ ′′) = ∅ whenever σ ′ 6= σ ′′. In fact, the following lemma holds by
definition of C.

Lemma 7.4. Let σ ′, σ ′′ be such that, σ ′ 6= σ ′′, PRη((σ ′)↑) > 0, PRη((σ ′′)↑) > 0.
Then, C(σ ′)∩ C(σ ′′) 6= ∅ implies σ ′ ∼ /α. (or, symmetrically, σ ′′ ∼ /α.) and

σ ′′ = σ ′.β.a.(s ′β, sn
¬β

) (resp., σ ′ = σ ′′.β.a.(s ′β.sn
¬β

)) for some s ′β. Note that
σ ′′ ∼ /αβ. (resp., σ ′ ∼ /αβ.). For such σ ′, σ ′′, we have C(σ ′)∩C(σ ′′) = C(σ ′′)

(resp. C(σ ′)∩ C(σ ′′) = C(σ ′)).

136 partial order reduction

Then, the definition of η[σs ← β] goes as follows.

Definit ion 7.8.

η[σs ← β](σ) =



1 :β if σ = σs

η(σ ′) if there exists σ ′ 6∼ /α.

complying PRη((σ ′)↑) > 0 and C(σ ′) = {σ}

η(σ ′′) if the previous case does not hold,

and there exists σ ′′ ∼ /α. complying

PRη((σ ′′)↑) > 0 and σ ∈ C(σ ′′)

In order to explore the subtleties of the definition, consider the case in
which both σ ′ and σ ′′ exist. In this case, according to Lemma 7.4 we have
σ ′ ∼ /αβ. and σ ′′ ∼ /α. . Then, the restriction “if the previous case does
not hold” gives the preference to σ ′ (instead of σ ′′) Note that σ is of the
form σs.β.a.(s ′β, s¬β).α1 · · · (s ′β, sn

¬β
), and so the preference for σ ′ results

in

η[σs ← β](σs.β.a.(s ′β, s¬β).α1 · · · (s ′β, sn
¬β

))

= η(σs.α1 · · · (sβ, sn
¬β

).β.a.(s ′β, sn
¬β

) ,

as desired. On the contrary, a preference for σ ′′ (which is of the form /α.)
would define η[σs ← β](σs.β.a.(s ′β, s¬β).α1 · · · (s ′β, sn

¬β
)) as 1 :β, which is

clearly incorrect since this occurrence of β has been already executed in σ.
In rigor, Def. 7.8 does not define the scheduler completely since, for certain

paths, there might be the case that neither σ ′ nor σ ′′ exists. However, given
two schedulers η ′, η ′′ as in Def. 7.8, the following lemma implies that η ′ and
η ′′ differ only for paths with zero probability.

Lemma 7.5. Let η[σs ← β] be as in Def. 7.8. If PRη[σs←β]((σ)↑) > 0 then either
σ = σs or there exists σ ′ such that σ ∈ C(σ ′) and PRη((σ ′)↑) > 0.

The definition of η[σs ← β] allows to define a scheduler such that η[σs ←
β](σs) = 1 :β for some β ∈ AMPLE(LAST(σs)). In order to obtain a scheduler
in the reduced system, the transformation from η to η[σs ← β] must be
carried out until only actions in the reduced system are chosen in all paths.
Suppose that η(INIT)(α) > 0 for some α 6∈ AMPLE(INIT). Then, we obtain
the scheduler η ′ = η[INIT ← β] for some β ∈ AMPLE(INIT). Now, it may
be the case that η ′(INIT.β.a.s ′)(α) > 0 for some α 6∈ AMPLE(s ′), and so the
transformation must be carried out again for the path INIT.β.a.s ′. Recall that
the transformation can be carried out only if condition (7.5) holds. This is
ensured by the following lemma.

Lemma 7.6. Let P be a IPIOA, and (RI, {(πα,π¬α)}α, [·]) be an independence
structure such that either:

1. P is a simple IPIOA, η is distributed after σs and (RI, {(πα,π¬α)}α, [·]) =

(RINV
I , {(πα,[[·]] ,π¬α,[[·]])}α, [[·]]) or

2. η is strongly distributed after σs and [·] is traceable.

7.3 correctness of our techniques 137

For all σ ′ = σs.β.a.s with PRη[σs←β]((σ ′)↑) > 0, the scheduler η[σs ← β] is
distributed (in case (1)) or strongly distributed (in case (2)) after σ ′.

In order to prove that two schedulers (in our case, η and η[σs ← β])
yield the same probability for an LTL\{NEXT} property, we use the concept of
stuttering-invariant cylinder. Given n sets of labels `1 · · · `n ∈ P(AP) such
that `k 6= `k+1, the stuttering-invariant cylinder CYL(`+1 , · · · , `+n) is defined
as the set of infinite paths ρ such that ρ has a finite prefix σ complying

∃k1 > 0, · · · ,kn > 0 : TRACE(σ) =

k1 times︷ ︸︸ ︷
`1 . . . `1 · · ·

kn times︷ ︸︸ ︷
`n . . . `n .

For such a σ, we write σ ∼ `+1 , · · · , `+n . σ ∼ `+1 , · · · , `+n
The key of the correctness proof is the following lemma.

Lemma 7.7. For all cylinders CYL(`+1 , · · · , `+n),

PRη(CYL(`+1 , · · · , `+n)) = PRη[σs←β](CYL(`+1 , · · · , `+n)) .

Using Lemma 7.7, we can prove Theorems 7.1 and 7.3 by resorting to the
same argument as in [12].

Proof
of Theorems 7.1
and 7.3

Proof of Theorems 7.1 and 7.3. We prove the theorems by proving

∀η ∈ DISTP([·]) : ∃η ′ ∈ SCHED
P̂

: PRη
′
(φ) > PRη(φ)

(for Theorem 7.1) and

∀η ∈ SDISTP([·]) : ∃η ′ ∈ SCHED
P̂

: PRη
′
(φ) > PRη(φ)

(for Theorem 7.3).
From standars arguments in measure theory, it suffices to prove that,

for all schedulers η ∈ DISTP([·]) (η ∈ SDISTP([·]), resp.) there exists η ′ ∈
SCHED

P̂
such that PRη

′
(CYL(`+1 , · · · , `+n)) > PRη(CYL(`+1 , · · · , `+n)) for all cylin-

der CYL(`+1 , · · · , `+n).
Given η, we construct a sequence of schedulers ηn with η0 = η. Then,

we construct η ′ using the schedulers ηn. Such schedulers comply with the
following properties:

∀σ : LEN(σ) 6 n =⇒ ∃β ∈ AMPLE(LAST(σ)) : ηn(σ) = 1 :β (7.6)

PRηn(CYL(`+1 , · · · , `+n)) > PRη(CYL(`+1 , · · · , `+n)) (7.7)

ηn is distributed (strongly distributed, resp.) after σs (7.8)

for all σs of length n+ 1 such that PRηn(σs) > 0.
In order to obtain the scheduler ηn+1 from ηn, we construct schedulers

ηn,S, where S is a finite set of finite paths of length n + 1. The scheduler
corresponding to the empty set is defined as ηn,∅ = ηn. Given ηn,S and a
path σs such that σs 6∈ S, LEN(σs) = n+ 1 and PRηn,S(σs) > 0, we obtain the
scheduler ηn,S∪{σs}.

138 partial order reduction

The following explanations, concerning the construction of ηn,S∪{σs} from
ηn,S, are intended to be a summary of the arguments motivating the def-
initions and lemmata before this proof. In the case of strongly distributed
schedulers, we apply Lemma 7.3 to ηn,S, in order to obtain a scheduler η∗.
In the case of distributed schedulers, we simply let η∗ = ηn,S. As explained
right after Lemma 7.3, condition (7.5) holds for η∗, and so we can define
ηn,S∪{σs} = η∗[σs ← β].

Starting from ηn,∅, this construction can be repeated until we reach a set
Sn such that Sn comprises all paths of length n+ 1 with positive probability
in ηn,Sn (the construction finishes, since there are finitely many paths of
length n+ 1). Then, we define ηn+1 = ηn,Sn .

The properties (7.6), (7.7) required for ηn+1 hold by the following proper-
ties for the schedulers ηn,S: by definition,

ηn,S(σ) = 1 :β

for some β ∈ AMPLE(LAST(σ)) for all σ ∈ S. By Lemma 7.7 and property (I)
in Lemma 7.3

PRηn,S∪{σs}(CYL(`+1 , · · · , `+n)) = PRη
∗[σs←β](CYL(`+1 , · · · , `+n))

= PRη
∗
(CYL(`+1 , · · · , `+n)) > PRηn,S(CYL(`+1 , · · · , `+n)) .

It remains to check property (7.8). In the case of distributed schedulers
η∗ = ηn,S and so, by inductive hypothesis, η∗ is distributed after σ for all
σ ∈ S. From Lemma 7.6, we get that ηn,S is distributed after σ ′′, for every
path σ ′′ of length n+ 2 such that σ ′ < σ ′′ for some σ ′ in S. In the case of
strongly distributed schedulers, by Lemma 7.3, property (II), η∗ is strongly
after σs. Since the scheduler obtained using Lemma 7.3 only changes suffixes
of σs (property (IV)), η∗ is strongly distributed after σ for all σ ∈ S ∪ {σs}.
Again, from Lemma 7.6, we get that ηn,S is strongly distributed after σ ′′,
for every path σ ′′ of length n+ 2 such that σ ′ < σ ′′ for some σ ′ in S. Then,
property (7.8) holds for ηn+1 since, for all paths of length n+ 2 having pos-
itive probability in ηn+1, there exists a prefix of length n+ 1 with positive
probability in ηn,Sn = ηn+1.

The schedulers ηn are used to construct a scheduler for the reduced sys-
tem. Let η ′ be the scheduler defined as η ′(σ) = ηLEN(σ)(σ). From prop-
erty (7.6), we get η ′(σ) = 1 :β for some β ∈ AMPLE(LAST(σ)) for all σ. Then
η ′ ∈ SCHED

P̂
.

It remains to prove PRη
′
(CYL(`+1 , · · · , `+n)) > PRη(CYL(`+1 , · · · , `+n)). As ex-

plained in [12, 86], property (7.7) is not sufficient to conclude

PRη
′
(CYL(`+1 , · · · , `+n)) > PRη(CYL(`+1 , · · · , `+n)) . (7.9)

Here, we simply recall the arguments in [12, 86]. Consider the system A ‖ B
in Fig. 7.9 and the formula φ = F ï̂. If η(INIT) = α and AMPLE(INIT) = {β},
then the scheduler η ′ chooses β for all the paths, and so PRη(φ) = 1, while
PRη

′
(φ) = 0. However, the ample set {β} violates condition (A4), since INIT

and α form an end component and β is enabled in INIT. Note that, in this
case, the path INIT.β.INIT.β. · · · has positive probability in η ′ (namely 1) while
it has no corresponding path in η.

We explain the case in which (A4) holds using Fig. 7.10. For the atoms in
the figure, {β} is a valid ample set for INIT. Let s ′ be state in which A is in

7.4 using our technique with existing model checking algorithms 139

β

α

A B

Figure 7.9: Example showing the need for (A4).

1/2

β 1/2

A B

α

Figure 7.10: Another example showing the need for (A4)

its initial state, while B is in its final state. Then, it must be α ∈ AMPLE(s ′).
Again, consider a scheduler such that η(INIT) = α. Then, the path σ such that
PRη(σ) = 1 has the following corresponding paths in η ′:

σ ′1 = INIT.β.s ′.α. ï̂
σ ′2 = INIT.β.INIT.β.s ′.α. ï̂
· · ·

As expected, we have

∞∑
i=1

PRη
′
((σ ′i)

↑
) = 1 = PRη(σ) .

In addition, note that the path σβ
∞

= INIT.β.INIT.β. · · · , in which the action α
is delayed indefinitely, has probability 0.

In general, (A4) ensures that all the infinite paths in η ′ “ending” in an
end component have corresponding paths in η. It is a well-known result that
the set of paths that do not “end” in an end component (such as σβ

∞
) has

probability 0 (see [65, Thm. 3.2]). Then, all the paths with positive probability
in η ′ have corresponding paths in η. This allows to conclude (7.9) for all
cylinders CYL(`+1 , · · · , `+n). This inequality, in turn, implies

PRη
′
(φ) > PRη(φ)

for any LTL\{NEXT} formula φ.

7.4 using our technique with existing model checking algo-
rithms

We emphasize that, although the correctness of the reduction relies on the
assumption that the schedulers are distributed (strongly distributed, resp.),
the reduced system is analysed assuming total information (because of the
undecidability results in Chapter 5, the verification under partial informa-
tion cannot be carried out in a fully automated fashion). The result of the
verification thus corresponds to a pessimistic analysis of the reduced system.
As a consequence, the bounds obtained are still safe, but they are not so
tight as for distributed (strongly distributed, resp.) schedulers.

140 partial order reduction

As an example, suppose that we are interested in finding the supremum
probability that a system P fails under distributed schedulers. Suppose that
0.1 is the highest probability of failure allowed by the specification. More-
over, suppose that, by using the standard model checking algorithm for
MDPs (e.g. [25]), we calculate that the supremum probability of a failure
quantifying over all schedulers is 0.15. According to this analysis, the system
would not meet the specification. However, the schedulers yielding probabil-
ities greater than 0.1 might be “unrealistic” schedulers as the one in Fig. 7.2.
Suppose that we construct P̂ as described above. Then, we can use the algo-
rithm in [25] to calculate S = supη∈SCHED

P̂
PRη(F Fail). If S = 0.05, then Theo-

rem 7.1 above ensures that supη∈DISTP
PRη(F Fail) 6 0.05, and so the system

meets the specification. In this sense, the bounds are safe with respect to
DISTP([·]). Note that, in this case, the reduction has prevented some sched-
ulers that are not distributed and so the verification on P̂ is more accurate
than the verification on P.

7.5 related work

Partial Order Reduction for probabilistic systems was introduced in [12]
and [57]. These works consider LTL\{NEXT} formulae. A similar technique,
with different conditions on the reduction, can be used for CTL formulae [19].
Yet other conditions are needed for properties involving rewards [87].

The conditions used for CTL in probabilistic systems are more restrictive
than the ones for non-probabilistic systems. Hence, an interesting question
is to which extent the conditions for probabilistic CTL properties and reward
models can be relaxed if the schedulers are assumed to be distributed.

Our general definition of independence (Def. 7.5) enforces that indepen-
dent actions affect disjoint parts of the system (in our particular definition of
independence, they affect different atoms). This is in contrast to definitions
of independence as in [12], which are stated in terms of the compound sys-
tem and, in consequence, are not based on the affected parts of the system.
This induces a clear connection to partial information since, if the state of
an atom A is not affected by an action α, the actions in A cannot be sched-
uled using information provided by α. This connection is at the core of our
improvements for distributed systems.

For non-probabilistic systems, independence is also defined in terms of
the compound system and an issue similar to that of Fig. 7.5 arises for CTL

formulae. This issue introduces an additional POR restriction with respect
to LTL\{NEXT}. Hence, it would be interesting to study whether the techniques
of partial order reduction for non-probabilistic systems can profit from a
definition of independence like the one in this thesis.

Part III

A P P L I C A T I O N S A N D C O N C L U S I O N S

8
A N O N Y M O U S F A I R S E R V I C E

“The only thing worse than generalizing from one
example is generalizing from no examples at all”

Bob Scheifler and Jim Gettys. Principles of the X Window System

In this chapter, we use the algorithm in Sec. 6.2 to analyse two variants of
a protocol for anonymous fair service. Given a server S and two clients A, B,
the goal of the protocol is that, regardless of the rates at which A and B ask
for service, S replies to their requests in a fair fashion (in the sense that, in
the long run, they receive the same number of replies). By anonymous, we
mean that the clients cannot be identified, and so the server cannot simply
count how many times it has replied to each of the clients.

We give models for two variants of a protocol. These models are aimed to
check fairness (and not anonymity). For the verification of these models, we
assume rate schedulers. In this particular system, such assumption means
that the clients send requests at a certain rate, which might change over
time. Hence, a possible behaviour of the system is the one in which, at the
beginning, client A sends 1 request every 3 seconds and, after 7 requests, A
starts sending 1 request every 8 seconds. Client B may send 1+ log11(n+ 1)

requests every 9 seconds, where n is the amount of messages already sent.
So, while sending the first requests, B sends approximately 1 request every
9 seconds. The rate increases as each message is sent and, by the time of the
twelfth message, B sends 2 messages every 9 seconds.

We conclude that the algorithm to calculate overestimations discussed
in Sec. 6.2 yields results more realistic than the verification under total infor-
mation schedulers.

8.1 the specification of the protocol

A rough sketch of our protocol is the following: the server keeps track of the
order in which requests are received. At most two requests may be pending,
since we assume that clients cannot perform requests while waiting †. The
first step in the execution of the server is to toss a coin. The outcome of
the coin determines the order in which the requests are replied: in case the
coin lands heads, the server replies the oldest request. Otherwise, the server
replies the second request. Then, the coin is tossed again. We name this
protocol AFS1, since later on we propose a variation named AFS2.

The code for the clients is very simple. We show the code for one of them
in Fig. 8.1. The code for the other one is symmetric.

Figure 8.2 shows the PRISM code for the server. The model uses variables
first and second to store the order in which the request arrived. The intu-
itive interpretation of these variables is that they represent a queue: first
stores the first element in the queue (that is, the oldest request), and second

stores the last element in the queue (that is, the newest request). The coin

†Otherwise, it is impossible to guarantee fairness, since one of the entities may perform
requests at an arbitrarily high rate.

143

144 anonymous fair service

module one

status1 : [0..1] init 0; // 0 means free

// 1 means waiting

// 1 asks for service (so, it changes to the ‘‘waiting’’ state)

[ask1] (status1=0) -> (status1’=1);

// 1 gets served (so, it changes to the ‘‘free’’ state)

[serve1] (status1=1) -> (status1’=0);

endmodule �
Figure 8.1: PRISM code for an AFS client

decides whether the next request to reply is the first one in the queue, or
the last one. A value of x for first means that the first request came from
client x. Note that this model is inappropriate to check anonymity, since the
server knows which of the clients has sent each of the requests. The impor-
tant point is that this protocol can be carried out even if the server does not
know the identities of the senders (and the replies are routed to the right
client using, for instance, a proxy trusted by the clients). Since our results
do not apply to long-run properties, the state of our model keeps track of the
numbers of replies to each client. Hence, we can focus on the probabilities
pm defined below.

Definit ion 8.1 (pm). For all η ∈ SDISTP([[·]], RATE), m ∈ N, let pηm be the
probability that, at some point of the execution under η, the number n1 of
replies to client 1 is greater than or equal to n2+m, where n2 is the amount
of replies to client 2. In terms of our model,

pηm = PRη(REACH({s | s(served1) > s(served2) +m})) ,

where s(var) denotes the value of var in state s.
Let pm = supη∈SDISTP([[·]],RATE) p

η
m.pm

Note that pm concerns a reachability property, and so we can calculate it
using the algorithm in Sec. 6.2. This calculation relies on the fact the state of
the system keeps track of the number of replies. Since such number is not
bounded, the state space of the system should be, in principle, infinite. In
order to overcome this problem, we model the system in such a way that it
stops after one of the clients is served maxServed times.

The server comprises a variable fail, whose intended meaning is that,
if a state in which fail=1 is reached, then the model does not reflect the
protocol we are trying to analyse. For instance, fail is set to 1 when a client
sends a message while it is waiting for a reply. (Recall the assumption stating
that clients wait until the reply arrives.) One of the consistency checks we
performed using PRISM was to show that Pmax(fail = 1) = 0 holds, that
is, the maximum probability of reaching a state with fail = 1 is 0 (in other
words such probability is 0 for all schedulers).

A variation on AFS1

We explore a variation on this protocol, which we call AFS2. In this variation,
the behaviour of the server is different at a certain point of the execution,

8.1 the specification of the protocol 145

module server

first : [0..2] init 0; //The first one that asked for service

// (0 means none asked yet)

second : [0..2] init 0; //The second one that asked for service

coin : [0..2] init 0; //The outcome of the coin.

//0 Indicates that the coin will be tossed

//1 Indicates that the first one will be served

//2 Indicates that the second one will be served

served1 : [0..maxServed] init 0; //How many times 1 has been served

served2 : [0..maxServed] init 0; // How many times 2 has been served

fail : [0..1] init 0; // If fail is 1, something undesirable happened

//Toss the coin if needed

[] (coin=0) -> 0.5 : (coin’=1) + 0.5 : (coin’=2);

//The first one to ask was 1 and the coin indicated that the

//first one must be served. So, we serve 1

[serve1] (coin=1) & (first=1)

& (served1 < maxServed) & (served2 < maxServed)

-> (served1’=served1+1) & (first’ = second)

& (second’=0) & (coin’=0);

//The first one to ask was 2

[serve2] (coin=1) & (first=2)

& (served2 < maxServed) & (served1 < maxServed)

-> (served2’=served2+1) & (first’=second)

& (second’=0) & (coin’=0);

//The coin indicates that the second one must be served (these two cases

// are symmetric wrt the previous ones)

[serve1] (coin=2) & (second=1)

& (served1 < maxServed) & (served2 < maxServed)

-> (served1’=served1+1) & (second’=0) & (coin’=0);

[serve2] (coin=2) & (second=2)

& (served2 < maxServed) & (served1 < maxServed)

-> (served2’=served2+1) & (second’=0) & (coin’=0);

// 1 asks for service and 2 did not ask yet

[ask1] (first=0) -> (first’=1);

// 1 asks for service but it is already in the queue

// (that should not happen)

[ask1] (first=1) -> (fail’=1);

// 1 asks for service but 2 asked before

[ask1] (first=2) -> (second’=1);

// 2 asks for service and 1 did not ask yet

[ask2] (first=0) -> (first’=2);

// That should not happen (same as above)

[ask2] (first=2) -> (fail’=1);

// 2 asks for service but 1 asked before

[ask2] (first=1) -> (second’=2);

[] (served1 = maxServed) -> (served1’ = maxServed);

[] (served2 = maxServed) -> (served2’ = maxServed);

endmodule �
Figure 8.2: PRISM code for the AFS1 server

146 anonymous fair service

namely, at the point following a reply to a client, say A. More precisely, it
differs from AFS1 when, at this point of the execution, client B is waiting
for a reply. In AFS1, the server tosses the coin: if the outcome indicates that
the next component to serve is the one that arrived later, then the server
must wait until A sends a new request. We define AFS2 so that the server
replies to B. Hence, AFS2 seems to be more appealing since, by replying to
B immediately, the server increases its throughput. However, as we will see
later, our analyses show that the fairness of the service may result affected by
the variation introduced. Figure 8.3 shows the code for the modified server.
The code for clients is exactly the same as for AFS1 (see Fig. 8.1).

8.2 analysis

We apply the algorithm in Sec. 6.2, which obtains a safe estimation of pm =

supη∈SDISTP([[·]],RATE) p
η
m, as ensured by Corollary 6.1.

The algorithm in Sec. 6.2 proceeds by constructing an MDP whose states
comprise not only the local state of each atom, but also an ordering on
atoms.

Given the PRISM model for AFS1, AFS2, we constructed a PRISM model
in which a module is added. The state of this module is an ordering on the
modules of the original system (namely, the two clients and the server). The
transitions in this ordering module O take care of updating the ordering af-
ter each global transition. The restrictions on reordering functions (Def. 6.5)
hold because of the way in which the transitions in O are defined. The mod-
ules of the clients and the server are modified so that a module M can
execute a transition only if M is the first module in the ordering. Because
of the restrains imposed by the PRISM language, the code of O is large and
redundant, and thus we do not show it here. A software bundle containing
all the PRISM code can be found at: cs.famaf.unc.edu.ar/~sgiro/thesis/
afs.tar.gz.

Figure 8.4 shows the results of our analysis. The plots in this figure give
information about two different aspects. On the one hand, they compare the
results according to the algorithm in Sec. 6.2 (whichs construct an MDP en-
coding total order schedulers) against the results using the straightforward
MDP construction in Sec. 6.1. On the other hand they give a clue about the
fairness of AFS1 with respect to AFS2. The first two rows in Fig. 8.4 are use-
ful to compare the results using the machinery in Sec. 6.2 against the one
in Sec. 6.1. The first two columns compare AFS1 against AFS2.

From Fig. 8.4g, it is clear that, according to the algorithm in Sec. 6.2, the
protocol AFS1 ensures a fair service with greater probability than that of
AFS2: for instance, in AFS1 it is quite unlikely that client 1 is served 10

times more than client 2 (p10 = 0.07), while in AFS2 this happens quite
often (p10 = 0.59) in the worst case. Note that the MDP in Def. 6.2 does not
provide a clear verdict with respect to which of the protocols is more likely
to result in fair behaviours: in Fig. 8.4h, we see that the probabilities pm
for both protocols are very similar. Moreover, for some values of m (namely
11 6 m 6 13) the probabilities pm are greater for AFS2 while, for some other
values (namely 14 6 m 6 18), they are greater for AFS1.

An encouraging conclusion is that the results using the straightforward
MDP construction in Def. 6.2 are excessively pessimistic: this indicates that

cs.famaf.unc.edu.ar/~sgiro/thesis/afs.tar.gz
cs.famaf.unc.edu.ar/~sgiro/thesis/afs.tar.gz

8.2 analysis 147

module server

first : [0..2] init 0; //The first one that asked for service

// (0 means none asked yet)

second : [0..2] init 0; //The second one that asked for service

coin : [0..2] init 0; //The outcome of the coin.

//0 Indicates that it needs to be tossed

//1 Indicates that the first one will be served

//2 Indicates that the second one will be served

served1 : [0..maxServed] init 0; //How many times 1 has been served

served2 : [0..maxServed] init 0; // How many times 2 has been served

fail : [0..1] init 0; // If fail is 1, something undesirable happened

server_state : [0..3] init 0;

//0 Tossing the coin (iff coin = 0), or moving to an

// intermediate state before replying the request

//1 Serving 1

//2 Serving 2

//3 Serving the one that was waiting

//Toss the coin if needed

[] (coin=0) & (server_state=0) -> 0.5 : (coin’=1) + 0.5 : (coin’=2);

//The first one to ask was 1 and the coin indicated that the

//first one must be served. So, we start to serve 1

[] (coin=1) & (first=1) & (served1 < maxServed)

-> (server_state’=1) & (first’ = second) & (second’=0) & (coin’=0);

// Serve 1. If a client is waiting, we serve it next (set server_state

=3)

[serve1] (server_state=1) & (first!=0) & (served1 < maxServed)

-> (served1’=served1+1) & (server_state’=3);

// Serve 1. If nobody waits, toss the coin (set server_state=0)

[serve1] (server_state=1) & (first=0) & (served1 < maxServed)

-> (served1’=served1+1) & (server_state’=0);

//The first one to ask was 2, and the coin was tossed

//This case comprises three commands symmetrical to the previous ones,

//which are thus omitted

...

//The coin indicates that the second one must be served

[] (coin=2) & (second=1) & (served1 < maxServed)

-> (server_state’=1) & (second’=0) & (coin’=0);

[] (coin=2) & (second=2) & (served2 < maxServed)

-> (server_state’=2) & (second’=0) & (coin’=0);

// Someone is waiting, serve him

[] (server_state=3) & (first=1) & (served1 < maxServed)

-> (server_state’=1) & (first’ = second) & (second’=0) & (coin’=0);

[] (server_state=3) & (first=2) & (served2 < maxServed)

-> (server_state’=2) & (first’ = second) & (second’=0) & (coin’=0);

// 1 asks for service and 2 did not ask yet

[ask1] (first=0) -> (first’=1);

// That should not happen

[ask1] (first=1) -> (fail’=1);

// 1 asks for service but 2 asked before

[ask1] (first=2) -> (second’=1);

// 2 asks for service and 1 did not ask yet

//This case is symmetrical wrt to the previous one

...

endmodule �
Figure 8.3: PRISM code for the AFS2 server

148 anonymous fair service

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

5 10 15 20

0
0.2
0.4
0.6
0.8

m

pm

(a) AFS1, MDP as in
Def. 6.6

◦◦◦◦◦◦◦◦◦◦◦◦◦
◦
◦
◦◦◦◦◦

5 10 15 20

0
0.2
0.4
0.6
0.8

1

m

pm

(b) AFS1, MDP as in
Def. 6.2

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

◦◦◦◦◦◦◦◦◦◦◦◦◦
◦
◦
◦◦◦◦◦

5 10 15 20

0
0.2
0.4
0.6
0.8

1

m

pm

(c) AFS1, contrasting
Def. 6.6 and Def. 6.2

���������
�
�
���������

5 10 15 20

0
0.2
0.4
0.6
0.8

1

m

pm

(d) AFS2, MDP as in
Def. 6.6

••••••••••••
•
•
•
•••••

5 10 15 20

0
0.2
0.4
0.6
0.8

1

m

pm

(e) AFS2, MDP as in
Def. 6.2

••••••••••••
•
•
•
•••••

���������
�
�
���������

5 10 15 20

0
0.2
0.4
0.6
0.8

1

m

pm

(f) AFS2, contrasting
Def. 6.6 and Def. 6.2

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

���������
�
�
���������

5 10 15 20

0
0.2
0.4
0.6
0.8

1

m

pm

(g) contrasting AFS1 and
AFS2. MDP as in
Def. 6.6

◦◦◦◦◦◦◦◦◦◦◦◦◦
◦
◦
◦◦◦◦◦

••••••••••••
•
•
•
•••••

5 10 15 20

0
0.2
0.4
0.6
0.8

1

m

pm

(h) contrasting AFS1 and
AFS2. MDP as in
Def. 6.2

◦◦◦◦◦◦◦◦◦◦◦◦◦
◦
◦
◦◦◦◦◦

••••••••••••
•
•
•
•••••

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

���������
�
�
���������

5 10 15 20

0
0.2
0.4
0.6
0.8

1

m

pm

(i) contrasting all the results

Figure 8.4: Analysis of AFS1 and AFS2.

our algorithm in Sec. 6.2 makes a significant difference, as we can see in
Figures 8.4c and 8.4f. Note that, for the particular value m = 10, the worst-
case for AFS1 using our algorithm yields a probability of 0.07, while us-
ing Def. 6.2 model the probability is 0.99 (see Fig. 8.4c). With respect to
AFS2, the probabilities for m = 10 are 0.59 and 1 (see Fig. 8.4f).

8.3 further work

We applied the algorithm in Sec. 6.2 by manually adding a reordering mod-
ule, and thus our analysis is not completely automated. We plan to construct
a program to automatically generate the reordering module, so that we can
perform analysis in a completely automated fashion.

As we discussed in Sec. 6.4, one of the drawbacks of the algorithm for total
order-based schedulers in Sec. 6.2 is the inability to deal with projections
other than [·]VP. We hope that, by finding algorithms for projections finer
than [·]VP, we can obtain tighter estimations of extremal probabilities.

One obvious pending task is to use our algorithm to check models other
than AFS. Since our algorithm is devised for systems in which the interleav-
ing nondeterminism is resolved according to local information, we plan to
look at case studies that arose in the setting of rate-based PIOA, in which
the rates depends on the local state [137].

9
P A R T I A L O R D E R R E D U C T I O N I N P R A C T I C E

In this chapter, we show how the results in Chapter 7 ease the verification
of two particular models. Our version of Partial Order Reduction, imple-
mented on the PRISM model checker [97], was able to verify these models
and outperform existing implementations of the technique. The details of
the implementation can be found in [73].

The language used by PRISM is not based on input/output automata,
and so the first step is to find a suitable encoding of the PRISM into IP-
IOA. Section 9.1 presents this encoding, together with a definition of inde-
pendence that exploits the structure of the IPIOA yielded by the encoding.
Section 9.2 presents the results of the analysis of a model for the dining
cryptographers [44], a well-known protocol to ensure anonymity. Section 9.3
studies the binary exponential back-off protocol (as described in [102]) used
in the IEEE 802.3 standards.

9.1 partial order reduction for prism modules

In the semantics used by PRISM [97], each model is interpreted as an MDP
M = (SM, ACTIONSM,PM, INITM). A document on PRISM semantics can be
found in [1]. In the following, we show how to interpret M as an IPIOA P,
in order to present an analogous of Theorem 7.2.

Throughout this section, we use the model in Figure 9.1 as a running ex-
ample. In particular, we use it to establish nomenclature. Module m1 has
3 commands, while module m2 has 4 of them. The command C2 in line
2 has LABEL(C2) = a The command C10 in line 10 is unlabelled. We let LABEL(C)

LABEL(C10) = τC10 . Whenever C has a subscript i, we write τi instead of τCi .
Each state s ∈ SM is a valuation on the variables of the system. Valuations

are heavily used throughout this chapter, and hence we define notations for
them. Given a set of variables V, we write V(V) for the set of valuations over V(V)

V. Given s ∈ SM, we write s(v) for the value of variable v at s. Given V ′ ⊆ V(v)

V, the restriction of valuation V to V ′ (denoted by (V)
∣∣
V ′

) is the valuation
V ′ ∈ V(V ′) such that V ′(v) = V(v) for all v ∈ V ′. The set of variables in the
system is denoted by VM, and so the set of states of the system is V(VM). VM

The MDP constructed from the model in Fig. 9.1 has 8 actions:
1. α2,8 corresponds to the synchronization of commands in lines 2, 8. We

have LABEL(α2,8) = a. LABEL(α)

2. α2,9 corresponds to the synchronization of commands in lines 2, 9

3. α3,8 corresponds to the synchronization of commands in lines 3, 8

4. α3,9 corresponds to the synchronization of commands in lines 3, 9

5. α4 corresponds to the command in line 4

6. α10 corresponds to the command in line 10. We have LABEL(α10) = τ10
7. α11 corresponds to the command in line 11

The set of labels in the system is LM = {LABEL(α) | α ∈ ACTIONSM}. LM

Our partial order technique profits from the limited information available
to the adversaries: the less information is shared, the more states are elim-
inated. The encoding we present in this section allows to specify, for each

149

150 partial order reduction in practice

1 module m1

2 [a] (p=1|p=2) -> 0.5:(v’=1)&(x’=1) + 0.5:(v’=2)&(x’=1);

3 [a] (q=1) -> 0.5:(x’=1) + 0.5:(x’=x+1)

4 [c] (q=2) -> (x’=1);

5 endmodule

6

7 module m2

8 [a] (r=1) -> (y’=1);

9 [a] (p=1) -> 0.2:(z’=1) + 0.8:(z’=2);

10 [] (q=1) -> (p’=1);

11 [b] (p=1) -> (y’=2)&(z’=1);

12 endmodule �
Figure 9.1: PRISM code for an AFS client

action α in the MDP M, a set of variables (denoted by READVAR(α)) and aREADVAR(α)

set of labels (denoted by READLAB(α)) that α “reads”, in the sense that theREADLAB(α)

probability that α is scheduled depends only on such variables and labels.
For instance, we can specify

READVAR(α2,8) = {p, r}

READLAB(α2,8) = {a}

Note that a scheduler needs to see variables p and r in order to know
whether α2,8 is enabled or not. In fact, we require:

∀s, s ′ :
(
∀v ∈ READVAR(α) : s(v) = s ′(v)

)
=⇒ (α ∈ ACTIONS(s) ⇐⇒ α ∈ ACTIONS(s ′)) (9.1)

That is, the read variables in READVAR(α) must be sufficient to determine
whether α is enabled or not.

Notation 9.1. Let READVAR(α) ⊆ V ′ ⊆ VM and t ∈ V(V ′). We write
α ∈ ACTIONS(t) to denote

∃s ∈ V(VM) : α ∈ ACTIONS(s) ∧ ∀v ∈ V ′ : s(v) = t(v) .

In addition to (9.1), we require

LABEL(α) ∈ READLAB(α) (9.2)

Note that READLAB(α2,8) complies with this condition, as a ∈ READLAB(α2,8).
Although PRISM models do not provide the means to specify that α2,8 de-
pends on labels other than a (and so in our implementation we simply de-
fine READLAB(α) = {LABEL(α)}), we leave the door open for the extension to
an arbitrary set of labels.

We write READ(α) for READVAR(α)∪ READLAB(α).
By inspection of the model, we can obtain the set of variables that an

action α writes. For instance, α2,9 writes v, x and y. The set WRITEVAR(α)WRITEVAR(α)

contains all such variables. We define

WRITE(α) = WRITEVAR(α)∪ {LABEL(α)}

VAR(α) = READVAR(α)∪WRITEVAR(α)

9.1 partial order reduction for prism modules 151

Note that, for all α, s ∈ V(VM) such that α ∈ ACTIONS(s), the function
α(s, ·) can be seen as a probability distribution on V(WRITEVAR(α)). Consid-
ering the actions in our running example, for all s we have:

α2,8(s, ·) = 0.5 : {v→ 1, x→ 1,y→ 1} + 0.5 : {v→ 2, x→ 1,y→ 1}

α2,9(s, ·) = (0.5 · 0.2) : {v→ 1, x→ 1, z→ 1}

+ (0.5 · 0.8) : {v→ 1, x→ 1, z→ 2}

+ (0.5 · 0.2) : {v→ 2, x→ 1, z→ 1}

+ (0.5 · 0.8) : {v→ 2, x→ 1, z→ 2}

For all s such that s(x) = 27, we have:

α3,9(s, ·) = (0.5 · 0.2) : {x→ 1, z→ 1}

+ (0.5 · 0.8) : {x→ 1, z→ 2}

+ (0.5 · 0.2) : {x→ 28, z→ 1}

+ (0.5 · 0.8) : {x→ 28, z→ 2}

In this action, the distribution on WRITEVAR(α3,9) depends on the state s. For
technical reasons, we need that read variables are sufficient to determine
α(s, ·), that is:

∀α, s, s ′ :
(
∀v ∈ READVAR(α) : s(v) = s ′(v)

)
=⇒ α(s, ·) = α(s ′, ·) (9.3)

This restriction implies:

∀α, sα ∈ V(READVAR(α)) : α(sα, ·) =

Q∑
q=1

psαq :Vsαq (9.4)

Note that Eqn. (9.3) forces us include the variable x in READVAR(α3,9).
The probability that α is scheduled depends only on the sequence of ele-

ments in READ(α) that appear along the execution history. This sequence is
inductively defined below. The function (·)

∣∣
α

plays the same role as projec-
tions for IPIOA, but it applies to our setting of MDPs arising from PRISM
models.

(INITM)
∣∣
α

= (INIT)
∣∣

READVAR(α)

(σ.β.s)
∣∣
α

= (σ)
∣∣
α

. LABEL(α) . (s)
∣∣

READVAR(α)

if LABEL(β) ∈ READLAB(α)

(σ.β.s)
∣∣
α

= (σ)
∣∣
α

. κ . (s)
∣∣

READVAR(α)

if LABEL(β) 6∈ READLAB(α)

and WRITEVAR(β)∩ READVAR(α) 6= ∅
(σ.β.s)

∣∣
α

= (σ)
∣∣
α

if LABEL(β) 6∈ READLAB(α)

and WRITEVAR(β)∩ READVAR(α) = ∅

Note that the information observable in σ.β.s differs from the information
observable in σ only in case the label of β is observed by α, or in case β
writes a variable read by α. In the former case, the information observable in
σ.β.s comprises LABEL(β) and the new values for the variables in READLAB(α).

152 partial order reduction in practice

In the latter case, the information observable comprises only the new values
for the variables. The label κ is a mere padding indicating that the label inκ

β is not observable. Of course, we could go without this padding, but we
would lose that elegance conferred by the hypnotic alternation of valuations
and labels.

We defined (·)
∣∣ with the aim of defining a restriction on the information

used to schedule the actions. Now, we can express this restriction formally.

Definit ion 9.1. The set of schedulers with partial information (denoted
by PARINFO(M)) comprises all the schedulers η such that

η(σ)(α)

η(σ)(α) + η(σ)(β)
=

η(σ ′)(α)

η(σ ′)(α) + η(σ ′)(β)
. (9.5)

for all paths σ, σ ′ such that

(σ)
∣∣
α

= (σ ′)
∣∣
α

∧ (σ)
∣∣
β

= (σ ′)
∣∣
β

and PRη((σ)↑)>0, PRη((σ ′)↑)>0, η(σ)(α) + η(σ)(β) > 0, η(σ ′)(α) + η(σ ′)(β) >

0.

The motivation for this restriction is the same as the one for strongly dis-
tributed schedulers in Sec. 2.1: the probability that η schedules α (β, resp.)
depends only on the sequence σα (σβ, resp.) of events visible to α (β, resp.).
Hence, the probability that η schedules α instead of β coincides for all paths
σ, σ ′ having (σ)

∣∣
α

= (σ ′)
∣∣
α

= σα and (σ)
∣∣
β

= (σ ′)
∣∣
β

= σβ.
We show how, using the sets READ(α), WRITE(α), the MDP M arising from

a PRISM model can be interpreted as an IPIOA. This IPIOA has one atom
for each action in the MDP. This interpretation of actions as atoms might
seem strange at first sight. In fact, one can think of a more intuitive interpre-
tation in which modules are mapped to atoms. The latter interpretation has,
however, an important drawback: in the IPIOA formalism the availability of
information is specified at the atom level and so, in this interpretation, we
cannot specify that different transitions in the same module are scheduled
according to different information.

Next, we give the definition of the atom Aα corresponding to action α in
the MDP. After the formal definition, we give intuitive explanations.

Definit ion 9.2. Given an MDP M such that

SM = V(VM) ,

for all action α defined by α(s, ·) =
∑Q
q=1 p

s
q :Vsq (here, s ∈ V(READVAR(α)))

we define the atom Aα as follows:
• Sα = V(VAR(α))

• ACTLABα =

{aV | a ∈ READLAB(α) ∧ V ∈ V(V ′) ∧ V ′ ⊆ VM}

∪ {aV | a ∈ LM ∧ V ∈ V(V ′) ∧ V ′ ⊆ VM ∧ V ′ ∩ VAR(α) 6= ∅}

• for all s ∈ Sα, if α ∈ ACTIONS(s) let Gα(s) = {gα}, where

gα(s,aV , s ′) =



psq if a = LABEL(α) and there exists q such that:

∀v ∈ WRITEVAR(α) : s ′(v) = Vsq(v) and

∀v ∈ VAR(α) \ WRITEVAR(α) : s ′(v) = s(v)

0 otherwise

9.1 partial order reduction for prism modules 153

if α 6∈ ACTIONS(s) let Gα(s) = ∅.
• for all s ∈ Sα, a ∈ LM, V ∈ V(V ′), where V ′ ⊆ VM and V ′∩VAR(α) 6= ∅,

let

Rα(s,aV) = {rs,aV } ,

where

rs,aV (s,aV , s ′) =


1 if ∀v ∈ VAR(α)∩V ′ : s ′(v) = V(v) and

∀v ∈ VAR(α) \ V ′ : s ′(v) = s(v)

0 otherwise

• INITα = (INIT(v))
∣∣

VAR(α)

Note that, since Sα = V(VAR(α)), the state of the IPIOA P = ‖αAα is∏
αV(VAR(α)). This implies that, for each variable v in the MDP, each state

might have several copies of v, say vα1 , · · · , vαN : each of these copies corre-
sponds to an action αn such that v ∈ VAR(αn). The IPIOA works in such a
way that

s(vαj) = s(vαk) (9.6)

for all j, k, for all reachable state s in the model. This property holds since
we define gα in such a way that, when Aα executes and changes its write
variables to Vq, it does not output LABEL(α), but LABEL(α)Vq . By definition
of ACTLAB, the label LABEL(α)Vq is in ACTLABβ for all atoms Aβ such that
VAR(β) ∩WRITEVAR(α) 6= ∅. Hence, such atoms Aβ react to this label using
rs,LABEL(α)Vq

, thus reaching a state s ′ such that ∀v ∈ VAR(α) ∩ V ′ : s ′(v) =

V(v).
In the following, we establish several properties relating the MDP M aris-

ing from a PRISM model to the IPIOA P = ‖α Aα.
By Eqn. (9.6) there exists a bijection hS(·) from the reachable states of P to

SM such that:

hS(s)(v) = παj(s)(vαj)

where αj is any action such that v ∈ VAR(αj), and παj is the projection
that extracts the portion corresponding to αj from an element in

∏
α VAR(α).

Equation (9.6) ensures that the particular αj chosen is irrelevant.
In addition to the bijection, we consider the function hA that maps each

compound transition in P to an action in M:

hA(gα,aV , rs1,aV , · · · , rsm,aV) = α .

Note that this function is surjective but not injective, since the information
about the particular V is disregarded. However, the product function hS×hA
is injective in the following sense:

∀(α, s ′) ∈ ACTIONSM × SM :
(
∃s : α(s, s ′) > 0

)
=⇒ ∃!(c, t) : (hA(c),hS(t)) = (α, s ′) . (9.7)

Intuitively, since the state s ′ comprises the information about the valuation
V (in fact, (s ′)

∣∣
WRITEVAR(α)

= V) the ambiguity concerning the valuation in c
is resolved by s ′.

154 partial order reduction in practice

Property (9.7) implies that the functions:

h∗(s0.c1. · · · .cn.sn) = hS(s0).hA(c1). · · · .hA(cn).hS(sn) (9.8)

hω(s0.c1. · · · .cn.sn. · · ·) = hS(s0).hA(c1). · · · .hA(cn).hS(sn). · · · (9.9)

are bijections from the finite paths (infinite paths, resp.) of P to the finite
paths (infinite paths, resp.) of M. Moreover, if c = (gα, rs1,aV , · · · , rsm,aV)

and α(s, ·) =
∑Q
q=1 p

s
q :Vsq, then

c(s, s ′) = gα(s,aV , s ′) = psq = α(s, s ′) , (9.10)

where q is the index such that (s ′)
∣∣

WRITEVAR(α)
= Vsq.

Each scheduler for P defines a scheduler for M, and vice versa. In fact,
we can define a bijection i from the schedulers of P to those of M. If η =

(I, {Θi}i, {Υi}i), then i(η) is defined as:

i(η) (σ) (α) = I (h∗
−1

(σ)) (Aα) . (9.11)

That is, the probability that α is scheduled after σ in i(η) is the probability
that Aα is scheduled after h∗

−1
(σ) in η. The fact that i is a bijection follows

from the fact that h∗
−1

is.
By (9.10), we have

∀σ : PRηP((σ)↑) = PR
i(η)
M ((h∗(σ))↑) . (9.12)

From (9.12) (together with Carathéodory extension theorem) and the fact
that i is a bijection, we obtain:

sup
η∈SCHEDM

PRηM(S) = sup
η∈SCHEDP

PRηP(hω
−1

(S)) . (9.13)

In this equation, we have naturally extended hω
−1

from infinite paths to sets
of infinite paths:

hω
−1

(S) = {hω
−1

(ρ) | ρ ∈ S} .

The bijection h∗ also allows us to define a projection for P:

LσMα = (h∗(σ))
∣∣
α

.

From this definition, we deduce:

LσMα = Lσ ′Mα ⇐⇒ (h∗(σ))
∣∣
α

= (h∗(σ ′))
∣∣
α

(9.14)

(σ)
∣∣
α

= (σ ′)
∣∣
α
⇐⇒ Lh∗

−1
(σ)Mα = Lh∗

−1
(σ ′)Mα . (9.15)

Now, we can link the schedulers in PARINFO(M) to those in SDISTP(L·M).

Lemma 9.1. Given an MDP M, let P = ‖α∈ACTIONSM Aα (where Aα is the atom
in Def. 9.2). Then,

i(η) ∈ PARINFO(M) ⇐⇒ η ∈ SDISTP(L·M) .

Proof. Let η = (I, {Θi}i, {Υi}i) be a scheduler for P. By (9.11), we have i(η) ∈
PARINFO(M) iff

I (h∗
−1

(σ)) (α)

I (h∗
−1

(σ)) (α) + I (h∗
−1

(σ)) (β)
=

I (h∗
−1

(σ ′)) (α)

I (h∗
−1

(σ ′)) (α) + I (h∗
−1

(σ ′)) (β)

9.1 partial order reduction for prism modules 155

for all paths σ, σ ′ such that

(σ)
∣∣
α

= (σ ′)
∣∣
α

∧ (σ)
∣∣
β

= (σ ′)
∣∣
β

∧ PRi(η)((σ)↑) > 0 ∧ PRi(η)((σ ′)
↑
) > 0

∧ i(η) (σ) (α) + i(η) (σ) (β) > 0 ∧ i(η) (σ ′) (α) + i(η) (σ ′) (β) > 0 .

From (9.15), we get

(σ)
∣∣
α

= (σ ′)
∣∣
α

∧ (σ)
∣∣
β

= (σ ′)
∣∣
β

⇐⇒ Lh∗
−1

(σ)Mα = Lh∗
−1

(σ ′)Mα ∧ Lh∗
−1

(σ)Mβ = Lh∗
−1

(σ ′)Mβ .

By (9.12) we have

PRi(η)((σ)↑) > 0 ⇐⇒ PRη((h∗
−1

(σ))
↑
) > 0 .

In addition, (9.11) yields

i(η) (σ) (α) + i(η) (σ) (β) > 0 ⇐⇒ I (h∗
−1

(σ)) (α) + i(η) (h∗
−1

(σ)) (β) > 0 .

Therefore, i(η) ∈ PARINFO(M) iff

∀σ,σ ′ ∈ PATHS(M),α,β ∈ ACTIONSM : F(σ,σ ′,α,β) , (9.16)

where F is the following predicate:

F(σ,σ ′,α,β) =
(

Lh∗
−1

(σ)Mα = Lh∗
−1

(σ ′)Mα
∧ Lh∗

−1
(σ)Mβ = Lh∗

−1
(σ ′)Mβ

∧ PRη((h∗
−1

(σ))
↑
) > 0 ∧ PRη((h∗

−1
(σ ′))

↑
) > 0

∧ I (h∗
−1

(σ)) (Aα) + I (h∗
−1

(σ)) (Aβ) > 0

∧ I (h∗
−1

(σ ′)) (Aα) + I (h∗
−1

(σ ′)) (Aβ) > 0
)

=⇒ I (h∗
−1

(σ)) (Aα)

I (h∗
−1

(σ)) (Aα) + I (h∗
−1

(σ)) (Aβ)

=
I (h∗

−1
(σ ′)) (Aα)

I (h∗
−1

(σ ′)) (Aα) + I (h∗
−1

(σ ′)) (Aβ)

We show that (9.16) is equivalent to:

∀σ1,σ2 ∈ PATHS(P),α,β ∈ ACTIONSM : F(h∗(σ1),h∗(σ2),α,β) . (9.17)

The implication (9.16) =⇒ (9.17) holds since, assuming that F holds for all
σ,σ ′ ∈ PATHS(M), it holds in particular for the paths h∗(σ1), h∗(σ2), where
σ1,σ2 ∈ PATHS(P). In order to prove the implication (9.17) =⇒ (9.16) we
recall that h∗ is a bijection and hence it is surjective. Then, for all σ, σ ′, we
can find σ1, σ2 such that h∗(σ1) = σ and h∗(σ2) = σ ′. If we assume (9.17),
we have that the predicate F(h∗(σ1),h∗(σ2),α,β) = F(σ,σ ′,α,β) holds.

156 partial order reduction in practice

Therefore, i(η) ∈ PARINFO(M) iff (9.17) holds. By specializing F for h∗(σ),
h∗(σ ′), and using the fact that h∗

−1
(h∗(σ)) = σ, we get i(η) ∈ PARINFO(M)

iff for all σ,σ ′ ∈ PATHS(P), α, β, we have(
LσMα = Lσ ′Mα ∧ LσMβ = Lσ ′Mβ

∧ PRη((σ)↑) > 0 ∧ PRη((σ ′)
↑
) > 0

∧ I (σ) (Aα) + I (σ) (Aβ) > 0

∧ I (σ ′) (Aα) + I (σ ′) (Aβ) > 0
)

=⇒ I (σ) (Aα)

I (σ) (Aα) + I (σ) (Aβ)

=
I (σ ′) (Aα)

I (σ ′) (Aα) + I (σ ′) (Aβ)

This predicate is equivalent to the definition of strongly distributed sched-
uler (Def. 2.1).

We have used (9.12) and Carathéodory extension theorem to obtain Equa-
tion (9.13). Applying the same reasoning and Lemma 9.1, we obtain:

sup
η∈PARINFO(M)

PRηM(S) = sup
η∈SDISTP(L·M)

PRηP(hω
−1

(S)) .

Hence, from now on we can focus on the problem of calculating

sup
η∈SDISTP(L·M)

PRηP(S) .

Since the projection in this expression is L·M (and not [[·]]) we cannot ap-
ply Theorem 7.2, but a variation on it. Such a variation uses a different
independence relation defined as:

α Iβ ⇐⇒ WRITE(α)∩ (READ(β)∪WRITE(β)) = ∅
∧ WRITE(β) ∩ (READ(α) ∪WRITE(α)) = ∅ .

Intuitively, if α Iβ, then the events generated by α do not overlap with the
events related to β, and vice versa (by event we mean a label outputting or
a change to a variable).

The proof of the following theorem can be found in Appendix D.

Theorem 9.1. Given an MDP M, let P =‖α∈ACTIONSM Aα. Moreover, let P̂ be a
reduction of MDP(P) complying with conditions A1–A4, by taking the independenceThe definition of

MDP(P) is given
in Def. 6.2, p. 108

relation to be I. Then,

sup
η∈SDISTP(L·M)

PRη(φ) 6 sup
η∈SCHED

P̂

PRη(φ) .

By definition of P, the systems M and MDP(P) are isomorphic in the sense
that there are two bijections iA : ACTIONSM → ACTIONSMDP(P) and iS : SM →
SMDP(P) such that

iS(INITM) = iS(INITP) ,

for all s ∈ SM:

ACTIONS(iS(s)) = {iA(α) | α ∈ ACTIONS(s)}

9.2 analysing the dining cryptographers 157

and for all α ∈ ACTIONSM, s, s ′ ∈ SM:

α(s, s ′) = iA(α) (iS(s), iS(s ′)) .

Hence, it is irrelevant whether the reductions are performed on M or on
MDP(P).

We extended PRISM with algorithms to perform reductions complying
with A1–A4. For each of the states in the system, our algorithms explore
subsets of ACTIONS(s) in order to find a valid ample set. The time spent in
this processing is counted as part of the construction time in the case studies
presented in the following sections.

Since the PRISM language does not provide the means to specify the sets
READVAR(α), we define READVAR(α) as the set of variables that occur un-
primed in a command C such that LABEL(α) = LABEL(C). For instance, we
have: Note that x occurs

unprimed in the
command in line 3READVAR(α2,8) = READVAR(α2,9)

= READVAR(α3,8) = READVAR(α3,9) = {p,q, r, x}

READVAR(α4) = {q}

READVAR(α10) = {q}

READVAR(α11) = {p}

Our definition of READVAR(·) corresponds to the assumption that the infor-
mation used to schedule an action α such that LABEL(α) = a is the informa-
tion observable by all the actions β such that LABEL(β) = a. In other words,
information is not defined for each action, but for each label. Although some
other assumptions might allow for better reductions (for instance, we could
have defined READVAR(α2,8) = {p, r}), we find this assumption appealing and,
since the internal representation of PRISM models is based on the labels, it
lessened our effort to implement the calculation of READVAR(·).

Since PRISM provides no means to specify that a label affects the proba-
bility that a command is scheduled, we define:

READLAB(α) = {LABEL(α)} .

We emphasize that, in practice, we do not perform translations among
formalisms. We provided the interpretation of MDPs as IPIOA in order to
apply the theoretical machinery in previous chapters but, given that Theo-
rem 9.1 is about reductions on MDP(P), and taking into account that MDP(P)

is isomorphic to the original MDP M, there is no need for translations.

9.2 analysing the dining cryptographers

The dining cryptographers [44] is a well-known protocol in which a group
communicates a message in such a way that the sender is untraceable. Here,
we give a brief explanation of the properties of the protocol. The interested
reader is referred to [68].

In its metaphorical explanation, the protocol is carried out during a dinner
in the context of a cryptography conference: the conference chair has made
arrangements with the restaurant so that, in case a cryptographer wants to

158 partial order reduction in practice

pay for the dinner, he/she is able to do it. Once the dinner has ended, the
cryptographers want to know whether some of the cryptographers has paid
for the dinner, or the dinner has been funded by the conference committee.
However, they do not want to force the payer to disclose himself. This is
the point at which the cryptographers follow the protocol. It proceeds in
such a way that, when it has finished, each cryptographer i displays a bit Bi.
The protocol ensures that there is cryptographer j that paid for the dinner
if and only if the sum of all bits has the same parity as N (where N is the
number of cryptographers). If this is the case, then the protocol guarantees
that, regardless of the bits Bi, the probability that cryptographer j is the
payer is 1/N (where N is the number of cryptographers). Then, there is no
way for the cryptographers (nor for the conference chair) to guess who the
payer is by looking at the bits Bi. In conclusion, the bits Bi communicate the
message but, after seeing the Bi, the maximum probability of guessing who
is the payer is the same probability that guessing with no information at all
(namely 1/N).

Table 2 reports results checking anonymity. Column “%” indicates in per-
centage how small is the reduced model with respect of the full system.
Thus, for instance, the size of the state space of the reduced model is 23.58%
of the size of the state space of the full model for 11 cryptographers (i.e.,
more than 4 times smaller). Note that, in general, the construction time of
the system is significantly more expensive for POR when compared to the
construction time of the full system. Nonetheless, the calculation time of the
probability values is significantly larger in the full model. Thus, the total
processing time on large systems is better under POR (see the 11 cryptog-
raphers). We remark that the old POR reduction (including A5) achieves
the same results in this case study. However, these results show that our
implementation of POR for symbolic model checking can be very effective.

9.3 analysing the binary exponential backoff protocol

The protocol analysed in this section is carried out by a set of n stations thatn

share a communication channel. These states use the protocol in order to co-
ordinate the access to the channel, since different stations cannot access the
channel at the same time. Here, we give a brief explanation of the protocol.
The interested reader is referred to [142].

Full A1–A4 reduct.

N size constr. total size % constr. total

7* 287666 0m00.19 0m03.53 115578 40.18 0m13.01 0m16.59

8* 1499657 0m00.30 0m16.18 526329 35.10 0m36.69 0m52.96

9* 7695856 0m00.44 1m24.84 2363896 30.72 1m46.16 2m29.15

10 39005612 0m00.70 4m41.10 10495991 26.91 4m48.19 6m40.37

11 195718768 0m01.11 29m43.34 46159864 23.58 13m12.84 21m02.46

* Entries marked with * run on a Pentium 4 630, 3.0Ghz with 2Gb memory, while all the others run on
an Opteron 8212 (dual core) with 32Gb memory.

Table 2: Summary of Experimental Results

9.3 analysing the binary exponential backoff protocol 159

(a) Size comparison

Model Full A1–A5 reduct. A1–A4 reduct.

n / N / 2K size size % full size % full % A5

4 / 3 / 4 532326 191987 36.07 126629 23.79 65.96

5 / 3 / 4 13866186 2752750 19.85 1690227 12.19 61.40

6 / 3 / 4 357387872 36974560 10.35 21771724 6.09 58.88

4 / 3 / 8 3020342 913379 30.24 604457 20.01 66.18

5 / 3 / 8 115442928 18569442 16.09 11585347 10.04 62.39

6 / 3 / 8 4318481408 353075296 8.18 212917856 4.93 60.30

(b) Time comparison

Model Full A1–A5 reduct. A1–A4 reduct.

n / N / 2K constr. total constr. total constr. total

4 / 3 / 4 0m01.39 1m04.27 0m18.96 1m22.98 0m18.02 1m13.36

5 / 3 / 4 0m03.49 11m32.99 1m16.82 8m15.60 1m14.53 6m50.12

6 / 3 / 4 0m07.55 5h03m39.81 4m00.95 1h13m11.39 5m15.06 53m35.43

4 / 3 / 8 0m02.05 3m33.62 0m23.85 3m01.88 0m22.78 2m28.50

5 / 3 / 8 0m05.41 1h21m13.54 1m36.41 30m42.82 1m41.18 22m09.23

6 / 3 / 8 0m13.30 — 5m14.95 12h31m57.39 6m44.82 7h45m46.75

These experiments ran on an Opteron 8212 (dual core) with 32Gb memory.

Table 3: Experimental results for the binary exponential backoff protocol

When several stations access the channel at the same time, they detect
the collision. After the first collision, the station Si probabilistically chooses
among two options: it either retries immediately (that is, it retries after 0 time
units) or it retries after 1 time unit. It might be the case that, in the retrial,
Si faces a new collision. In this case, Si probabilistically chooses a delay
time between 0 and 3. In general, after the j-th collision, Si probabilistically
chooses a delay time ranging from 0 to 2j − 1. Hence, the more they collide,
the less likely that two stations delay for the same time. The protocol can
be parameterized by specifying bounds for the chosen values, as well as
for the number of retrials. First, it depends on a number K: after the j-th K

collision, the choice of Si ranges from 0 to min{2j−1, 2K−1}. In addition, the
parameter N > K specifies the maximum number of unsuccessful retrials: if N

after N collisions the station Si was not able to access the channel, then the
station gives up.

Table 3 shows the model size (that is, the number of states in the model)
and the memory consumption required to check the probability that a sta-
tion gives up in the worst-case. Subtable (a) shows reductions yielding sizes
up to 5% of the full state space. More interesting is that reduction using only
A1–A4 is significantly more efficient than the old reduction with A1–A5 (up
to 58.88% in case 6/3/4). As shown in subtable (b), we obtained similar sat-
isfactory results on time comparison, notably (again) in case 6/3/4. We note
that the 6/3/8 full model could not be analysed because the state space was
too large to fit in the hybrid engine of PRISM.

160 partial order reduction in practice

9.4 discussion and further work

Of course, not all examples we ran yielded impressive results as the ones
in Tables 2 and 3. We have experienced very little reduction in cases in
which components depend very much from each other. This is nonetheless
reasonable as our technique is precisely devised for distributed system with
little sharing. In particular, both case studies have few communication points
and significant local processing.

It is in our plans to report soon on the details of the implementation of the
tool under development. In addition, we plan to measure the effectiveness
of our technique in other existing protocols. Our aim was to find protocols
in which the theoretical improvement results in improved performance, and
this aim was accomplished. However, this is just the first step in the evalu-
ation of the practical impact of our technique. One of the pending tasks in
this direction is to study how the reduction in the setting of symbolic model
checking (as in PRISM) compares to the reduction in the explicit setting (used
in LiQuor [50]).

10
C O N C L U D I N G R E M A R K S

“No sabe (nadie puede saber) mi innumerable
contrición y cansancio”

Jorge Luis Borges. Ficciones, El jardín de senderos que se bifurcan

The first section of this chapter discusses our contributions with respect to
the aims and motivations in Chapter 0. The second section provides ideas
for further research.

10.1 contributions

We started this thesis by arguing that full-history dependent schedulers are
unrealistic, and thus restricted schedulers should be considered. Based on Chapter 1

these considerations, Chapter 1 resorts to the approach based on local sched-
ulers [64, 45], which resolve local nondeterminism based on local informa-
tion. Thus, the composition of several local schedulers forms a scheduler for
the whole system.

By the time we began this research, our goal was to develop model check-
ing algorithms for distributed schedulers. Given the undecidability results
in Chapter 5, now we know that this goal cannot be achieved in its full gen-
erality. However, our algorithm in Section 6.2 introduces a new approach to
overcome undecidability results: instead of considering the usual projection
(mapping each path of the system into a path of an atom) we prove the algo-
rithm sound for an alternative projection. If this alternative projection does
not disclose too much information, the results obtained by the algorithm
are not as pessimistic as in the case of total information schedulers. This ap-
proach to algorithms is not the only main contribution in this thesis: we have
also seen that the notion of distributed schedulers, besides being useful to
obtain tight bounds on maximal probabilities, is also useful to obtain better
reductions based on the POR technique (Chapter 7).

The paragraph above outlines the more important results in the thesis, but
in the meanwhile we also found several intermediate (but fundamental) no-
tions and results. As usual, some of these results are interesting in their own,
and they have spawned new questions. In the beginning, we developed the
mechanism to compose local schedulers presented in Subsection 1.1.4. The
motivation for these mechanisms was to prove our results in a framework
for asynchronous systems with parallel composition alla CSP (in which the
composition allows all possible sequences of actions, up to synchronization).
Existing frameworks are not suitable to work with such models: the systems
in [64] are completely synchronous (thus resulting in a straightforward no-
tion of composition), while the composition in [45] is based on a token struc-
ture, and the sequences of actions in the composed system are constrained
by the token-passing transitions. Our approach using an interleaving sched-
uler considers asynchronous behaviours, and parallel composition works in
the usual way. The introduction of an interleaving scheduler is also useful

161

162 concluding remarks

to generalize the interleaving mechanism in [147] (where nondeterminism
is not considered), thus leading to rate-based schedulers.

After introducing the interleaving scheduler, we noticed that the partialChapter 2

order reduction technique could not be improved substantially, the obsta-
cle being the unrealistic power of interleaving schedulers. This observation
motivated the definition of strongly distributed schedulers, in which a natural
restriction is imposed on the interleaving scheduler. This restriction reflects
the fact that the interleaving of a set of entities depends only on the infor-
mation available to such entities.

While developing the results in this thesis, we noticed that several proofs
shared a certain structure, in which an infinite sequence of schedulers is
used to show the existence of a scheduler complying with a certain property.
Our notion of limit schedulers presents a general way to construct a sched-Chapter 3

uler using the schedulers in a sequence. Theorem 3.2 gives a condition that
suffices to ensure that properties from the schedulers in the sequence map
to limit schedulers.

Having in mind several classes of schedulers, we were interested on howChapter 4

these classes are related. A substantial part of Chapter 4 is devoted to find
conditions on sets of schedulers. These conditions ensure that the subset of
non-randomized schedulers is as expressive as the whole set (in the sense
that the maximal probabilities for the subset are the same as for the whole
set). This chapter also discusses finite memory schedulers, showing that
Markovian distributed schedulers do not attain maximal probabilities even
for reachability properties. However, for these properties, we showed that
the set of finite memory schedulers is fully expressive. This set comprises all N-
Markovian schedulers (that is, all schedulers that remember the lastN-steps)
for all N. Although the results in Chapter 4 do not have direct practical im-
plications, the results in this chapter are extensively used throughout the
rest of the thesis. For instance, the conditions to ensure total-order based
schedulers are as expressive as randomized strongly distributed schedulers
(Theorem 4.3) are used to prove undecidability of qualitative reachability
(Theorem 5.7), and to show the correctness of the algorithm in Sec. 6.2.

We were not deterred by the first undecidability result we found: afterChapter 5

proving that the maximum reachability probability cannot be calculated, we
wondered whether algorithms for other properties exist. Then, we found
that qualitative properties are also impossible to check automatically. More-
over, it is expensive to check a system even under Markovian and non-
randomized schedulers.

Despite the undecidability results, Section 6.2 presents an algorithm toChapter 6

perform sound analyses of the system (in the sense that, if the system is
deemed correct by the algorithm, then it is correct). This algorithm results
useful to check that a system is correct. Section 6.3 introduces an algorithm
useful to prove that a system is incorrect.

For the sake of simplicity, the presentation of the POR technique usesChapter 7

the usual projection and a naive independence relation. However, our proof
of the results uses general projections and relations that comply with cer-
tain properties. This generalization allows us to profit from the structure
of variable-based formalisms (such as PRISM), and to obtain finer indepen-
dence relations resulting in better reductions.

We were able to use our techniques and algorithms in practical cases:
Chapter 8 shows how one of our algorithms can be applied to analyse a pro-Chapter 8

10.2 future research directions 163

tocol for fair service. Chapter 9 discusses partial order reduction for PRISM Chapter 9

models.

10.2 future research directions

Distributed schedulers were introduced to obtain techniques for composi- Compositionality

tional reasoning†. This goal is achieved for synchronous systems in [64].
In the realm of asynchronous systems, the framework in [45] can be used
for compositional reasoning only for special subsets of systems and sched-
ulers (see [45, Chapter 11]). Given that the goal is accomplished in the syn-
chronous framework in [64], but it is not in the asynchronous framework
in [45], we tend to think that the noise is introduced by the asynchronous
behaviour. Then, we would like to study whether our novel approach to
asynchrony (introducing restricted interleaving schedulers) eases the devel-
opment of compositionality results for asynchronous systems.

Another interesting direction arises in the field of distributed computing. Scheduling
assumptions in
distributed
computing

Several results in this field rely on scheduling assumptions such as “the
scheduler cannot use information that has not been read by any of the pro-
cesses” [9, 7, 8, 37, 48, 49]. At first sight, these assumptions can be put in
terms of our projections. For instance, two paths are to be considered equiv-
alents iff they differ only wrt. a value that has not been read. Then, an
interesting question is to which extent these projections comply with the
properties for projections introduced in this thesis (that is, whether they are
or not traceable, whether they are equivalent for some subset of the compo-
nents, etc.). In particular, this would allow to check whether randomization
does or does not add power to the schedulers complying with these assump-
tions. Since several works restrict to non-randomized schedulers [9, 7, 8, 37],
in both cases we would learn new lessons: if randomization adds no power
to the scheduler, then the results are more general than we currently know.
If randomization does add power, then randomized schedulers might make
a difference in concrete protocols, and this is a strong motivation to study
whether the protocols are still correct in presence of randomized schedulers.

One of the main contributions of this thesis is the idea that, although Distributed
schedulers and
model checking
techniques

distributed schedulers harden the model checking algorithms (even to the
point of undecidability), the assumption that the schedulers are distributed
may be used to improve reduction techniques. We plan to study how the
distributed schedulers impact on other techniques such as symmetry reduc-
tion [113] or abstraction [95].

Recalling the argument in [147], we have shown how to construct an in- Are strongly
distributed
sufficiently general?

terleaving scheduler using exponential distributions. These schedulers cor-
respond to the assumption that, given a state s, the time elapsed in s until
the next output is distributed exponentially, while the mean of this distribu-
tion depends on the whole local history. These schedulers are strongly dis-
tributed, and this is no surprise: the interleaving between two atoms relies
on a parameter that depends only on their local histories. In fact, our defi-
nition of strongly distributed schedulers would be suspicious if rate sched-
ulers were not strongly distributed. This can be seen as a (weak) additional

†In the sense that the set of trace distributions is a precongruence for parallel compo-
sition. There are some compositionality results for full-history dependent schedulers, but
refinement is defined in terms of simulation, not trace containment [134, 116].

164 concluding remarks

argument to support that strongly distributed schedulers do not rule out re-
alistic schedulers. What makes this argument pretty weak is the fact that it
considers only exponential distributions, and this is quite a strong assump-
tion. In order to get a stronger argument, we should consider the schedulers
in which the elapsed time is distributed according to an arbitrary distribu-
tion, which is selected by the adversary on the basis of the local history.
An interesting question is, thus, whether these schedulers are strongly dis-
tributed or not. No matter what the answer is, the results are relevant: if all
these schedulers are strongly distributed, then we get a nice argument to
support strongly distributed schedulers. If some of these schedulers are not
strongly distributed, then the definition of strongly distributed schedulers is
ruling out realistic behaviours: it is perfectly possible that each entity looks
at his local history and then selects a distribution for the time to delay the
next output, and so this behaviour must be considered.

A final pending question concerns decidability. So far, works on undecid-(Un)decidability of
the infimum
reachability problem

ability for probabilistic systems have focused on the problem of calculating
the supremum reachability probability. A possible cause of this interest is
that a word is accepted by a probabilistic automata iff the probability of
reaching an accepting state is greater than a given threshold (and stochastic
languages are not closed by complement in general). Hence, from the point
of view of language acceptance, the supremum probability results in a much
more useful measure than the infimum probability. However, from the point
of view of model checking, the infimum probability is relevant: although we
cannot check safety properties such as “the system fails with probability at
most 0.01” (because of the results in Chapter 5), the infimum probability is
useful for liveness properties such as “the system replies with probability
at least 0.99”. Then, the study of whether the infimum can be automatically
calculated worths our consideration.

10.3 a conclusion’s conclusion

We faced several difficulties along the way. The first one (and one of the
most disappointing) was undecidability. Another milestone with which we
clashed is the fact that distributed schedulers are not sufficient to eliminate
the extra restriction for partial order reduction. This motivated the introduc-
tion of strongly distributed schedulers. We faced yet another difficulty when
we found that randomization adds power to strongly distributed schedulers
(as explained in Subsection 4.2.1). Of course, I just mentioned those issues
that can be summarized in this short conclusion.

While seeing all the trip in a retrospective view, it feels quite satisfying
to deliver the techniques and algorithms in this thesis (it feels even better
when taking into account all the milestones we have had to jump across the
trip).

Part IV

A P P E N D I X

“Era come un grandioso piano segreto, e come in
ogni piano segreto nessuno era mai a conoscenza

di tutti i dettagli”
Riccardo Raccis. Il paradosso di plazzi, 3

A
P R O O F S O F C H A P T E R 4

theorem 4 .7

Definit ion A.1. Let I be an interleaving scheduler and SG be a set of
finite global paths, and let σi∗ be a local path such that [σm]i∗ = σi∗ for
some σm ∈ SG.

The interleaving scheduler NR(I,SG,σi∗) is defined as

I. NR(I,SG,σi∗)(σ)(Ai∗) = 1 if [σ]i∗ = σi∗ and σ ∈ SG and

II. NR(I,SG,σi∗)(σ)(Ai) = I(σ)(Ai) for all σ, Ai ∈ ATOMS(P), such that
either σ 6∈ SG or [σ]i∗ 6= σ∗ and

III. NR(I,SG,σi∗)(σ)(Ai) = 0 if [σ]i∗ = σi∗ , σ ∈ SG and Ai 6= Ai∗ .

Given η = (I, {Θi}i, {Υi}i), we define

NR(η,SG,σi∗) = (NR(I,SG,σi∗) , {Θi}i , {Υi}) .

Theorem. Let SG be a set of finite global paths such that, for all σm,σn ∈
SG, σm 6= σn it holds (σm)↑ ∩ (σn)↑ = ∅. Let η ∈ DISTP([·]) having interleaving
scheduler I, and let

SL = {[σ]i | σ ∈ SG ∧ PRη
q
((σ)↑) > 0 ∧

∣∣Gi(LAST(σ))
∣∣ > 0} .

If there exist functions Ri : SL ∩ LOCALPATHSi → R>0 such that

∀σ ∈ SG : I(σ)(Ai) =
Ri([σ]i)∑
i ′ Ri([σ]i ′)

,

then there exists σi∗ ∈ SL such that Ri∗(σi∗) > 0 and

PRNR(η,SG,σi∗)(
⊎

σm∈SG

(σm)↑) 6 PRη(
⊎

σm∈SG

(σm)↑) .

Proof. For simplicity, we write η ′ instead of NR(η,SG,σi∗). The probabilities
changed in η ′ are only those of the paths σm such that σg < σm for some
σg ∈ SG. Let

p = {σ ∈ {σm} | ∃σg : σg ∈ SG ∧ σg < σm} . (A.1)

We find σi∗ such that PRη
′
(
⊎
σ∈p (σ)↑) 6 PRη(

⊎
σ∈p (σ)↑). For all σ ∈ p, letH(σ)

be the (uniquely defined) path such that H(σ) ∈ SG and H(σ) v σ (since
σ ∈ p, we can takeH(σ) = σg in Eqn. (A.1)). Let I(σ) be ACTIVE(σ〈LEN(H(σ))〉).
Moreover, for all σ such that I(H(σ))(I(σ)) > 0, let

Qησ =
PRη((σ)↑)

I(H(σ))(I(σ))
.

Note that, since the factor I(H(σ))(I(σ)) appears only once in PRη((σ)↑), we
have

Qησ = Qη
′′
σ (A.2)

169

170 proofs of chapter 4

for all σ such that I(H(σ))(I(σ)) > 0, for all η ′′ such that η ′′ differs from η

only for I(H(σ)). If I(H(σ))(I(σ)) = 0, we define Qησ = 0. Then,

PRη((σ)↑) = I(H(σ))(I(σ)) ·Qησ =
R(H(σ, I(σ)))∑
j R(H(σ, j))

·Qησ

for all σ, where H(σ, i) = [H(σ)]i. As a consequence

PRη((σ)↑) ·
∑
j

R(H(σ, j)) = R(H(σ, I(σ))) ·Qησ . (A.3)

We show that

σi∗ = arg min
{σi | Ri(σi)>0}

∑
{σ∈p | I(σ)=Ai ∧H(σ,i)=σi}

Qησ+
∑

{σ∈p |H(σ,i) 6=σi}

PRη((σ)↑)

yields

PRNR(η,SG,σ∗)(
⊎
m

(σm)↑) 6 PRη(
⊎
m

(σm)↑) .

In the following calculation, let J =
∑
σi∈SL Ri(σi).

PRη(
⊎
σ∈p

(σ)↑)

=
1

J

∑
σ∈p

PRη((σ)↑) · J

=
1

J

(∑
σ∈p

PRη((σ)↑) ·
(∑

{σj |H(σ,j)=σj}

Rj(σj)
)

+
∑
σ∈p

PRη((σ)↑) ·
(∑

{σj |H(σ,j) 6=σj}

Rj(σj)
))

=
1

J

((?)︷ ︸︸ ︷∑
Ai

∑
σi

∑
{σ∈p | I(σ)=Ai ∧H(σ,i)=σi}

PRη((σ)↑) ·
(∑

{σj |H(σ,j)=σj}

Rj(σj)
)

+
∑
σ∈p

PRη((σ)↑) ·
(∑

{σj |H(σ,j) 6=σj}

Rj(σj)
))

=
1

J

(
(?) +

∑
σ∈p

∑
Aj

∑
{σj |H(σ,j) 6=σj}

PRη((σ)↑) · Rj(σj)
)

=
1

J

(
(?) +

∑
σ∈p

∑
Ai

∑
{σi |H(σ,i) 6=σi}

PRη((σ)↑) · Ri(σi)
)

=
1

J

(
(?) +

∑
Ai

∑
σi

∑
{σ∈p |H(σ,i) 6=σi}

PRη((σ)↑) · Ri(σi)
)

=
{

Apply Equation (A.3) in (1)
}

1

J

(∑
Ai

∑
σi

(∑
{σ∈p | I(σ)=Ai ∧H(σ,i)=σi}

Ri(σi) ·Qησ

+
∑

{σ∈p |H(σ,i) 6=σi}

PRη((σ)↑) · Ri(σi)
))

=
1

J

(∑
Ai

∑
σi

R(σi)
(∑

{σ∈p | I(σ)=Ai ∧H(σ,i)=σi}

Qησ

Lemma 4.10 171

+
∑

{σ∈p |H(σ,i) 6=σi}

PRη((σ)↑)
))

>
1

J

(∑
Ai

∑
σi

R(σi)
(∑

{σ∈p | I(σ)= ∧H(σ,i∗)=σi∗}

Qησ

+
∑

{σ∈p |H(σ,i∗) 6=σi∗}

PRη((σ)↑)
))

=
1

J

(∑
Ai

∑
σi

R(σi)
)
·
(∑

{σ∈p | I(σ)=Ai∗ ∧H(σ,i∗)=σi∗}

Qησ

+
∑

{σ∈p |H(σ,i∗) 6=σi∗}

PRη((σ)↑)
)

=
∑

{σ∈p | I(σ)=Ai∗ ∧H(σ,i∗)=σi∗}

Qησ

+
∑

{σ∈p |H(σ,i∗) 6=σi∗}

PRη((σ)↑)

=
{
σi∗ = arg min{σi | } · · · and so Eqn. (A.2) applies

}∑
{σ∈p | I(σ)=Ai∗ ∧H(σ,i∗)=σi∗}

Q
NR(η,SG,σi∗)
σ

+
∑

{σ∈p |H(σ,i∗) 6=σi∗}

PRη((σ)↑)

Note that this is the probability of p under NR(η,SG,σi∗). In fact, the sum-
mand ∑

{σ∈p | I(σ)=Ai∗ ∧H(σ,i∗)=σi∗}

Q
NR(η,SG,σi∗)
σ

reflects item (I) in the definition of NR(η,SG,σi∗), the summand∑
{σ∈p |H(σ,i∗) 6=σi∗}

PRη((σ)↑)

reflects item (II). In the step of the calculation that introduces the inequality
>, the summands∑

σi 6=σi∗
R(σi)

(∑
{σ∈p | I(σ)=Ai ∧H(σ,i)=σi}

Qησ+
∑

{σ∈p |H(σ,i) 6=σi}

PRη((σ)↑)
))

are discarded, reflecting item (III).

lemma 4 .10

Let [·] be traceable. Let F1, · · · , FK be a set of fringes and η1, · · · ,ηK be a set of
schedulers such that, F1 = {INITP} and for all k, there exists σki∗ such that

Fk+1 = SPAWN(Fk)({σ | [σ]i∗ = σki∗}) 6= Fk ,

and for all k ′ > k

∀σ ∈ Fk : [σ]i∗ = σki∗ =⇒ Ik
′
(σ)(Ai∗) = 1 (A.4)

172 proofs of chapter 4

and

∀σ : PRη
k ′

((σ)↑) > 0 =⇒ PRη
k
((σ)↑) > 0 . (A.5)

Then, for all k, 0 < n < K− k,

∀σ ∈ Fk+n : PRη
k+n

((σ)↑) > 0 =⇒ σki∗ 6= [σ]i∗ .

Proof. Suppose towards a contradiction, that there exists σ∗ ∈ Fk+n such
that

σki∗ = [σ∗]i∗ (A.6)

and PRη
k+n

((σ∗)↑) > 0 for some n > 0, k. Then, since

Fj+1 = SPAWN(Fj)({σ | [σ]i∗ = σ
j
i∗})

for all j, we have that there exists σk such that σk ∈ Fk, σk < σ∗. Moreover,
since

Fk+1 = SPAWN(Fk)({σ | [σ]i∗ = σki∗}) ,

it must be

[σk]i∗ 6= σki∗ .

Otherwise, it would be I(σk) = Ai∗ and σk < σ∗: in this setting, prop-
erty (1.11) implies [σ∗]i∗ 6= σki∗ , thus contradicting Eqn. (A.6). Note also that,
by Eqn. (A.5), we have PRη

k
((σ∗)↑) > 0 and hence PRη

k
((σk)

↑
) > 0. Let σ

be a path in Fk such that [σ]i∗ = σki∗ (the existence of such σ is ensured
by Fk 6= Fk+1). Then, by renaming σk as σ ′, we have that the existence
of σ∗ implies the following statement: there exists σ,σ ′ ∈ Fk, σi such that
[σ]i = σi, [σ ′]i 6= σi and there is a path σ ′′ (namely, σ∗) such that σ ′ < σ ′′,
[σ ′′]i = σi and PRη

k
((σ ′′)↑) > 0. We prove that this statement cannot hold

under the hypotheses of the theorem, thus reaching a contradiction. Note
that the statement does not depend on n. In order to write the statement
more succintly, we say that (σ,σ ′,σ ′′,σi) is a fail for Fk. W. l. o. g. we take
assume that σ ′′ is as short as possible (i. e., it is minimal with respect to the
prefix relation).

We prove that all the Fk have no fails by induction on K. If K = 1 there is
only one fringe F1 = {INIT}. In a fail (σ,σ ′,σ ′′,σi) it must be [σ]i 6= [σ ′]i, and
so σ 6= σ ′. Since F1 has no two different paths, it cannot have fails.

For the inductive step, assume that FK−1 has no fails. Let σi∗ be the local
path used to spawn FK from FK−1. For all σ ∈ FK, we say that σ is old (is
new, resp.) if σ ∈ FK−1 (if σ 6∈ FK−1, resp.) Suppose, towards a contradiction,
that FK has a fail (σ,σ ′,σ ′′,σi). We consider four possible cases:

• Both σ and σ ′ are old.

In this case, (σ,σ ′,σ ′′,σi) are a fail in FK−1, contradicting the inductive
hypothesis.

• The path σ is old and σ ′ is new.

If [σ ′]i = [σ ′↓−1]i, then (σ,σ ′↓−1,σ ′′,σi) is a fail in FK−1.

Lemma 4.10 173

If [σ ′]i 6= [σ ′↓−1]i we note that, since Ai∗ produces the output in σ ′↓−1,
property (1.11) implies

[σ ′′↓−1]i∗ 6= [σ ′↓−m]i∗ (A.7)

for all m > 1 †. Let σs be the smallest prefix of σ ′↓−1 such that [σs]i =

[σ ′↓−1]i. If σs = INITP, then [σ ′↓−1]i = [INIT]i while σ ′′ has changed
its projection over Ai at least once (namely, in the step from σ ′↓−1 to
σ ′), and hence by Eqn. (4.14) we have [σ ′↓−1]i 6= [σ ′′]i, thus implying
that (σ,σ ′↓−1,σ ′′,σi) is a fail. If σs 6= INITP, by Eqn. (A.7) we have
[σ ′′↓−1]i∗ 6= [σs↓−1]i∗ . Since [·] is traceable, we have [σ ′↓−1]i 6= [σ ′′]i and,
again, (σ,σ ′↓−1,σ ′′,σi) is a fail.

In conclusion, (σ,σ ′↓−1,σ ′′,σi) is a fail in FK−1, thus contradicting the
inductive hypothesis.

• The path σ is new and σ ′ is old.

Since [·] is traceable, it must be

[σ ′′↓−1]i∗ = [σ↓−1]i∗ = σ∗i .

Since FK−1 has not been spawned at σ ′, we have [σ ′]i∗ 6= σ∗i and so
(σ↓−1,σ ′,σ ′′↓−1,σ∗i) is a fail in FK−1.

• Both σ and σ ′ are new.

It must be [σ ′′↓−1]i∗ = [σ↓−1]i∗ and, since both σ and σ ′ are new, it
holds [σ↓−1]i∗ = [σ ′↓−1]i∗ . However, since Ai∗ outputs more labels in
σ ′′↓−1 than in σ ′↓−1 (recall that it outputs the label after σ ′↓−1) and
by property (1.11), we have [σ ′↓−1]i∗ 6= [σ ′′↓−1]i∗ , thus contradicting
[σ ′′↓−1]i∗ = [σ↓−1]i∗ = [σ ′↓−1]i∗ .

†It is worth noting that here we are using the fact that PRη
k
((σ ′)↑) > 0, since otherwise

the last transition in σ ′ would not be necessarily the one prescribed by ηK.

B
P R O O F S O F C H A P T E R 6

The following theorem makes explicit the correspondence between P and
MDP(P), by showing that the probability of reaching s ′ from s coincides in
the respective schedulers. This correspondence suffices for our purposes,
since in this thesis we explore the verification of properties concerning the
states.

From Def. 7.1 (p. 122) we have that, given a scheduler η for P, a corre-
sponding scheduler ηMDP(P) for MDP(P) can be constructed. Here, we make it
precise the correspondence between these schedulers.

Theorem B.1. For all σ,∑
α,a ′

ηMDP(P)(σ)(α) · P((a, s),α, (a ′, (s ′1, · · · , s ′N))) =
∑
c

η(σ)(c) · c(s, s ′)

Proof. For all i, a, let gi = Θi(σ) and ri,a = Υ(σ,a). Then,∑
α,a ′

ηMDP(P)(σ)(α) · P((a, s),α, (a ′, (s ′1, · · · , s ′N))) =

∑
i,a ′

I(σ)(Ai) · gi(s,a ′, s ′i) ·
m∏
k=1

rjk,a ′(s,a ′, s ′jk)

In addition,∑
c

η(σ)(c) · c(s, s ′)

=
∑
i,a ′

∑
s ′′i

gi(s,a ′, s ′′i) · I(σ)(Ai) ·
1∑

s ′′i
gi(s,a ′, s ′′i)

· gi(s,a ′, si) ·
m∏
k=1

rjk,a ′(s,a ′, s ′jk)

=
∑
i,a ′

I(σ)(Ai) · gi(s,a ′, s ′i) ·
m∏
k=1

rjk,a ′(s,a ′, s ′jk)

Given a non-randomized scheduler ηM for MDP(P), a corresponding sched-
uler η for P can be defined as I(σ) = Ai, Θi(σ) = gi, Υi(σ,a) = fi(a), where
(gi, f1, · · · , fN) = η(σ). It is easy to see that ηMDP(P)(σ) = ηM.

Theorem (6.1). Let S be a measurable, state-based set of infinite paths. Then,

sup
η∈SCHEDP

PRη(S) = sup
η∈SCHEDMDP(P)

PRη(S) .

Proof. For each η ∈ SCHEDP, we have ηMDP(P) ∈ SCHEDMDP(P). By Theorem B.1,
PRη(S) = PRηMDP(P)(S) and so

sup
η∈SCHEDP

PRη(S) 6 sup
η∈SCHEDMDP(P)

PRη(S) .

175

176 proofs of chapter 6

In addition, since non-randomized schedulers attain supremum probabili-
ties for MDPs, and for all non-randomized ηM ∈ SCHEDMDP(P) there exists
η ∈ SCHEDP such that ηMDP(P) = ηM (as shown above), we have

sup
η∈SCHEDMDP(P)

PRη(S) 6 sup
η∈SCHEDP

PRη(S) .

C
P R O O F S O F C H A P T E R 7

lemma 7 .1

For all simple IPIOA P, the triple (RINV
I , {(πα,[[·]] ,π¬α,[[·]])}α∈ACTIONS, [[·]]) is an independence struc-

ture.

Proof. Given α, β, a, b, s and s ′ as in the definition of independence structure, let s =

(s1, · · · , sN), and similarly for s ′ and s ′′. Let α = (gk, f1, · · · , fN), β = (gk ′ , f ′1, · · · , f ′N).
Let’s start with the first property. If α(s,a, s ′) > 0, we have si 6= s ′i =⇒ Ai ∈ INV(α). Since

INV(α)∩ INV(β) = ∅, we conclude

∀Ai ∈ INV(β) : si = s ′i . (C.1)

Then,

β ∈ ACTIONS(s)

⇐⇒
{
P is simple (and so the generative/reactive structures are as in Def. 1.2

}
gk ′ ∈ Gk ′(sk ′) ∧ ∀Aj∈REACTIVE(β),a∈ACTLABjf

′
j(a) ∈ Rj(sj,a)

⇐⇒
{

Equation (C.1)
}

gk ′ ∈ Gk ′(s ′k ′) ∧ ∀Aj∈REACTIVE(β),a∈ACTLABjRj(s
′
j,a)

⇐⇒
{
P is simple

}
β ∈ ACTIONS(s ′)

Property (2) holds by definition of (probability assigned by a) compound transition, since
it must be si = s ′i for all Ai such that a 6∈ ACTLABi, and a 6∈ ACTLABi for all Ai 6∈ INV(α).

Property (3) holds again by definition of compound transition. As before, it must be si = s ′i
for all Ai such that a 6∈ ACTLABi. Let Aj ∈ INV(α). Then Aj 6∈ INV(β) (since INV(α)∩ INV(β) = ∅)
and so a 6∈ ACTLABj. In conclusion sj = s ′j for all Aj ∈ INV(α), as desired.

For property (4), let B = {Ai | a ∈ ACTLABi}. Then,

α((sα, s¬α),a, (s ′α, s¬α))

=
{

Definition
}

gk(sk,a, s ′k) ·
∏

Ai∈B\{Ak}

fi(a)(si,a, s ′i)

=
{

B ⊆ INV(α), definition of s¬α
}

α((sα, s ′′¬α),a, (s ′α, s ′′¬α))

The same proof can be carried out for β, thus implying the property.
Since ACTIVE(α) ∈ INV(α) and ACTIVE(β) ∈ INV(β), property (5) follows from αRINV

I β.
Property (6): αkRINV

I β implies

Ai 6∈ INV(αk) (C.2)

for all Ai ∈ INV(β), k = 1, · · · ,n, and in particular for all Ai ∈ AFFECT(αk). (C.2) implies
ak 6∈ ACTLABi, for all k, for all Ai ∈ AFFECT(β). Hence, the projection [[·]]i hides the steps after
σ.

177

178 proofs of chapter 7

For property (7), if

[[σ.α1.a1.(sβ, s1
¬β

) · · ·αn.an.(sβ, sn
¬β

)]]i

6= [[σ.α ′1.a ′1.(sβ, s ′1
¬β

) · · ·α ′n ′ .a ′n ′ .(sβ, s ′n
′¬β

)]]i

then

[[σ.α1.a1.(sβ, s1
¬β

) · · ·αn.an.(sβ, sn
¬β

)]]i = [[σ]]i.b1.s1i . · · · .bm.smi

and

[[σ.α ′1.a ′1.(sβ, s ′1
¬β

) · · ·α ′n ′ .a ′n ′ .(sβ, s ′n
′¬β

)]]i = [[σ]]i.b ′1.s ′1i . · · · .b ′m.s ′mi

for some b, ski such that b1.s1i . · · · .bm.smi 6= b ′1.s ′1i . · · · .b ′m
′
.s ′m

′
i . We consider two cases. In

case a 6∈ ACTLABi, we have

[[σ.β.a.(tβ, s¬β).α1.a1.(tβ, s1
¬β

) · · ·αn.an.(tβ, sn
¬β

)]]i

= [[σ]]i.b1.s1i . · · · .bm.sm
′

i

6= [[σ]]i.b ′1.s ′1i . · · · .b ′m
′
.s ′m

′
i

= [[σ.β.a.(t ′β, s¬β).α ′1.a ′1.(t ′β, s ′1
¬β

) · · ·α ′n ′ .a ′n ′ .(t ′β, s ′n
′¬β

)]]i

In case a ∈ ACTLABi, there exist local states vi, v ′i such that

[[σ.β.a.(tβ, s¬β).α1.a1.(tβ, s1
¬β

) · · ·αn.an.(tβ, sn
¬β

)]]i

= [[σ]]i.a.vi.b1.s1i . · · · .bm.smi
6=
{
b1.s1i . · · · .bm.smi 6= b ′1.s ′1i . · · · .b ′m

′
.s ′m

′
i

implies a.vi.b1.s1i . · · · .bm.smi 6= a.v ′i.b
′1.s ′1i . · · · .b ′m

′
.s ′m

′
i

}
[[σ]]i.a.v ′i.b

′1.s ′1i . · · · .b ′m
′
.s ′m

′
i

= [[σ.β.a.(t ′β, s¬β).α ′1.a ′1.(t ′β, s ′1
¬β

) · · ·α ′n ′ .a ′n ′ .(t ′β, s ′n
′¬β

)]]i

For property (8), if[[
σ.α1.a1.(sβ, s1

¬β
) · · ·αn.an.(sβ, sn

¬β
).β.a.(tβ, sn

¬β
)

.γ1.b1.u1. · · · .γm.bm.um
]]
i

6=
[[
σ.α ′1.a1.(sβ, s ′1

¬β
) · · ·α ′n ′ .a ′n ′ .(sβ, s ′n

′¬β
).β.a.(t ′β, s ′n

′¬β
)

.γ ′1.b ′1.u ′1. · · · .γ ′m
′
.b ′m

′
.u ′m

′]]
i

let (tβ, sn
¬β

) = (s∗1, · · · , s∗N) and (t ′β, s ′n
′¬β

) = (s ′∗1 , · · · , s ′∗N). Note that, by definition of the
β projection πβ,[[·]] , we have

s∗i = πi(t
β, sn

¬β
) = πi(t

β, s¬β) (C.3)

s ′∗i = πi(t
′β, s ′n

′¬β
) = πi(t

′β, s¬β) (C.4)

for all Ai ∈ INV(β), since the local state of Ai lies in tβ.

Lemma 7.1 179

In case a ∈ ACTLABi, then Ai ∈ INV(β) and so, by definition of RINV
I , we have Ai 6∈ INV(αk),

Ai 6∈ INV(α ′k) for all k. Hence, ak,a ′k 6∈ ACTLABi for all k. Then[[
σ.α1.a1.(sβ, s1

¬β
) · · ·αn.an.(sβ, sn

¬β
).β.a.(tβ, sn

¬β
)

.γ1.b1.u1. · · · .γm.bm.um
]]
i

= [[σ]]i.a.s∗i .e
1.u1i . · · · .eq.uqi

and [[
σ.α ′1.a1.(sβ, s ′1

¬β
) · · ·α ′n ′ .a ′n ′ .(sβ, s ′n

′¬β
).β.a.(t ′β, s ′n

′¬β
)

.γ ′1.b ′1.u ′1. · · · .γ ′m
′
.b ′m

′
.u ′m

′]]
i

= [[σ]]i.a.s ′∗i .e ′1.u ′1i . · · · .e ′q.u ′q
′

i

for some e1.u1i . · · · .eq.uqi , e ′1.u ′1i . · · · .e ′q.u ′q
′

i such that

a.s∗i .e
1.u1i . · · · .eq.uqi 6= a.s ′∗i .e ′1.u ′1i . · · · .e ′q.u ′q

′

i (C.5)

Then, if a ∈ ACTLABi, we prove the desired inequality as follows.[[
σ.β.a.(tβ, s¬β).α1.a1.(tβ, s1

¬β
) · · ·αn.an.(tβ, sn

¬β
)

.γ1.b1.u1. · · · .γm.bm.um
]]
i

=
{
Ai 6∈ INV(αk) for all k

}
[[σ]]i.a.πi(tβ, s¬β).e1.u1i . · · · .eq.eqi

=
{

Equation (C.3)
}

[[σ]]i.a.s∗i .e
1.u1i . · · · .eq.eqi

6=
{

Inequality (C.5)
}

[[σ]]i.a.s ′∗i .e ′1.u ′1i . · · · .e ′q.u ′q
′

i

=
{
Ai 6∈ INV(α ′k) for all k

}[[
σ.β.a.(t ′β, s¬β).α ′1.a ′1.(t ′β, s ′1

¬β
) · · ·α ′n ′ .a ′n ′ .(t ′β, s ′n

′¬β
)

.γ ′1.b ′1.u ′1. · · · .γ ′m
′
.b ′m

′
.u ′m

′]]
i

If a 6∈ ACTLABi, then[[
σ.α1.a1.(sβ, s1

¬β
) · · ·αn.an.(sβ, sn

¬β
).β.a.(tβ, sn

¬β
)

.γ1.b1.u1. · · · .γm.bm.um
]]
i

= [[σ]]i.e1.u1i . · · · .eq.uqi
=
[[
σ.β.a.(tβ, s¬β).α1.a1.(tβ, s1

¬β
) · · ·αn.an.(tβ, sn

¬β
)

.γ1.b1.u1. · · · .γm.bm.um
]]
i

and [[
σ.α ′1.a1.(sβ, s ′1

¬β
) · · ·α ′n ′ .a ′n ′ .(sβ, s ′n

′¬β
).β.a.(t ′β, s ′n

′¬β
)

.γ ′1.b ′1.u ′1. · · · .γ ′m
′
.b ′m

′
.u ′m

′]]
i

= [[σ]]i.e ′1.u ′1i . · · · .e ′q.u ′q
′

i

=
[[
σ.β.a.(t ′β, s¬β).α ′1.a ′1.(t ′β, s ′1

¬β
) · · ·α ′n ′ .a ′n ′ .(t ′β, s ′n

′¬β
)

.γ ′1.b ′1.u ′1. · · · .γ ′m
′
.b ′m

′
.u ′m

′]]
i

180 proofs of chapter 7

for some e1.u1i . · · · .eq.uqi and e ′1.u ′1i . · · · .e ′q.u ′q
′

i . The inequality
[
σ1
]
i
6=
[
σ2
]
i

gives

e1.u1i . · · · .eq.uqi 6= e1.u1i . · · · .eq.uqi ,

thus yielding the result.

lemma 7 .2

For all simple IPIOA P, the triple (RINV
I , {(πα,[[·]] ,π¬α,[[·]])}α∈ACTIONS, |[[·]]|) is an independence struc-

ture.

We prove this lemma by proving a more general version, in which we consider the full-
communication of any projection [·] such that:

a ∈ ACTLABi ⇐⇒[
σ.β.a.(s ′β, s¬β).α1.a1.(s ′β, s1

¬β
). · · · .αn.an.(s ′β, sn

¬β
)
]
i

6=
[
σ.α1.a1.(sβ, s1

¬β
). · · · .αn.an.(sβ, sn

¬β
)
]
i

. (C.6)

That is, the projection only allows to see the changes introduced by labels in ACTLABi. (A pro-
jection that does not comply with this property is the visible prefix property —see Def. 6.4).

In addition, we require

NACTLABi(σ) 6= NACTLABi(σ ′) =⇒ [σ]i 6=
[
σ ′
]
i

(C.7)

where NACTLABi(σ) is the amount of labels in ACTLABi, that is,

• NACTLABi(INIT) = 0

• NACTLABi(σ.α.a.s) = NACTLABi(σ) + 1 if a ∈ ACTLABi

• NACTLABi(σ.α.a.s) = NACTLABi(σ), otherwise.

Moreover, we also generalize the independence relation. We consider any RI in which, if an
atom can see two labels a, a ′ output by two actions α, α ′, then α and α ′ are not independent.
In symbols:

a,a ′ ∈ ACTLABi ∧ α(s,a, t) > 0 ∧ α ′(s ′,a ′, t ′) > 0 =⇒ α 6RI α ′ (C.8)

Properties (C.6) and (C.8) imply that, if we move an action β accross independent actions
αk, then the projection is not affected:[

σ.β.a.(s ′β, s¬β).α1.a1.(s ′β, s1
¬β

). · · · .αn.an.(s ′β, sn
¬β

)
]
i

=
[
σ.α1.a1.(sβ, s1

¬β
). · · · .(sβ, sm

¬β
).β.a · · · .αn.an.(s ′β, sn

¬β
)
]
i

(C.9)

(with possibly n = m). This property has a simple explanation: if a ∈ ACTLABi then (by (C.8))
ak 6∈ ACTLABi for all k, and so both projections in Eqn. (C.9) are equal to

[
σ.β.a.(s ′β, sβ)

]
i
. If

a 6∈ ACTLABi, both projections are equal to[
σ.α1.a1.(sβ, s1

¬β
). · · · .(sβ, sm

¬β
). · · · .αn.an.(sβ, sn

¬β
)
]
i

.

This property also holds for the full-communication version of [·], as stated in the following
lemma.

Lemma 7.2 181

Lemma C.1. Let RI and |[·]| be such that (C.6) and (C.8) hold. If αkRI β for all k, then∣∣∣[σ.β.a.(s ′β, s¬β).α1.a1.(s ′β, s1
¬β

). · · · .αn.an.(s ′β, sn
¬β

)
]∣∣∣
i

=
∣∣∣[σ.α1.a1.(sβ, s1

¬β
). · · · .(sβ, sm

¬β
).β.a · · · .αn.an.(s ′β, sn

¬β
)
]∣∣∣
i

(C.10)

Proof. It suffices to prove∣∣∣[σ.β.a.(s ′β, s¬β).α1.a1.(s ′β, s1
¬β

). · · · .αn.an.(s ′β, sn
¬β

)
]∣∣∣
i

=
∣∣∣[σ.α1.a1.(sβ, s1

¬β
).β.a.(s ′β, s1

¬β
) · · · .αn.an.(s ′β, sn

¬β
)
]∣∣∣
i

(C.11)

(Equation (C.10) follows from repeated application of Eqn. (C.11).)
We prove Eqn. (C.11) by induction on n− 1, that is, the number of αk after the action α1

that is swapped with β.
If n− 1 = 0 we have three cases: if a,a1 6∈ ACTLABi, by (C.6), we have∣∣∣[σ.β.a.(s ′β, s¬β).α1.a1.(s ′β, s1

¬β
)
]∣∣∣
i
= |[σ]|i =

∣∣∣[σ.α1.a1.(sβ, s1
¬β

).β.a.(s ′β, s1
¬β

)
]∣∣∣
i

If a ∈ ACTLABi then, by (C.8), we have a1 6∈ ACTLABi. Moreover, a1 6∈ ACTLABACTIVE(β), since
a ∈ ACTLABACTIVE(β). Therefore,∣∣∣[σ.β.a.(s ′β, s¬β).α1.a1.(s ′β, s1

¬β
)
]∣∣∣
i

= (
[
σ.β.a.(s ′β, s¬β)

]
i

, |[σ]|ACTIVE(β))

= (
[
σ.α1.a1.(sβ, s1

¬β
).β.a.(s ′β, s¬β)

]
i

,
∣∣∣[σ.α1.a1.(sβ, s1

¬β
)
]∣∣∣

ACTIVE(β)
)

=
∣∣∣[σ.(sβ, s¬β).α1.a1.(sβ, s1

¬β
).β.a.(s ′β, s1

¬β
)
]∣∣∣
i

If a 6∈ ACTLABi, a1 ∈ ACTLABi, then∣∣∣[σ.β.a.(s ′β, s¬β).α1.a1.(s ′β, s1
¬β

)
]∣∣∣
i

= (
[
σ.β.a.(s ′β, s¬β).α1.a1.(s ′β, s1

¬β
)
]
i

,
∣∣[σ.β.a.(s ′β, s¬β)

]∣∣
ACTIVE(α1)

)

= (
[
σ.α1.a1.(sβ, s1

¬β
)
]
i

, |[σ]|ACTIVE(α1))

=
∣∣∣[σ.α1.a1.(sβ, s1

¬β
)
]∣∣∣
i

=
∣∣∣[σ.α1.a1.(sβ, s1

¬β
).β.a.(s ′β, s1

¬β
)
]∣∣∣
i

If n− 1 > 0, then we have two cases. If an 6∈ ACTLABi, then∣∣∣[σ.β.a.(s ′β, s¬β).α1.a1.(s ′β, s1
¬β

). · · · .αn.an.(s ′β, sn
¬β

)
]∣∣∣
i

=
∣∣∣[σ.β.a.(s ′β, s¬β).α1.a1.(s ′β, s1

¬β
). · · · .αn−1.an−1.(s ′β, sn−1¬β

)
]∣∣∣
i

and ∣∣∣[σ.α1.a1.(sβ, s1
¬β

).β.a.(s ′β, s1
¬β

) · · · .αn.an.(s ′β, sn
¬β

)
]∣∣∣
i

=
∣∣∣[σ.α1.a1.(sβ, s1

¬β
).β.a.(s ′β, s1

¬β
) · · · .αn−1.an−1.(s ′β, sn−1¬β

)
]∣∣∣
i

.

Hence, if an 6∈ ACTLABi then the property holds by inductive hypothesis.

182 proofs of chapter 7

If an ∈ ACTLABi:∣∣∣[σ.β.a.(s ′β, s¬β).α1.a1.(s ′β, s1
¬β

). · · · .αn.an.(s ′β, sn
¬β

)
]∣∣∣
i

=
([
σ.β.a.(s ′β, s¬β).α1.a1.(s ′β, s1

¬β
). · · · .αn.an.(s ′β, sn

¬β
)
]
i

,∣∣∣[σ.β.a.(s ′β, s¬β).α1.a1.(s ′β, s1
¬β

). · · · .αn−1.an−1.(s ′β, sn−1¬β
)
]∣∣∣

ACTIVE(αn)

)
=
{

The property holds for [·]. Inductive hypothesis
}

([
σ.α1.a1.(sβ, s1

¬β
).β.a.(s ′β, s1

¬β
) · · · .αn.an.(s ′β, sn

¬β
)
]
i

,∣∣∣[σ.α1.a1.(sβ, s1
¬β

).β.a.(s ′β, s1
¬β

) · · · .αn−1.an−1.(s ′β, sn−1¬β
)
]∣∣∣

ACTIVE(αn)

)
=
∣∣∣[σ.α1.a1.(sβ, s1

¬β
).β.a.(s ′β, s1

¬β
) · · · .αn.an.(s ′β, sn

¬β
)
]∣∣∣
i

The general version of Lemma 7.2 is the lemma below.

Lemma C.2. Let (RINV
I , {(πα,π¬α)}α∈ACTIONS, [·]) be an independence structure. If RI and |[·]| com-

ply with (C.6), (C.7) and (C.8), then (RINV
I , {(πα,π¬α)}α∈ACTIONS, |[·]|) is an independence structure.

Proof. We check the properties related to the projection (namely, properties (1)–(8)) in Def. 7.5.
The other properties (which do not involve the projection) hold since (RINV

I , {(πα,π¬α)}α, [·])
is an independence structure.

For property (6), let Ai ∈ AFFECT(β). We have to prove
∣∣[σ.α1.a1.s1. · · · .αn.an.sn

]∣∣
i
= |[σ]|i.

By (C.8) we have ak 6∈ ACTLABi, and so (C.6) yields[
σ.α1.a1.s1. · · · .αk.ak.sk

]
i
= [σ]i

for all k 6 n. The definition of |[·]| gives∣∣[σ.α1.a1.s1. · · · .αk−1.ak−1.sk
]∣∣
i
= |[σ]|i

for all k 6 n, and in particular n.
We prove property (7) by induction on n+ n ′. If n+ n ′ = 0, then the implication holdsProperty (7)

trivially. If n+n ′ > 0 assume n > 0 (the case n ′ > 0 is symmetrical). We have two cases.

• Case an ∈ ACTLABi.
If there exists no m such that a ′m ∈ ACTLABi, then we are able to we prove the consequent

of Eqn. (7.4), namely∣∣∣[σ.β.a.(tβ, s¬β).α1.a1.(tβ, s1
¬β

) · · ·αn.an.(tβ, sn
¬β

)
]∣∣∣
i

6=
∣∣∣[σ.β.a.(t ′β, s¬β).α ′1.a ′1.(t ′β, s ′1

¬β
) · · ·α ′n ′ .a ′n ′ .(t ′β, s ′n

′¬β
)
]∣∣∣
i

,
(C.12)

The proof of this inequality follows from these two equalities:∣∣∣[σ.β.a.(tβ, s¬β).α1.a1.(tβ, s1
¬β

) · · ·αn.an.(tβ, sn
¬β

)
]∣∣∣
i

= ([σ]i . · · · .an.πi(tβ, sn
¬β

)) , σ|[·]|
ACTIVE(αn)) , (C.13)

(where σ|[·]|
j ∈ LOCALPATHS

|[·]|
ACTIVE(αn)) and∣∣∣[σ.β.a.(t ′β, s¬β).α ′1.a ′1.(t ′β, s ′1

¬β
) · · ·α ′n ′ .a ′n ′ .(t ′β, s ′n

′¬β
)
]∣∣∣
i
= ([σ]i , σ ′|[·]|ACTIVE(αn)) .

Lemma 7.2 183

Hence, (C.12) follows from [σ]i 6= [σ]i . · · · .an.πi(tβ, sn
¬β

).
Now we explore the case in which m exists. W. l. o. g. , let m be the greatest number such

that a ′m ∈ ACTLABi, and so

n ′

∀
q=m+1

a ′q 6∈ ACTLABi . (C.14)

By definition of |[·]|, this implies∣∣∣[σ.α ′1.a ′1.(sβ, s ′1
¬β

) · · ·α ′n ′ .a ′n ′ .(sβ, s ′n
′¬β

)
]∣∣∣
i

=
∣∣∣[σ.α ′1.a ′1.(sβ, s ′1

¬β
) · · ·α ′m.a ′m.(sβ, s ′m

¬β
)
]∣∣∣
i

(C.15)

The definition of |[·]| yields:

|[

σ1︷ ︸︸ ︷
σ.α1.a1.(sβ, s1

¬β
) · · ·αn.an.(sβ, sn

¬β
)]|i

= (
[
σ1
]
i

,
∣∣∣[σ.α1.a1.(sβ, s1

¬β
) · · ·αn−1.an−1.(sβ, sn−1¬β

)
]∣∣∣

ACTIVE(αn)
)

(C.16)

and

|[

σ2︷ ︸︸ ︷
σ.α ′1.a ′1.(sβ, s ′1

¬β
) · · ·α ′m.a ′m.(sβ, s ′m

¬β
)]|i

= (
[
σ2
]
i

,
∣∣∣[σ.α ′1.a ′1.(sβ, s ′1

¬β
) · · ·α ′m−1.a ′m−1.(sβ, s ′m−1¬β

)
]∣∣∣

ACTIVE(α ′m)
)

(C.17)

Hence, if an ∈ ACTLABi, then∣∣[σ1]∣∣
i
6=
∣∣∣[σ.α ′1.a ′1.(sβ, s ′1

¬β
) · · ·α ′n ′ .a ′n ′ .(sβ, s ′n

′¬β
)
]∣∣∣
i

=⇒
{

Equation (C.15)
}∣∣[σ1]∣∣

i
6=
∣∣[σ2]∣∣

i

=⇒
{

Equations C.16 and C.17

}
(
[
σ1
]
i

,
∣∣[σ1↓−1]∣∣ACTIVE(αn)

) 6= (
[
σ2
]
i

,
∣∣[σ2↓−1]∣∣ACTIVE(α ′m)

)

=⇒
{

Let σ ′1 = σ.β.a.(tβ, s¬β).α1.a1.(tβ, s1
¬β

) · · ·αn.an.(tβ, sn
¬β

) and

σ ′2 = σ.β.a.(t ′β, s¬β).α ′1.a ′1.(t ′β, s ′1
¬β

) · · ·α ′m.a ′m.(t ′β, s ′m
¬β

) .

If ACTIVE(αn) 6= ACTIVE(α ′m), then
∣∣[σ ′1↓−1]∣∣ACTIVE(αn)

6=
∣∣[σ ′2↓−1]∣∣ACTIVE(α ′m)

.

Otherwise, apply the fact that property (7) holds for [·].
}

(
[
σ ′1
]
i

,
∣∣[σ1↓−1]∣∣ACTIVE(αn)

) 6= (
[
σ ′2
]
i

,
∣∣[σ2↓−1]∣∣ACTIVE(α ′m)

)

=⇒
{

If ACTIVE(αn) 6= ACTIVE(α ′m), then
∣∣[σ ′1↓−1]∣∣ACTIVE(αn)

6=
∣∣[σ ′2↓−1]∣∣ACTIVE(α ′m)

.

Otherwise, since LEN(σ ′1↓−1) + LEN(σ ′2↓−1) = (n− 1) + (m− 1) < n+n ′,

the inductive hypothesis applies
}

(
[
σ ′1
]
i

,
∣∣[σ ′1↓−1]∣∣ACTIVE(αn)

) 6= (
[
σ ′2
]
i

,
∣∣[σ ′2↓−1]∣∣ACTIVE(α ′m)

)

=⇒
{

Definition of |[·]|
}∣∣[σ ′1]∣∣

i
6=
∣∣[σ ′2]∣∣

i

=⇒
{

By (C.14), definition of |[·]|
}

∣∣[σ ′1]∣∣
i
6=
∣∣∣[σ.β.a.(t ′β, s¬β).α ′1.a ′1.(t ′β, s ′1

¬β
) · · ·α ′n ′ .a ′n ′ .(t ′β, s ′n

′¬β
)
]∣∣∣
i

184 proofs of chapter 7

This implication is (7.4).

• Case an 6∈ ACTLABi

‖[

σ1︷ ︸︸ ︷
σ.α1.a1.(sβ, s1

¬β
) · · ·αn.an.(sβ, sn

¬β
)]‖i =

∣∣[σ1↓−1]∣∣i (C.18)

Then, ∣∣[σ1]∣∣
i
6=
∣∣∣[σ.α ′1.a ′1.(sβ, s ′1

¬β
) · · ·α ′n ′ .a ′n ′ .(sβ, s ′n

′¬β
)
]∣∣∣
i

=⇒
{

Equation (C.18)
}

∣∣[σ1↓−1]∣∣i 6= ∣∣∣[σ.α ′1.a ′1.(sβ, s ′1
¬β

) · · ·α ′n ′ .a ′n ′ .(sβ, s ′n
′¬β

)
]∣∣∣
i

=⇒
{

Inductive hypothesis
}∣∣∣[σ.β.a.(tβ, s¬β).α1.a1.(tβ, s1

¬β
) · · ·αn−1.an−1.(tβ, sn−1¬β

)
]∣∣∣
i

6=
∣∣∣[σ.β.a.(t ′β, s¬β).α ′1.a ′1.(t ′β, s ′1

¬β
) · · ·α ′n ′ .a ′n ′ .(t ′β, s ′n

′¬β
)
]∣∣∣
i

=⇒
{
an 6∈ ACTLABi

}∣∣∣[σ.β.a.(tβ, s¬β).α1.a1.(tβ, s1
¬β

) · · ·αn.an.(tβ, sn
¬β

)
]∣∣∣
i

6=
∣∣∣[σ.β.a.(t ′β, s¬β).α ′1.a ′1.(t ′β, s ′1

¬β
) · · ·α ′n ′ .a ′n ′ .(t ′β, s ′n

′¬β
)
]∣∣∣
i

For property (8), letProperty (8)

σ1
′
= σ.β.a.(tβ, s¬β).α1.a1.(tβ, s1

¬β
) · · ·αn.an.tβ, sn

¬β
).γ1.b1.u1. · · · .γm.bm.um

σ2
′
= σ.β.a.(t ′β, s¬β).α ′1.a ′1.(t ′β, s ′1

¬β
) · · ·α ′n ′ .a ′n ′ .(t ′β, s ′n

′¬β
)

.γ ′1.b ′1.u ′1. · · · .γ ′m
′
.b ′m

′
.u ′m

′

We prove the contrapositive of property (8), namely,∣∣∣[σ1 ′]∣∣∣
i
=
∣∣∣[σ2 ′]∣∣∣

i
=⇒

∣∣[σ1]∣∣
i
=
∣∣[σ2]∣∣

i
.

This implication is proven by induction on m+m ′. If m+m ′ = 0, then for all Ai we have

(1)︷ ︸︸ ︷∣∣∣[σ1 ′]∣∣∣
i
=
∣∣∣[σ2 ′]∣∣∣

i
=⇒ ∣∣[σ1]∣∣

i

=
{

Lemma C.1
}∣∣∣[σ1 ′]∣∣∣

i

=
{

(1)
}∣∣∣[σ2 ′]∣∣∣
i

=
{

Lemma C.1
}∣∣[σ2]∣∣

i

Lemma 7.2 185

For the inductive step, suppose m+m ′ > 0. In case there is no q such that bq ∈ ACTLABi

and there is no q ′ such that b ′q
′ ∈ ACTLABi then∣∣[σ1]∣∣

i
=
∣∣∣[σ.α1.a1.(sβ, s1

¬β
) · · ·αn.an.(sβ, sn

¬β
).β.a.(tβ, sn

¬β
)
]∣∣∣
i

=
∣∣∣[σ.β.a.(tβ, s¬β).α1.a1.(tβ, s1

¬β
). · · · .αn.an.(tβ, sn

¬β
)
]∣∣∣
i

=
∣∣∣[σ1 ′]∣∣∣

i

and ∣∣[σ2]∣∣
i
=
∣∣∣[σ.α ′1.a ′1.(sβ, s ′1

¬β
) · · ·α ′n ′ .a ′n ′ .(sβ, s ′n

′¬β
).β.a.(t ′β, s ′n

′¬β
)
]∣∣∣
i

=
∣∣∣[σ.β.a.(t ′β, s¬β).α ′1.a ′1.(t ′β, s ′1

¬β
) · · ·α ′n ′ .a ′n ′ .(t ′β, s ′n

′¬β
)
]∣∣∣
i

=
∣∣∣[σ2 ′]∣∣∣

i

Hence, we have
∣∣∣[σ1 ′]∣∣∣

i
=
∣∣∣[σ2 ′]∣∣∣

i
=⇒

∣∣[σ1]∣∣
i
=
∣∣[σ2]∣∣

i
, as desired.

We finish the proof by considering the case in which there exists q such that bq ∈ ACTLABi

(the case in which b ′q
′ ∈ ACTLABi for some q ′ is symmetrical). Let q be the greatest number

such that bq ∈ ACTLABi, and let σq

σq = σ.β.a.(tβ, s¬β).α1.a1.(tβ, s1
¬β

) · · ·αn.an.tβ, sn
¬β

).γ1.b1.u1. · · · .γq.bq.uq .

First, we prove:

Claim.(
bq ∈ ACTLABi ∧

∣∣∣[σ1 ′]∣∣∣
i
=
∣∣∣[σ2 ′]∣∣∣

i

)
=⇒ ∃q ′ :

(
a ′q

′ ∈ ACTLABi ∨ b ′q
′ ∈ ACTLABi

)
(C.19)

Proof. Suppose, towards a contradiction, that the antecedent of this implication does hold,
and the consequent does not. Then,∣∣∣[σ1 ′]∣∣∣

i

=
{
q is the greatest number such that bq ∈ ACTLABi

}∣∣[σ.β.a.(tβ, s¬β).α1.a1.(tβ, s1
¬β

) · · ·αn.an.tβ, sn
¬β

).γ1.b1.u1. · · · .γq.bq.uq
]∣∣
i

=
{
bq ∈ ACTLABi

}
([σq]i , |[σq↓−1]|ACTIVE(γq))

(C.20)

If a ∈ ACTLABi, then∣∣∣[σ2 ′]∣∣∣
i

=
{
a ′k 6∈ ACTLABi ∧ b ′k 6∈ ACTLABi

}∣∣[σ.β.a.(t ′β, s¬β)
]∣∣
i

=
{
a ∈ ACTLABi

}
(
[
σ.β.a.(t ′β, s¬β)

]
i

, |[σ]|i)

From (C.20), we have that
∣∣∣[σ1 ′]∣∣∣

i
=
∣∣∣[σ2 ′]∣∣∣

i
implies

[
σ.β.a.(t ′β, s¬β)

]
i

= [σq]i, thus contra-
dicting (C.7), since

NACTLABi(σ2
′
) =

a︷︸︸︷
1 +NACTLABi(σ) <

a︷︸︸︷
1 +

bq︷︸︸︷
1 +NACTLABi(σ) 6 NACTLABi(σq) .

186 proofs of chapter 7

If a 6∈ ACTLABi then, by (C.20) and
∣∣∣[σ1 ′]∣∣∣

i
=
∣∣∣[σ2 ′]∣∣∣

i
we have

∣∣∣[σ2 ′]∣∣∣
i
6= INITi. Hence,∣∣∣[σ2 ′]∣∣∣

i
= ([σ↓z]i , |[σ↓z−1]|ACTIVE(σ〈z〉)) for some z. Similarly as in the case a ∈ ACTLABi, we

have that
∣∣∣[σ1 ′]∣∣∣

i
=
∣∣∣[σ2 ′]∣∣∣

i
implies [σ↓z]i = [σq]i, and so

NACTLABi(σ2
′
) = NACTLABi(σ) <

bq︷︸︸︷
1 +NACTLABi(σ) 6 NACTLABi(σq) ,

thus reaching a contradiction for (C.7).End of the claim’s
proof

In conclusion, in case bq ∈ ACTLABi, we have that either a ′q
′ ∈ ACTLABi or b ′q

′ ∈ ACTLABi

for some q ′. Hence, we split this case into two subcases. We start with the subcase b ′q
′ ∈

ACTLABi. W. l. o. g. , assume q ′ is the greatest number such that b ′q
′ ∈ ACTLABi.

If bq ∈ ACTLABi, b ′q
′ ∈ ACTLABi:∣∣∣[σ1 ′]∣∣∣

i
=
∣∣∣[σ2 ′]∣∣∣

i

=⇒
{
qz,q ′z

′ 6∈ ACTLABi for all z > q, z ′ > q ′
}

([σq]i , |[σq↓−1]|ACTIVE(γq))

=
([σq

′︷ ︸︸ ︷
σ.β.a.(t ′β, s¬β) · · ·α ′n ′ .a ′n ′ .(t ′β, s ′n

′¬β
). · · · .γ ′q

′
.b ′q

′
.u ′q

′]
i

,∣∣∣[σq ′↓−1]∣∣∣
ACTIVE(γ ′q ′)

)
=⇒

{
Property (8) holds for [·], inductive hypothesis

}
(
[σ1

q︷ ︸︸ ︷
σ · · ·αn.an.(sβ, sn

¬β
).β.a.(tβ, sn

¬β
) · · · .γq.bq.uq

]
i

,
∣∣∣[σ1q↓−1]∣∣∣

ACTIVE(γq)
)

=
([σ2

q ′︷ ︸︸ ︷
σ · · ·α ′n ′ .a ′n ′ .(sβ, s ′n

′¬β
).β.a.(t ′β, s ′n

′¬β
) · · · .γ ′q

′
.b ′q

′
.u ′q

′]
i

,∣∣∣[σ2q ′ ↓−1]∣∣∣
ACTIVE(γ ′q ′)

)
=⇒

{
qz,q ′z

′ 6∈ ACTLABi for all z > q, z ′ > q ′
}∣∣[σ1]∣∣

i
=
∣∣[σ2]∣∣

i

If bq ∈ ACTLABi, a ′q
′ ∈ ACTLABi and there is no z such that b ′z ∈ ACTLABi, assume that q ′

is the greatest number such that a ′q
′ ∈ ACTLABi. Then:∣∣∣[σ1 ′]∣∣∣

i
=
∣∣∣[σ2 ′]∣∣∣

i

=⇒
{
6 ∃z : b ′z ∈ ACTLABi and a ′z

′ 6∈ ACTLABi for all z ′ > q ′
}

|[σq]|i =
∣∣[σq

′︷ ︸︸ ︷
σ.β.a.(t ′β, s¬β).α ′1.a ′1.(t ′β, s ′1

¬β
) · · ·α ′q ′ .a ′q ′ .(t ′β, s ′q

′¬β
)
]∣∣
i

=⇒
{
bq ∈ ACTLABi, a ′q

′ ∈ ACTLABi
}

([σq]i , |[σq↓−1]|ACTIVE(γq)) = (
[
σq
′
]
i

, |[σq↓−1]|ACTIVE(α ′q ′))

=⇒
{

Inductive hypothesis, property (8) holds for [·]
}

(
[σ1

q︷ ︸︸ ︷
σ · · ·αn.an.(sβ, sn

¬β
).β.a.(tβ, sn

¬β
) · · · .γq.bq.uq

]
i

,
∣∣∣[σ1q↓−1]∣∣∣

ACTIVE(γq)
)

Lemma 7.2 187

=
([
σ · · ·α ′q ′ .a ′q ′ .(sβ, s ′q

′¬β
).β.a.(t ′β, s ′q

′¬β
)
]
i

,∣∣∣[σ · · ·α ′q ′−1.a ′q
′−1.(sβ, s ′q

′−1¬β
).β.a.(t ′β, s ′q

′−1¬β
)
]∣∣∣

ACTIVE(α ′q ′)

)
=⇒

{
Equation (C.9)

}
(
[
σ1

q
]
i

,
∣∣∣[σ1q↓−1]∣∣∣

ACTIVE(γq)
)

=
([σt︷ ︸︸ ︷
σ · · ·α ′q ′−1.a ′q

′−1.(sβ, s ′q
′−1¬β

).β.a.(t ′β, s ′q
′−1¬β

).α ′q
′
.a ′q

′
.(t ′β, s ′q

′¬β
)
]
i

,∣∣[σt↓−1]∣∣ACTIVE(α ′q ′)

)
=⇒

{
a ′q

′
,bq ∈ ACTLABi

}∣∣∣[σ1q]∣∣∣
i
=
∣∣[σt]∣∣

i

=⇒
{
a ′z

′ 6∈ ACTLABi for all z ′ > q ′
}∣∣∣[σ1q]∣∣∣

i
=
∣∣∣[σt.α ′q+1.a ′q+1.(t ′β, s ′q+1¬β

) · · ·α ′n ′ .a ′n ′
]∣∣∣
i

=⇒
{

Lemma C.1
}∣∣∣[σ1q]∣∣∣

i
=
∣∣∣[σ · · ·α ′n ′ .a ′n ′ .(sβ, s ′n

′¬β
).β.a.(t ′β, s ′n

′¬β
)
]∣∣∣
i

=⇒
{
bz 6∈ ACTLABi for all z > q, b ′z

′ 6∈ ACTLABi for all z ′
}∣∣[σ1]∣∣

i
=
∣∣[σ2]∣∣

i

Now, we can prove Lemma 7.2.

Proof of Lemma 7.2. We prove that [[·]] complies with (C.6), (C.7) and (C.8), and so the result
follows from Lemma C.2.

For (C.6), if a ∈ ACTLABi then

[[σ.β.a.(s ′β, s¬β).α1.a1.(s ′β, s1
¬β

). · · · .αn.an.(s ′β, sn
¬β

)]]i

= [[σ]]i.a.πi(s ′β, s¬β).b1.s1i . · · · .bq.sqi (C.21)

for some b1.s1i . · · · .bq.sq (with possibly q = 0). More precisely, the sequence b1 · · ·bq is the
subsequence of a1 · · ·an comprising only the labels in ACTLABi.

By definition of [[·]],

[[σ.α1.a1.(sβ, s1
¬β

). · · · .αn.an.(sβ, sn
¬β

)]]i = [[σ]]i.b ′1.s ′1i . · · · .b ′q
′
.s ′q

′

Note that q = q ′ and bk = b ′k, since b ′1 · · ·b ′q is same subsequence of a1 · · ·an as before.
Hence,[

σ.β.a.(s ′β, s¬β).α1.a1.(s ′β, s1
¬β

). · · · .αn.an.(s ′β, sn
¬β

)
]
i

6=
[
σ.α1.a1.(sβ, s1

¬β
). · · · .αn.an.(sβ, sn

¬β
)
]
i

follows from a.πi(s ′β, s¬β).b1.s1i . · · · .bq.sqi 6= b1.s ′1i . · · · .bq.s ′qi .
If a 6∈ ACTLABi, we start by pointing out that LAST(σ) = (sβ, s¬β). Since the changes to the

state of an atom are caused only by the labels in its alphabet, we have

πi(s
β, s¬β) = πi(s

′β, s¬β) . (C.22)

188 proofs of chapter 7

We use this equality to show

πi(s
β, sk

¬β
) = πi(s

′β, sk
¬β

) . (C.23)

If the state of Ai lies in s¬β, Eqn. (C.23) holds since in both terms of the equality the portion
corresponding to s¬β coincide. If the state of Ai lies in sβ, Eqn. (C.23) holds by Eqn. (C.22).

By definition of [[·]], there exist j1 6 · · · 6 jq and s1i , · · · , sqi such that

[[σ.β.a.(s ′β, s¬β).α1.a1.(s ′β, s1
¬β

). · · · .αn.an.(s ′β, sn
¬β

)]]i = [[σ]]i.aj1 .s1i . · · · .ajq .sqi

Note that j1 6 · · · 6 jq are the indices such that the sequence aj1 , · · · ,ajq is the subsequence
of a1, · · · ,aq comprising only the labels in ACTLABi. The local state ski is πi(s ′β, sk

¬β
).

By definition of [[·]], there exist t1i , · · · , tqi such that

[[σ.β.a.(s ′β, s¬β).α1.a1.(s ′β, s1
¬β

). · · · .αn.an.(s ′β, sn
¬β

)]]i = [[σ]]i.aj1 .t1i . · · · .ajq .tqi

Note that tki = πi(s
β, sk

¬β
). By Eqn. (C.23), tki = ski for all k, and so

[[σ]]i.aj1 .s1i . · · · .ajq .sqi = [[σ]]i.aj1 .t1i . · · · .ajq .tqi ,

thus yielding (C.6).
For (C.7), consider two paths σ, σ ′ such that

NACTLABi(σ) 6= NACTLABi(σ ′) .

By definition of [[·]], the projection [[σ]]i is a sequence s1i .a1. · · · .anσ .sN
ACTLABi(σ)

i and the pro-

jection [[σ ′]]i is a sequence t1i .b1. · · · .bnσ .tN
ACTLABi(σ ′)

i . Then,

NACTLABi(σ) 6= NACTLABi(σ ′) =⇒ [[σ]]i 6= [[σ ′]]i .

For (C.8), if a ∈ ACTLABi and α(s,a, t) > 0, then Ai ∈ INV(α). The same reasoning applies
to a ′ and α ′, and so Ai ∈ INV(α ′). Then, INV(α)∩ INV(α ′) 6= ∅ and therefore α 6RINV

I β.

lemma 7 .3

Let S be a measurable set of infinite paths, let [·] be a traceable projection and

A = {A ∈ ATOMS(P) | ∃α ∈ AMPLE(LAST(σs)) : A = ACTIVE(α)} .

If η = (I, {Θi}i, {Υi}i) is strongly distributed after σs under [·], then there exists Ai∗ ∈ A, η∗ =

(I∗, {Θi}i, {Υi}i) such that all the following properties hold:

I. PRη
∗
(S) > PRη(S)

II. η∗ is strongly distributed after σs

III. for all Aj ∈ A, σ ′ w σs, we have

PRη
∗
((σ ′)

↑
) > 0 ∧ I∗(σ ′)(Aj) > 0

=⇒ ∃σ ′′ : σs v σ ′′ v σ ′ ∧ I∗(σ ′′)(Ai∗) = 1

IV. for all σ, either I∗(σ) = I(σ) or I∗(σ)(Aj) = 1 for some Aj. Moreover η∗(σ) = η(σ) for all σ
such that σs 6v σ.

Lemma 7.3 189

Proof. We start considering the case S =
⊎M
m=1 (σm)↑, and obtain a scheduler ηl yielding less

probability than the original one. Then, we show that the result can be extended to arbitrary
measurable sets in such a way that the resulting scheduler yields greater probability than the
original one (the argument is similar to the proofs of Theorem 4.1 and Theorem 4.3).

In order to cope with the sets of the form
⊎M
m=1 (σm)↑, we apply a transformation on

schedulers similar to those in Theorem 4.3. Except for some corner cases, the general picture
of the proof is as follows: in each step, the transformation starts with a scheduler η complying
with properties (II) and (IV). This scheduler is transformed into a scheduler η ′, which in turn
complies with with properties (II) and (IV). Moreover, PRη

′
(
⊎M
m=1 (σm)↑) 6 PRη(

⊎M
m=1 (σm)↑).

In order to obtain η ′, we consider a certain set SG of global paths, and then we choose
a local path σi∗ such that [σ]i∗ = σi∗ for some σ ∈ SG. The new scheduler is defined as
I ′(σ)(Ai∗) = 1 for all σ ∈ SG such that [σ]i∗ = σi∗ . The same procedure is repeated at each
step, until Ai∗ ∈ A. At this point, we let ηl = η ′. We prove that ηl complies with all the
properties in the theorem statement (except that the probability yielded is smaller than that
of the original scheduler).

If there exists no σ ′ such that σs v σ ′, PRη((σ ′)↑) > 0, and I(σ ′)(Ai) > 0 for some Ai ∈ A,
then η is the desired η∗. Another corner case occurs if all such σ ′ such that σs v σ ′ have
length greater than max16m6M LEN(σm). In this case, let SG be the set of minimal paths σ ′ By minimal, we

mean minimal
wrt. the prefix
relation v

such that σs v σ ′, PRη((σ ′)↑) > 0 and I(σ ′)(Ai) > 0 for some Ai ∈ A. Since the path in SG are
minimal, we have (σ)↑ ∩ (σ ′)↑ = ∅ for all σ,σ ′ ∈ SG. Let

SL = {[σ]i | σ ∈ SG ∧ PRη((σ)↑) > 0 ∧
∣∣Gi(LAST(σ))

∣∣ > 0} .

In this case, let ηl = NR(η,SG,σq) where σi∗ ∈ SL, Aq ∈ A (see page 169) comply

I(σ>0)(Aq) > 0 ,

for some σ>0 ∈ SG. We have to show that ηl complies with the properties required in the
theorem statement. Since all the paths σ in SG comply with LEN(σ) > max16m6M LEN(σm),
we have PRη(

⊎M
m=1 (σm)↑) = PRη

l
(
⊎M
m=1 (σm)↑). For property (III), we can take Aq = Ai∗ .

Property (IV) holds by ηl = NR(η,SG,σq) and definition of NR(η,SG,σq). It remains to prove
that NR(η,SG,σq) is strongly distributed after σs (property (II)).

Claim. Let σq ∈ SL such that Aq ∈ A, I(σ>0)(Aq) > 0, for some σ>0 ∈ SG. The scheduler
ηNR = (INR, {Θi}i, {Υi}i) defined as ηNR = NR(η,SG,σq) is strongly distributed after σs.

Proof of the claim. First, we prove

∀σ ∈ SG : I(σ)(Aq) > 0 (C.24)

Let σ ∈ SG, σ 6= σ>0. Since σ ∈ SG, we have I(σ)(Aj) > 0 for some Aj ∈ A. Since I(σ ′)(A) = 0

whenever σs v σ ′ < σ and A ∈ A, property (6) of independence structures ensures [σ]j =[
σ>0

]
j
= [σs]j and [σ]q =

[
σ>0

]
q

= [σs]q. Then, since η is strongly distributed after σs,

0 <
I(σ>0)(Aq)

I(σ>0)(Aq) + I(σ>0)(Aj)
=

I(σ)(Aq)

I(σ)(Aq) + I(σ)(Aj)
,

and so I(σ)(Aq) > 0.
Suppose, towards a contradiction, that ηs is not strongly distributed after σs. Then, there

exist σ, σ ′, Ai, Ai ′ violating the condition on strongly distributed schedulers. Let SW = {σ ∈
SG | [σ]q = σq}. Since η is strongly distributed, one of the paths, say σ, must be in SW . If
both paths are in SW , we have INR(σ)(Aq) = INR(σ ′)(Aq) = 1, and so σ, σ ′ cannot violate
the condition. Then, σ ∈ SW and σ ′ 6∈ SW . Since INR violates the condition for σ, σ ′, and

190 proofs of chapter 7

σ ∈ SW , we conclude that one of the atoms, say Ai ′ , is Aq. Moreover, since σ, σ ′ violate the
condition, 0 < INR(σ ′)(Ai) = I(σ ′)(Ai) (the equality holds since σ ′ 6∈ SW). It cannot be the
case that I(σ ′)(Aq) = 0: the projections over Ai and Aq coincide for σ, σ ′ and I(σ)(Aq) > 0

(by Eqn. (C.24)), so it would be I(σ)(Aq) > 0, I(σ ′)(Ai) > 0, I(σ ′)(Aq) = 0, contradicting the
fact that η is strongly distributed after σs. In conclusion, I(σ ′)(Aq) > 0 and σ ′ 6∈ SW . Then,
there exists σW ∈ SW such that σW v σ ′. Since INR(σG)(Aq) = 1, we have

LABEL(σ ′〈LEN(σW)〉) ∈ ACTLABq ,

and hence property (1.11) implies [σ ′]q 6= [σW]q. We use this inequality in the following
calculation:

σq

= [σW]q
{
σW ∈ SG

}
6= [σ ′]q

= [σ]q
{
σ, σ ′, Ai, q violate the condition on strongly distributed schedulers

}
= σq

{
σ ∈ SG

}

This contradiction arises from the assumption that σ, σ ′ violate the condition on strongly
distributed schedulers. Therefore, ηNR is strongly distributed after σs.End of the claim’s

proof
So far, we have considered the corner cases. In case there existsA ∈ A such that I(σ)(A) > 0

for some σ complying LEN(σ) 6 max16m6M σm, we define SG, η ′ and σi∗ using Theorem 4.7
(see page 169), thus ensuring

PRη
′
(
⊎

(σm)↑) 6 PRη(
⊎

(σm)↑) . (C.25)

In order to define Ri, we consider any atom Ar ∈ A such that such that I(σr)(Ar) > 0 for
some σr ∈ SG. By property (6) of independence structures (Def. 7.5), we have [σ]r = [σs]r for
all σ ∈ SG. Since η is strongly distributed and for each σ ′ ∈ SG there is at least one Aj ∈ A

complying with I(σ ′)(Aj) > 0, we can conclude that I(σ)(Ar) > 0 for all σ ∈ SG (otherwise,
it should be I(σ)(Aj) > 0, I(σ)(Ar) = 0, I(σr)(Ar) > 0 with [σ]j = [σs]j = [σr]j and [σ]r =

[σs]r = [σr]r, thus violating the restriction imposed to strongly distributed schedulers). We
define

Ri(σi) = I(σ)(Ai)/I(σ)(Ar) , for some σ ∈ SG s.t. [σ]i = σi . (C.26)

Note that the particular σ chosen is irrelevant, given that the scheduler is strongly distributed
for all the paths extending σs. We prove that Ri complies with

∀σ ∈ SG : I(σ)(Ai) =
Ri([σ]i)∑
i ′ Ri([σ]i ′)

Lemma 7.3 191

in the following calculation:

Ri([σ]i)∑
i ′ Ri([σ]i ′)

=
{
σ ∈ SG and [σ]i = [σ]i (see Eqn. (C.26))

}
I(σ)(Ai)/I(σ)(Ar)∑
i ′
(
I(σ)(Ai ′)/I(σ)(Ar)

)
=

I(σ)(Ai)/I(σ)(Ar)(∑
i ′ I(σ)(Ai ′)

)
/I(σ)(Ar)

=
I(σ)(Ai)∑
i ′ I(σ)(Ai ′)

= I(σ)(Ai) .

Then, we take η ′ to be the scheduler whose existence is ensured by Theorem 4.7. The the-
orem ensures that the scheduler complies with PRη

′
(
⊎M
m=1 (σm)↑) 6 PRη(

⊎M
m=1 (σm)↑) (later

on, we will use this property to construct a scheduler such that PRη(S) 6 PRη
∗
(S) for any

measurable set S).
If Ai∗ 6∈ A, the same transformation can be repeated until some Ai∗ ∈ A is selected, or

Aq ∈ A is selected in case I(σ)(A) = 0 whenever σs v σ, LEN(σ) 6 max16m6M σm, and
A ∈ A, or until I(σ)(A) = 0 whenever σs v σ, A ∈ A.

Let ηl be the resulting scheduler after the last transformation. We show that ηl complies
with all the properties in the theorem statement (except that the probability yielded is smaller
than that of the original scheduler). Properties (II) and (IV) hold since either ηl = η ′ or η is (II),(IV)

obtained by succesive applications of NR(η,SG,σj∗).
In what follows, let SG, SL be the sets used to obtain the last η ′ (that is, the η ′ such that

η ′ = ηl). With respect to property (III), consider a path σs · σ. We split the proof in two cases. (III)

• If there exists σG ∈ SG such that σG v σs · σ, then σG is the path whose existence is
required.

• If there exists no σG ∈ SG such that σG v σs · σ, then for all Aj ∈ A it must be
Il(σs · σ)(Aj) = 0: if Il(σs · σ)(Aj) > 0 then, by definition of SG, either σs · σ ∈ SG or
there exists a prefix of σs · σ in SG, thus reaching a contradiction

We have PRη
l
(
⊎
m (σm)↑) 6 PRη(

⊎
m (σm)↑), since Eqn. (C.25) holds in each step. (I), with 6

instead of >, for
the particular case
S =

⊎
m (σm)↑

In conclusion, we have proven that there exists η ′ as in the statement of the theorem, except
that:

PRη
′
(

M⊎
m=1

(σ)↑m) 6 PRη(
M⊎
m=1

(σ)↑m) . (C.27)

Next, we show that there exists η ′ such that

∀η ∈ S : ∃η ′ ∈ SDISTP([·], 6) : PRη
′
(S) 6 PRη(S) (C.28)

For all S =
⊎∞
m=1 (σm)↑.

Let SM =
⊎

{σm | LEN(σ)<M} (σm)↑. Then, by Eqn. (C.27), there exists η ′M such that

PRη
′
M(SM) 6 PRη(SM) .

By (IV), {η ′M(σ)}M has at most 1+
∣∣ATOMS(P)

∣∣ elements: the term 1 corresponds to η(σ), and
the term

∣∣ATOMS(P)
∣∣ corresponds to the distributions 1 :Ai assigned by I ′, for each Ai ∈

192 proofs of chapter 7

ATOMS(P). So, Lemma 4.8 ensures the existence of a limit ηd of the scheduler η ′M such that
PRη

d
(S) 6 PRη(S). It remains to show that this limit meets the requirement in the statement

of the theorem.
We show that the set of schedulers such that there existsAi∗ complying with properties (II)–

(IV) is finitely falsifiable. Given η ′, let Z be the set of minimal paths σ satisfying PRη
′
((σ)↑) >

0 and ∃Ai ∈ A : 0 < I ′(σ)(Ai) 6 1. In order to prove that η ′ does not complies with
properties (II)–(IV), it suffices to find a finite set T complying with certain properties. Such
a set T comprises two paths σ1, σ2 s.t. σs v σk, PRη

′
((σk)

↑
) > 0, for k = 1, 2. In addition, T

comprises all the paths σ ′′ s.t. σs v σ ′′ v σ1, and T must comply with at least one of the
following requirements:

• σ1 and σ2 violate the condition on strongly distributed schedulers

• σ1 ∈ Z (this membership depends on the value of I ′ for the paths σ ′′ such that σs v
σ ′′ v σk with k ∈ {1, 2}) and there exists Ai ∈ A such that 0 < I ′(σ)(Ai) < 1 (note the
strict inequality in < 1)

• I ′(σ1) 6= I(σ) and there exists Ai such that 0 < I ′(σ)(Ai) < 1

The verity of each of the items implies the falsity of each of the properties. Conversely, if
all items are false for all sets T , they are false in particular for the sets T comprising σ1 and
σ2 as above, and we can conclude that, for all paths in σ ∈ Z, there exists Ai ∈ A such
that I ′(σ)(Ai) = 1. In addition, since the condition on strongly distributed schedulers is not
violated, these Ai must be the same regardless of the σ, and so we can take such an Ai to
be Ai∗ as in the statement of the theorem. Hence, the falsity of all items implies the verity
of properties (II)–(IV), and so we have proven that the set of schedulers complying with
properties (II)–(IV) is finitely falsifiable.

Therefore, since the each of the schedulers η ′M complies with such properties, Theorem 3.2
ensures that the limit scheduler ηd also does. By virtue of Eqn. (C.28), we can apply Theo-
rem 4.2, thus yielding the result.

lemma 7 .4

Let σ ′, σ ′′ be such that, σ ′ 6= σ ′′, PRη((σ ′)↑) > 0, PRη((σ ′′)↑) > 0.
Then, C(σ ′)∩ C(σ ′′) 6= ∅ implies σ ′ ∼ /α. (or, symmetrically, σ ′′ ∼ /α.) and

σ ′′ = σ ′.β.a.(s ′β, sn
¬β

)

(resp., σ ′ = σ ′′.β.a.(s ′β.sn
¬β

)) for some s ′β. Note that σ ′′ ∼ /αβ. (resp., σ ′ ∼ /αβ.). For such
σ ′, σ ′′, we have C(σ ′)∩ C(σ ′′) = C(σ ′′) (resp. C(σ ′)∩ C(σ ′′) = C(σ ′)).

Proof. If σ ′ ∼ /¬σs. , the fact that C maps extensions of σs to extensions of σs yields

C(σ ′)∩ C(σ ′′) 6= ∅ =⇒ σ ′ = σ ′′ .

The same argument applies in case σ ′′ ∼∼ /¬σs. . Hence, we have proven the result for the
cases σ ′ ∼ /¬σs. or σ ′′ ∼ /¬σs. . In what follows, we simply disregard these cases.

If both σ ′, σ ′′ are of the form /α. and C(σ ′)∩ C(σ ′′) = ∅, let

σs.β.a.(s ′β, s¬β).α1.a1.(s ′β, s1
¬β

). · · · .αn.an.(s ′β, sn
¬β

)

be a path in C(σ ′)∩ C(σ ′′). By definition of C, we have

σ = σ ′ = σs.α1.a1.(sβ, s1
¬β

). · · · .αn.an.(sβ, sn
¬β

) .

Lemma 7.5 193

Next, we consider the case in which neither σ ′ nor σ ′′ is of the form /α. . Let

σ ′ = σs.α ′1.a ′1.(s ′β, s ′1
¬β

). · · · .α ′n
′
.a ′n

′
.(s ′β, s ′n

′¬β
)

.β.a ′.(t ′β, s ′n
′¬β

).γ ′1.b ′1.u ′1. · · · .γ ′m
′
.b ′m

′
.u ′m

′

σ ′′ = σs.α ′′1.a ′′1.(s ′′β, s ′′1
¬β

). · · · .α ′′n
′′
.a ′′n

′′
.(s ′′β, s ′′n

′′¬β
)

.β.a ′′.(t ′′β, s ′′n
′′¬β

).γ ′′1.b ′′1.u ′′1. · · · .γ ′′m
′′
.b ′′m

′′
.u ′′m

′′

with possibly m ′ = 0 and/or m ′′ = 0. W. l. o. g. , assume n 6 n ′. Assuming C(σ ′)∩C(σ ′′) 6= ∅,
we prove σ ′ = σ ′′. By definition of C, we have s ′β = s ′′β, s ′k

¬β
= s ′′k

¬β
, α ′k = α ′′k and

a ′k = a ′′k for all k 6 n. In other words,

σ ′↓LEN(σs)+n ′ = σ ′′↓LEN(σs+n ′′) . (C.29)

Since PRη((σ ′)↑) > 0, we have η(σ ′↓LEN(σs)+n ′) = 1 :β. From Eqn. (C.29) and PRη((σ ′′)↑) > 0, we
conclude that β occurs right after σ ′′↓LEN(σs+n ′′), and so n ′ = n ′′. Hence,

σ ′′ = σ ′↓LEN(σs)+n ′ .γ
′′1.b ′′1.u ′′1. · · · .γ ′′m

′′
.b ′′m

′′
.u ′′m

′′
.

From definition of C and C(σ ′)∩ C(σ ′′) 6= ∅, we get σ ′ = σ ′′.
Next, we consider the case σ ′ ∼ /α. and σ ′′ 6∼ /α. Let

σ ′ = σs.α ′1.a ′1.(s ′β, s ′1
¬β

). · · · .α ′n
′
.a ′n

′
.(s ′β, s ′n

′¬β
)

σ ′′ = σs.α ′′1.a ′′1.(s ′′β, s ′′1
¬β

). · · · .α ′′n
′′
.a ′′n

′′
.(s ′′β, s ′′n

′′¬β
)

.β.a ′′.(t ′′β, s ′′n
′′¬β

).γ ′′1.b ′′1.u ′′1. · · · .γ ′′m
′′
.b ′′m

′′
.u ′′m

′′

with possiblym ′′ = 0. By definition of C, we have n ′ = n ′′+m ′′, and so n ′′ 6 n ′. In addition,

σ ′↓LEN(σs)+n ′′ = σ ′′↓LEN(σs)+n ′′ . (C.30)

Since PRη((σ ′′)↑) > 0, we have

η((σ ′′↓LEN(σs)+n ′′)
↑
) = 1 :β .

This equality, together with PRη((σ ′)↑) > 0 and Eqn. (C.30) imply σ ′ = σ ′′↓LEN(σs)+n ′′ . This is
equivalent to:

σ ′′ = σ ′.β.a ′′.(t ′′β, s ′′n
′′¬β

).γ ′′1.b ′′1.u ′′1. · · · .γ ′′m
′′
.b ′′m

′′
.u ′′m

′′

By definition of C, we have m ′′ = 0, and so σ ′′ = σ ′.β.a ′′.(t ′′β, s ′′n
′′¬β

), as desired.

lemma 7 .5

Let η[σs ← β] be as in Def. 7.8. If PRη[σs←β]((σ)↑) > 0 then either σ = σs or there exists σ ′ such
that σ ∈ C(σ ′) and PRη((σ ′)↑) > 0.

Proof. If σs is not a prefix of σ, we have PRη((σ)↑) = PRη[σs←β]((σ)↑). So, in this case, we take
σ ′ = σ.

If σs < σ, we prove the existence of σ ′ by induction on LEN(σ) − LEN(σs).
If LEN(σ) − LEN(σs) = 1, since PRη(σ) > 0 and η[σs ← β](σs) = 1 :β we have σ = σs.β.a.s

for some a, s. In this case, we can take σ ′ = σs (recall that σs ∼ /α.). Here we use the
fact that
σs ∼ /α.

If LEN(σ) − LEN(σs) > 1, let’s drop the last state (and the last action) from σ to obtain the
path σ↓−1. Let γ, b and s ′ be the last action, the last action label and the last state in σ (resp.).
So, σ↓−1γ.b.s ′ = σ. Since PRη[σs←β](σ) > 0, we have PRη[σs←β](σ↓−1) > 0. By inductive
hypothesis, there exists at least one σ ′−1 such that σ↓−1 ∈ C(σ ′−1) and PRη((σ ′−1)

↑
) > 0.

194 proofs of chapter 7

• In case σ ′−1 is of the form /αβγ. , by definition of η[σs ← β] we have η[σs ←
β](σ↓−1) = η(σ ′−1). We know that η[σs ← β](σ↓−1)(γ) > 0. So, η(σ ′−1)(γ) > 0 and
the path σ ′−1.γ.b.s ′ has probability greater than 0 in η. Taking into account the defini-
tion of C for the paths of the form /αβγ. and the fact that σ↓−1 ∈ C(σ ′−1), we have
σ = σ↓−1.γ.b.s ′ ∈ C(σ ′−1.γ.b.s ′). So, we can take σ ′ = σ ′−1.γ.b.s ′.

• In case σ ′−1 is of the form /αβ. , we have η[σs ← β](σ↓−1) = η(σ ′−1) (even if there are
another path such σp such that σ↓−1 ∈ C(σp), the definition of η[σs ← β] uses σ ′−1).
Again, η(σ ′−1)(γ) > 0 and the path σ ′−1.γ.b.s ′ has probability greater than 0 in η. Note
that σ ′−1.γ.b.s ′ ∼ /αβγ. . So, we are in the same setting as in the previous case, and
we can take σ ′ = σ ′−1.γ.b.s ′.

• If none of the previous cases holds, then σ ′−1 is uniquely determined and is of the form
/α. . Moreover, η(σ ′−1) 6= 1 :β: otherwise, σ↓−1 ∈ C(σ ′−1.β.a.s ′′) for some a, s ′′, thus
contradicting σ↓−1 6∈ C(σ/αβ.) for all σ/αβ. ∼ /αβ. . As in the previous cases, we
have η[σs ← β](σ↓−1) = η(σ ′−1) 6= 1 :β. So, η(σ ′−1)(γ) > 0 and the path σ ′−1.γ.b.s ′ has
probability greater than 0 in η. Moreover γ 6∈ AMPLE(s), and so σ ′−1.γ.b.s ′ is of the form
/α. . Then, σ ∈ C(σ ′−1.γ.b.s ′), since C(σ ′−1.γ.b.s ′) can be obtained by appending γ.b.s ′

to all the paths in C(σ ′−1). Hence, we can take σ ′ = σ ′−1.γ.b.s ′.

lemma 7 .6

Let P be a IPIOA, and (RI, {(πα,π¬α)}α, [·]) be an independence structure such that either:

1. P is a simple IPIOA, η is distributed after σs and

(RI, {(πα,π¬α)}α, [·]) = (RINV
I , {(πα,[[·]] ,π¬α,[[·]])}α, [[·]])

or

2. η is strongly distributed after σs and [·] is traceable.

For all σ ′ = σs.β.a.s with PRη[σs←β]((σ ′)↑) > 0, the scheduler η[σs ← β] is distributed (in case (1))
or strongly distributed (in case (2)) after σ ′.

We prove this lemma by resorting to the following one. Roughly speaking, it states that,
if η is distributed and η ′(σ) = η(f(σ)) for some f that does not hide information, then η ′ is
also distributed. Intuitively, f does hide information if two paths distinguishable for η are
indistinguishable for η ′, that is, if [σ]i = [σ ′]i, for some σ, σ ′ such that [f(σ)]i 6= [f(σ ′)]i.

Lemma C.3. Given σs, σ∗ = σs.β.a.s, η = (I, {Θi}i, {Υi}i), η ′ = (I ′, {Θ ′i}i, {Υ
′
i}i) such that

• η is distributed (strongly distributed, resp.) after σs,

• PRη((σ∗)↑) > 0,

• PRη
′
((σ∗)↑) > 0,

let S+ be the set of finite paths σ such that σ∗ v σ and PRη
′
((σ)↑) > 0, and let T+ be the set of finite

paths σ such that σ∗ v σ and PRη((σ)↑) > 0. If there exists f : S+ → T+ such that:

∀σ ∈ S+ : η ′(σ) = η(f(σ)) ,

Lemma 7.6 195

∀σ,σ ′ ∈ S+ : ∀Ai : I ′(σ)(Ai) > 0 =⇒ (
[σ]i =

[
σ ′
]
i

=⇒ [f(σ)]i =
[
f(σ ′)

]
i

)
(C.31)

and

∀σ,σ ′ ∈ S+ : ∀Ai : ∀a ∈ ACTLABi :(
∃gj,gk, sj, sk : I ′(σ)(Aj) > 0 ∧ I ′(σ ′)(Ak) > 0

∧ Θ ′j([σ]j)(gj) > 0 ∧ Θ ′k([σ]k)(gk) > 0

∧ gj(πj(LAST(σ)),a, sj) > 0
∧ gk(πk(LAST(σ)),a, sk) > 0
∧
∣∣Ri(LAST(σ),a)

∣∣ > 1
∧
∣∣Ri(LAST(σ ′),a)

∣∣ > 1)
=⇒

(
[σ]i =

[
σ ′
]
i

=⇒ [f(σ)]i =
[
f(σ ′)

]
i

)

(C.32)

then η ′ is distributed (strongly distributed, resp.) after σ∗.

Proof. In order to prove that η ′ is distributed after a path σ∗, it suffices to define Θ∗i :

LOCALPATHS
[·]
P → PROB(TGi) and Υ∗i : LOCALPATHS

[·]
P × ACTLABi → PROB(TRi) such that η∗ =

(I ′, {Θ∗i }i, {Υ
∗
i }i) complies with η∗(σ) = η ′(σ) whenever σ∗ v σ and PRη

′
((σ)↑) > 0.

For all Ai, local path σi, let Θ∗i (σi) = Θi(f(h
Θ(σi)))), where hΘ(σi) is a global path such

that:

PRη
′
((hΘ(σi))

↑
) > 0 ∧ σ∗ v hΘ(σi) ∧

[
hΘ(σi)

]
i
= σi ∧ I ′(hΘ(σi))(Ai) > 0 . (C.33)

If no such global path exist, define Θ∗i (σi)(gi) = 1 for some arbitrary gi. Similarly, let
Υ∗i (σi,a) = Υi(f(h

Υ(σi)),a) for some global path hΥ(σi) such that there exists Aj, gj, sj
complying:

PRη
′
((hΥ(σi))

↑
) > 0 ∧ σ∗ v hΥ(σi) ∧ I ′(hΥ(σi))(Aj) ∧

Θ ′j(
[
hΥ(σi)

]
j
)(gj) > 0 ∧ g(πj(LAST(hΥ(σi))),a, sj) > 0 . (C.34)

We prove η∗(σ) = η ′(σ) for all σ∗ v σ and PRη
′
((σ)↑) > 0 by proving η∗(σ)(c) = η ′(σ)(c)

for all c such that η ′(σ)(c) > 0. The equality η∗(σ) = η ′(σ) follows from
∑
c η
∗(σ)(c) =∑

c η
′(σ)(c) = 1. Since η ′(σ)(gi,a, rj1 , · · · , rjm) > 0, then

I ′(σ)(Ai) > 0 ∧ Θ ′i(σ)(gi) > 0

∧
(
∃si : gi(πi(LAST(σ)),a, si) > 0

)
∧
(
∀
k

: a ∈ ACTLABjk
)

(C.35)

and so σ is a candidate for hΘ([σ]i), h
Υ([σ]jk). Hence, hΘ([σ]i) is defined according to (C.33)

and hΥ([σ]jk) is defined according to (C.34), for all k (although hΘ([σ]i) is not necessarily
equal to σ).

First, we show

Θi(f(h
Θ([σ]i))) = Θi(f(σ)) (C.36)

with the following reasoning[
hΘ([σ]i)

]
i
= [σ]i

=⇒
{

Equations (C.33), (C.35) and (C.31)
}[

f(hΘ([σ]i))
]
i
= [f(σ)]i

=⇒
{
Θ is distributed after σs

}
Θi(f(h

Θ([σ]i))) = Θi(f(σ))

196 proofs of chapter 7

The equation

∀
k
Υjk(f(h

Υ([σ]jk)),a) = Υjk(f(σ),a) (C.37)

is proven using a similar reasoning:[
hΥ([σ]jk)

]
jk

= [σ]jk

=⇒
{

Equations (C.34), (C.35) and (C.32)
}[

f(hΥ([σ]i))
]
i
= [f(σ)]i)

=⇒
{
Θ is distributed after σs

}
Υjk(f(h

Υ([σ]jk)),a) = Υjk(f(σ),a)

Then, we calculate:

η∗(σ)(gi,a, rj1 , · · · , rjm)

=
{
η∗ = (I ′, {Θ∗i }i, {Υ

∗
i }i)
}

I ′(σ)(Ai) Θ
∗
i ([σ]i)(gi)∑

si

gi(πi(LAST(σ)),a, si)
∏
k=1

Υ∗jk([σ]jk ,a)(rjk)

=
{

Definition of Θ∗i , Υ
∗
i

}
I ′(σ)(Ai) Θi(f(h

Θ([σ]i)))(gi)∑
si

gi(πi(LAST(σ)),a, si)
∏
k=1

Υjk(f(h
Θ([σ]jk)),a)(rjk)

=
{

Equations (C.36) and (C.37)
}

I ′(σ)(Ai) Θi(f(σ))(gi)∑
si

gi(πi(LAST(σ)),a, si)
∏
k=1

Υjk(f(σ),a)(rjk)

=
{
η ′(σ) = η(f(σ))

}
η ′(σ)(gi,a, rj1 , · · · , rjm)

Next, we prove that, if η is strongly distributed, so η ′ is. Let σ1, σ2, A, A ′, such that
PRη

′
((σ1)

↑
) > 0 and PRη

′
((σ2)

↑
) > 0,

[
σ1
]
A

=
[
σ2
]
A

,
[
σ1
]
A ′

=
[
σ2
]
A ′

, I ′(σ1) > 0, I ′(σ2) > 0.
By Eqn. (C.31), it must be[

f(σ1)
]
A

=
[
f(σ2)

]
A

∧
[
f(σ1)

]
A ′

=
[
f(σ2)

]
A ′

(C.38)

We prove the desired equality

I ′(σ1)(A)

I ′(σ1)(A) + I ′(σ1)(A ′)
=

I ′(σ2)(A)

I ′(σ2)(A) + I ′(σ2)(A ′)

Lemma 7.6 197

as follows:

I ′(σ1)(A)

I ′(σ1)(A) + I ′(σ1)(A ′)

=
{
η ′(σ) = η(f(σ))

}
=

I(f(σ1))(A)

I(f(σ1))(A) + I(f(σ1))(A ′)

=
{

Equation (C.38), η is strongly distributed
}

=
I(f(σ2))(A)

I(f(σ2))(A) + I(f(σ2))(A ′)

=
{
η ′(σ) = η(f(σ))

}
=

I ′(σ2)(A)

I ′(σ2)(A) + I ′(σ2)(A ′)

Proof of Lemma 7.6. We show that, for some f, the schedulers η and η[σs ← β] are under the
hypotheses of Lemma C.3. Let f(σ) = σ6∼/α. if there exists σ6∼/α. such that σ6∼/α. 6∼ /α. ,
PRη(σ6∼/α.) > 0 and C(σ6∼/α.) = σ. If there exists no such σ6∼/α. , and there exists σ∼/α.

such that σ∼/α. ∼ /α. , PRη(σ∼/α.) > 0 and σ ∈ C(σ∼/α.), let f(σ) = σ∼/α. . By definition
of η[σs ← β] and Lemma 7.5, we have

∀σ ∈ S+ : η[σs ← β](σ) = η(f(σ))

(with S+ as in Lemma C.3).
Let η = (I, {Θi}i, {Υi}i), η ′ = η[σs ← β] = (I ′, {Θ ′i}, {Υ

′
i}).

We have to prove (C.31) and (C.32).
To this end, we prove that, if f(σ) ∼ /α. , then η ′(σ)(α) > 0 implies α 6∈ AMPLE(LAST(σs)).

To see that this proposition holds, let σ ′ such that σ ∈ C(σ ′) and σ ′ ∼ /α. . Given that
σ ′ ∼ /α. , condition Eqn. (7.5) implies that either η(σ ′) = p1 :α1 + · · ·+ pQ :αQ with αq 6∈
AMPLE(LAST(σs)) for all 1 6 q 6 Q, or η(σ ′) = 1 :β. In the former case σ ′ = f(σ) and the
implication holds. In the latter case f(σ) ∼ /αβ. and the proposition holds trivially.

Properties (C.31) and (C.32) are proved for each one of three possible cases, which depend
on the paths f(σ), f(σ ′) appearing in such properties:

• Case f(σ) ∼ /α. , f(σ ′) ∼ /α. .
Suppose

f(σ) = σs.α1.a1.(sβ, s1
¬β

) · · ·αn.an.(sβ, sn
¬β

)i . (C.39)

By definition of f, we have σ ∈ C(f(σ)) and so

σ = σs.β.a.(tβ, s¬β).α1.a1.(tβ, s1
¬β

) · · ·αn.an.(tβ, sn
¬β

) (C.40)

for some a, tβ.
Analogously, if

f(σ ′) = σs.α ′1.a ′1.(sβ, s ′1
¬β

) · · ·α ′n ′ .a ′n ′ .(sβ, s ′n
′¬β

)

then

σ ′ = σs.β.a.(t ′β, s¬β).α ′1.a ′1.(t ′β, s ′1
¬β

) · · ·α ′n ′ .a ′n ′ .(t ′β, s ′n
′¬β

)

for some a, t ′β.

198 proofs of chapter 7

Then, the implication

[σ]i =
[
σ ′
]
i

=⇒ [f(σ)]i =
[
f(σ ′)

]
i

present in both (C.31) and (C.32) is exactly the contrapositive of property (7) of independence
structures.

• Case f(σ) 6∼ /α. , f(σ ′) 6∼ /α. .
Since σs < σ, we have f(σ) ∼ /αβ. or f(σ) ∼ /αβγ. (that is, it cannot be the case that

f(σ) ∼ /¬σs.). Similarly as in the previous case, we have that the implication

[σ]i =
[
σ ′
]
i

=⇒ [f(σ)]i =
[
f(σ ′)

]
i

is property (8).
Note that the case m = 0 in property (8) occurs when f(σ) ∼ /αβ. (the case m ′ = 0 occurs

when f(σ ′) ∼ /αβ. , resp.).

• Case f(σ) ∼ /α. and f(σ ′) 6∼ /α. , or f(σ ′) ∼ /α. and f(σ) 6∼ /α. .
We split the proof according to whether η is distributed or strongly distributed schedulers

(recall the hypotheses for each of the cases in the statement of this lemma).Distributed
schedulers

1. If f(σ) ∼ /α. and f(σ ′) =6∼ /α. , then σ and f(σ) are as in Equations C.40 and C.39,

f(σ ′) = σs.α ′1.a ′1.(sβ, s ′1
¬β

) · · ·α ′n ′ .a ′n ′ .(sβ, s ′n
′¬β

).β.a.(t ′β, s ′n
′¬β

)

.γ ′1.b ′1.u ′1. · · · .γ ′m
′
.b ′m

′
.u ′m

′

and

σ ′ = σs.β.a.(t ′β, s¬β).α ′1.a ′1.(t ′β, s ′1
¬β

) · · ·α ′n ′ .a ′n ′ .(t ′β, s ′n
′¬β

)

.γ ′1.b ′1.u ′1. · · · .γ ′m
′
.b ′m

′
.u ′m

′

If a ∈ ACTLABi then, by definition of RINV
I we have ak 6∈ ACTLABi for all k (the labels ak

are the ones in Eqn. (C.40)), and so the definition of [[·]] yields

[[σ]]i = [[σs]]i.a.πi((tβ, s¬β)) .

Hence, [[σ]]i = [[σ ′]]i implies πi((tβ, s¬β)) = πi((t
′β, s¬β)) and a ′k,b ′k 6∈ ACTLABi for all

k. Note the that former equality implies πi((tβ, sn
¬β

)) = πi((t
′β, s ′n

′¬β
)) since, by the

definition of the β-projection πβ,[[·]] (Definitions 7.3 and 7.4), the local state of Ai lies in
tβ and t ′β. We use these properties in the following calculation:

[[σ]]i = [[σ ′]]i

=⇒
{
ak 6∈ ACTLABi, a ′k,b ′k 6∈ ACTLABi, definition of [[·]]

}
[[f(σ)]]i = [[σs]]i.a.πi((tβ, sn

¬β
)) ∧ [[f(σ ′)]]i = [[σs]]i.a.πi((t ′β, s ′n

′¬β
))

=⇒
{
πi((t

β, sn
¬β

)) = πi((t
′β, s ′n

′¬β
))
}

[[f(σ)]]i = [[f(σ ′)]]i

If a 6∈ ACTLABi, then

[[σ]]i = [[σs]]i.az1 .πi((sz
β
1 , tβ)). · · · .azW .πi((sz

β
W , tβ))

[[σ ′]]i = [[σs]]i.a ′z
′
1 .πi((s ′z

′β
1 , t ′β)). · · · .a ′z

′
Y .πi((s ′z

′β
Y , t ′β))

[[f(σ)]]i = [[σs]]i.az1 .πi((sz
β
1 , sβ)). · · · .azW .πi((sz

β
W , sβ))

[[f(σ ′)]]i = [[σs]]i.a ′z
′
1 .πi((s ′z

′β
1 , t ′β)). · · · .a ′z

′
Y .πi((s ′z

′β
Y , t ′β))

Lemma 7.6 199

where 1 6 z1 < · · · < zW 6 n and 1 6 z ′1 < · · · 6 n ′ < · · · < z ′Y 6 m ′. Assume
[[σ]]i = [[σ ′]]i. Then, we have W = Y, ak = a ′k and πi((tβ, sk

¬β
)) = πi((t

′β, s ′k
¬β

)) for
all k. By definition of πβ,[[·]] the latter equality implies πi((sβ, sk

¬β
)) = πi((s

′β, s ′k
¬β

)).
Therefore, under the assumption [[σ]]i = [[σ ′]]i we can prove [[f(σ)]]i = [[f(σ ′)]]i, as de-
sired.

The proof for f(σ) ∼ /α. and f(σ ′) =6∼ /α. is symmetrical.
Strongly
distributed
schedulers

2. We show that, under the hypotheses of the theorem:

[σ]i 6=
[
σ ′
]
i

(C.41)

Then, both Eqn. (C.31) and Eqn. (C.32) hold, since the antecedent of the implications
cannot be true. We assume, towards a contradiction, that (C.41) does not hold. The
contradiction we prove is that η is not strongly distributed after σs. Since the proof
relies only on f(σ) ∼ /α. , f(σ ′) 6∼ /α. , and [σ]i = [σ ′]i, the proof for f(σ ′) ∼ /α. and
f(σ) 6∼ /α. is symmetrical.

If f(σ ′) 6∼ /α. , then f(σ ′) ∼ /αβ. or f(σ ′) ∼ /αβγ. , (and similarly for f(σ)).

Since f(σ ′) ∼ /αβ. or f(σ ′) ∼ /αβγ. , there exists σβ v f(σ ′) such that η(σβ)(β) = 1

and σβ ∼ /α. . By property (6) of independence structures, we have[
σβ
]

ACTIVE(β)
= [σs]ACTIVE(β) (C.42)

Since [·] is traceable and [f(σ)]i = [f(σ ′)]i, then there exist local paths σi1 , · · · ,σiR such
that

∃σ1, · · · ,σR,σ ′1, · · · ,σ ′R : σs v σ1 v · · · v σR v f(σ)

∧ σs v σ ′1 v · · · v σ ′R v f(σ ′)
∧
[
σ1
]
i1

=
[
σ ′1
]
i1

= [σs]i1

∧
R
∀
r=1

[σr]ir =
[
σ ′r
]
ir

= σir
∧ I(σr)(Air) > 0 ∧ I(σ ′r)(Air) > 0

Intuitively, for the local path σiR that leads to the local path [f(σ)]i, there are two global
paths σR v f(σ) and σ ′R v f(σ ′) such that

[
σR
]
iR

=
[
σ ′R
]
iR

= σiR , I(σR)(iR) > 0 and
I(σ ′R)(iR) > 0. Then, we can do the same reasoning for the path σiR−1

that leads to σiR .
Finally, since σs v f(σ) and σs v f(σ ′), we reach σ1, σ ′1 such that

[
σ1
]
i1

=
[
σ1
]
i1

=

[σs]i1 .

Since σs v σβ v f(σ), there exists r such that
[
σβ
]
ir

= σir , and so

[σr]ir =
[
σβ
]
ir

= σir (C.43)

The property of strongly distributed schedulers fails for σr, σβ, Air , ACTIVE(β): it must
be ACTIVE(β) 6= Air , since η(σr)(α) > 0 implies αRI β, as σr v f(σ) ∼ /α. (condition A3
of the reduction). Moreover, by property (6) of independence structures and σr v f(σ),
we have [σr]ACTIVE(β) = [σs]ACTIVE(β), and so by Eqn. (C.42),

[σr]ACTIVE(β) =
[
σβ
]

ACTIVE(β)
. (C.44)

In summary, [σr]ir =
[
σβ
]
ir

(Eqn. (C.43)), [σr]ACTIVE(β) =
[
σβ
]

ACTIVE(β)
(Eqn. (C.44)) and

I(σβ)(ACTIVE(β))

I(σβ)(ACTIVE(β)) + I(σβ)(Air)
=

1

1+ 0

6= 0

0+ I(σr)(Air)
=

I(σr(ACTIVE(β))

I(σr(ACTIVE(β)) + I(σr)(Air)
,

thus contradicting the fact that η is strongly distributed after σs.

200 proofs of chapter 7

lemma 7 .7

For all cylinders CYL(`+1 , · · · , `+n),

PRη(CYL(`+1 , · · · , `+n)) = PRη[σs←β](CYL(`+1 , · · · , `+n)) .

In order to prove this lemma, we first note that CYL(`+1 , · · · , `+n) can be written as a disjoint
union:

CYL(`+1 , · · · , `+n) =
⊎

{σ | TRACE(σ)∼`+1 ,··· ,`+n` ′ ∧ `n 6=` ′} (σ)↑⊎ ⊎
{σ | TRACE(σ)∼`+1 ,··· ,`+n−1}

Z(σ)
(C.45)

where Z(σ) = {σ.α1.a1.s1.α2.a2.s2. · · · | ∀k L(sk) = `n}.
Equation (C.45) motivates the following lemmata.

Lemma C.4.

PRη((σ)↑) =
∑

σ ′∈C(σ)

PRη[σs←β]((σ ′)
↑
)

Lemma C.5.

PRη(Z(σ)) =
∑

σ ′∈C(σ)

PRη[σs←β](Z(σ ′))

Proof of Lemma C.4. In case σ ∼ /¬σs. , the result follows from σ ′ ∼ /¬σs. for all σ ′ < σ,/¬σs.

and so η(σ ′) = η[σs ← β](σ ′) for all such σ ′.
In case σ ∼ /αβγ. , suppose/αβγ.

σ = σs.α1.a1.(sβ, s1
¬β

) · · ·αn.an.(sβ, sn
¬β

).β.a.(s ′β, sn
¬β

)

.γ1.b1.(s ′1
β

, s ′1¬β) · · ·γn ′ .bn ′ .(s ′n
′β

, s ′n
′¬β

)

and LAST(σs) = (sβ, s¬β). Let

Jk = I(σs.α1.a1.(sβ, s1
¬β

) · · · (sβ, sk−1¬β
))

Kk = I(σs.α1.a1.(sβ, s1
¬β

) · · · (sβ, sn
¬β

).β.a.(s ′β, sn
¬β

)

.γ1.b1.(s ′1
β

, s ′1
¬β

) · · · (s ′k−1β , s ′k−1¬β
))

J ′k = I ′(σs.β.a.(s ′β, s¬β).α1.a1.(s ′β, s1
¬β

) · · · (s ′β, sk−1¬β
))

K ′k = I ′(σs.β.a.(s ′β, s¬β).α1.a1 · · · (s ′β, sn
¬β

)

.γ1.b1.(s ′1
β

, s ′1
¬β

) · · ·γn ′ .bn ′ .(s ′n
′β

, s ′n
′¬β

))

Since

σs.β.a.(s ′β, s¬β).α1.a1.(s ′β, s1
¬β

) · · · (s ′β, sk−1¬β
)

∈ C(σs.α1.a1.(sβ, s1
¬β

) · · · (sβ, sk−1¬β
))

and

σs.β.a.(s ′β, s¬β).α1.a1 · · · (s ′β, sn
¬β

)

.γ1.b1.(s ′1
β

, s ′1
¬β

) · · ·γn ′ .bn ′ .(s ′n
′β

, s ′n
′¬β

)

∈ C(σs.α1.a1.(sβ, s1
¬β

) · · · (sβ, sn
¬β

).β.a.(s ′β, sn
¬β

)

.γ1.b1.(s ′1
β

, s ′1
¬β

) · · · (s ′k−1β , s ′k−1¬β
)) ,

Lemma 7.7 201

by definition of η[σs ← β] we get:

Jk = J ′k ∧ Kk = K ′k (C.46)

for all k.

PRη((σ)↑)

=
{
σ is of the form /αβγ.

}
PRη(σs.α1.a1.(sβ, s¬β1) · · ·αn.an.(sβ, sn

¬β
)β.a.(s ′β, sn

¬β
)

.γ1.b1.(s ′1
β

, s ′1
¬β

) · · ·γn ′ .bn ′ .(s ′n
′β

, s ′n
′¬β

))

=
{
η is I/O nonrandomized, let s0

¬β
= s¬β, s ′0

β
= s ′β, and s ′0

¬β
= sn

¬β }
PRη(σs) ·

n∏
k=1

Jk ·αk((sβ, sk
¬β

) , ak , (sβ, sk
¬β

)) · β((sβ, s¬βn) , a , (s ′β, sn
¬β

))

·
n ′∏
k=1

Kk · γk((s ′k−1β , s ′k−1¬β
) , bk , (s ′k

β
, s ′k

¬β
))

=
{

Def. 7.5, property (4). Let s0
¬β

= s¬β
}

PRη(σs) · β((sβ, s¬β) , a , (s ′β, s¬β)) ·
n∏
k=1

Jk ·αk((s ′β, sk−1¬β
) , ak , (s ′β, sk

¬β
))

·
n ′∏
k=1

Kk · γk((s ′k−1β , s ′k−1¬β
) , bk , (s ′k

β
, s ′k

¬β
))

=
{

Equation (C.46)
}

PRη(σs) · β((sβ, s¬β) , a , (s ′β, s¬β)) ·
n∏
k=1

J ′k ·αk((s ′β, sk−1¬β
) , ak , (s ′β, sk

¬β
))

·
n ′∏
k=1

K ′k · γk((s ′k−1β , s ′k−1¬β
) , bk , (s ′k

β
, s ′k

¬β
))

=
{

Definition of C (recall that, in this case, C(σ) is a singleton set)
}∑

σ ′∈C(σ)

PRη[σs←β]((σ ′)
↑
)

The case in which σ is of the form /αβ. is a particular case of the one above, with n ′ = 0. /αβ.

Below, we study the case in which σ is of the form /α. . /α.

PRη((σ)↑)

= PRη((σs.α1.a1.(sβ, s¬β1) · · ·αn.an.(sβ, sn
¬β

))
↑
)

= PRη((σs)↑) ·
n∏
k=1

Jk ·αk((sβ, sk
¬β

) , ak , (sβ, sk
¬β

))

=
{ ∑

a,s ′β β((sβ, sn
¬β

) , a , (s ′β, sn
¬β

)) = 1
}

∑
a,s ′β

β((sβ, sn
¬β

) , a , (s ′β, sn
¬β

)) · PRη((σs)↑)

·
n∏
k=1

Jk ·αk((sβ, sk
¬β

) , ak , (sβ, sk
¬β

))

202 proofs of chapter 7

= ∑
a,s ′β

PRη((σs)↑)

·
n∏
k=1

Jk ·αk((sβ, sk
¬β

) , ak , (sβ, sk
¬β

)) · β((sβ, sn
¬β

) , a , (s ′β, sn
¬β

))

= ∑
a,s ′β

β((sβ, s¬β) , a , (s ′β, s¬β)) · PRη((σs)↑)

·
n∏
k=1

Jk ·αk((sβ, sk
¬β

) , ak , (sβ, sk
¬β

))

= ∑
{a,s ′β|β((sβ,s¬β) ,a , (s ′β,s¬β))>0}

β((sβ, s¬β) , a , (s ′β, sn
¬β

)) · PRη((σs)↑)

·
n∏
k=1

Jk ·αk((sβ, sk
¬β

) , ak , (sβ, sk
¬β

))

=
∑

σ ′∈C(σ)

PRη[σs←β]((σ ′)
↑
)

Proof of Lemma C.5. For all m > LEN(σ), let Zm be the set of infinite paths

{σ.γ1.b1.s1 · · ·γm−LEN(σ).bm−LEN(σ).sm−LEN(σ)

.γm−LEN(σ)+1.bm−LEN(σ)+1 · · · |
m−LEN(σ)

∀
k=1

L(sk) = `n} .

Then, Z(σ) =
⋂∞
m=LEN(σ)+1 Zm. This equality, together with Zm+1 ⊇ Zm, impliesNote that

L(sq) = `n is not
required for
q > m− LEN(σ).

PRη(Z(σ)) = lim
m→∞ PRη(Zm) . (C.47)

Let Em be the set of finite paths

{σZ | σZ ∼ σ.γ1.b1.s1 · · ·γm−LEN(σ).bm−LEN(σ).sm−LEN(σ)

∧
m−LEN(σ)

∀
k=1

L(sk) = `n ∧ PRη((σZ)
↑) 6= 0} .

Then,Note that the
paths in Em have
length m. PRη(Zm) =

∑
σZ∈Em

PRη((σZ)
↑) . (C.48)

Similarly, for C(σ) we define

Z ′m =
⊎

σ ′∈C(σ)

{σ ′.γ1.b1.s1 · · ·γm−LEN(σ ′).bm−LEN(σ ′).sm−LEN(σ ′)

.γm−LEN(σ ′)+1 · · · |
m−LEN(σ ′)

∀
k=1

L(sk) = `n}

Lemma 7.7 203

for all m > LEN(σ) + 1. Then,

PRη(
⊎

σ ′∈C(σ)

Z(σ ′)) = lim
n→∞ PRη(Z ′m) . (C.49)

By defining

E ′m = {σZ ′ | σZ ′ ∼ σ
′.γ1.b1 · · ·γm−LEN(σ ′).bm−LEN(σ ′).sm−LEN(σ ′)

∧ σ ′ ∈ C(σZ) ∧
m−LEN(σ ′)

∀
k=1

L(sk) = `n ∧ PRη[σs←β]((σZ ′)
↑) 6= 0}

we obtain

PRη[σs←β](Z ′m) =
∑

σZ ′∈E ′m

PRη[σs←β]((σZ ′)
↑) . (C.50)

Next, we show that∑
σZ ′∈E ′m+1

PRη[σs←β]((σZ ′)
↑) 6

∑
σZ∈Em

PRη((σZ)
↑) 6

∑
σZ ′∈E ′m

PRη[σs←β]((σZ ′)
↑) . (C.51)

By Eqn. (C.48) and Eqn. (C.50), this inequality implies PRη[σs←β](Z ′m+1) 6 PRη(Zm) 6
PRη[σs←β](Z ′m). By Equations (C.47) and (C.49), we have

PRη(Z(σ)) =
∑

σ ′∈C(σ)

PRη[σs←β](Z(σ ′)) ,

which is what we want to prove.
In order to prove Eqn. (C.51) we start by the inequality∑

σZ∈Em

PRη((σZ ′)
↑) 6

∑
σZ∈E ′m

PRη[σs←β]((σZ ′)
↑) .

To this end, we explore how Em relates to E ′m. Let’s take σZ ∈ Em. If σZ 6∼ /α. , then
C(σZ) ⊆ E ′m (recall that, in these cases, C(σZ) is a singleton set). If σZ is of the form /α. ,
then C(σZ) ⊆ E ′m+1 (since, in this case, C inserts β in σZ) and, in addition, σ↓−1 ∈ E ′m for all
σ ∈ C(σZ). Hence, the set

I = {σ↓−1 | ∃σZ ∈ Em : σZ ∼ /α . ∧ σ ∈ C(σZ)}

obtained by dropping the last state of every path in
⋃
σZ∈Em ∧ σZ∼/α. C(σZ) complies with⊎

σZ∈Em ∧ σZ∼/α.

⊎
σZ ′∈C(σZ)

(σZ ′)
↑ ⊆

⊎
σZ ′∈I

(σZ ′)
↑ . (C.52)

In addition

∀σZ ∈ EM,σZ 6∼ /α . : I∩ C(σZ) = ∅ . (C.53)

To see this, suppose that σZ 6∼ /α. , C(σZ) = {σZ ′} and σZ ′ ∈ I. Since σZ ′ ∈ I, we know
that σZ ′ = σ ′α↓−1 for some path σ ′α such that σ ′α ∈ C(σα), where σα ∼ /α. and σα ∈ Em.
Since σ ′α ∈ C(σα), and σα is of the form /α. , and σZ ′ = σ ′α↓−1, we have σZ ′ ∈ C(σα↓−1). In
addition, since (by Lemma 7.4) C(σZ) ∩ C(σα↓−1) = {σZ ′}, it must be σZ = σα↓−1.β.a.s ′ for
some s ′. However, η(σα↓−1) 6= 1 :β (because σα is of the form /α.). So PRη(σZ) = 0, which
implies σZ 6∈ Em. Hence, Eqn. (C.53) holds.

204 proofs of chapter 7

In addition to Eqn. (C.53), we need a disjointness property. Since in Em we cannot have
two paths σZ and σZ.β.a.s, Lemma 7.4 ensures that C maps distinct paths in Em to disjoint
set of paths, that is:

∀σZ,σQ ∈ Em : σZ 6= σQ =⇒ C(σZ)∩ C(σQ) = ∅ . (C.54)

These observations allow the following calculation:∑
σZ∈Em PRη((σZ)

↑)

=
{

Split sum
}∑

σZ∈Em ∧ σZ 6∼/α. PRη((σZ)
↑) +
∑
σZ∈Em ∧ σZ∼/α. PRη((σZ)

↑)

=
{

Lemma C.4
}∑

σZ∈Em ∧ σZ 6∼/α. PRη[σs←β]((C(σZ))↑)

+
∑
σZ∈Em ∧ σZ∼/α.

∑
σZ ′∈C(σZ) PRη[σs←β]((σZ ′)

↑)

6
{

Inclusion (C.52)
}∑

σZ ′∈E ′m ∧ ∃σZ 6∼/α. : {σZ ′}=C(σZ) PRη[σs←β]((σZ ′)
↑) +
∑
σZ ′∈I PRη[σs←β]((σZ ′)

↑)

6
{

Equation (C.53)
}∑

σZ ′∈E ′m PRη[σs←β]((σZ ′)
↑)

Next, we consider the inequation
∑
σZ∈Em PRη((σZ)

↑) >
∑
σZ ′∈Em+1

PRη[σs←β]((σZ ′)
↑). For

the proof, we need the following inclusions:⊎
{(σZ)

↑
| σZ ∈ Em ∧ (σZ ∼ /αβ . ∨ σZ ∼ /αβγ.) }

⊆
⊎

{(σZ)
↑

| σZ ∈ Em+1 ∧ σ ∼ /αβγ. }
(C.55)

⊎
{(σZ)

↑
| σZ ∈ Em ∧ σZ ∼ /α . ∧ η(σZ) = 1 :β}

⊆
⊎

{(σZ)
↑

| σZ ∈ Em+1 ∧ σ ∼ /αβ. }
(C.56)

Inclusion (C.55) holds since, for all σZ ∈ Em+1, σZ ∼ /αβγ. , the path σ↓−1 is in Em and is
of the form /αβ. or /αβγ. . Inclusion (C.56) holds since, for all σZ ∈ Em+1, σZ ∼ /αβ. ,
the path σ↓−1 is in Em, is of the form /α. and η(σ↓−1) = 1 :β (recall that the paths in Em have
positive probability in η).

In addition, we need to prove the following statement for all σZ ′ ∈ Em+1

∃σZ ∈ Em+1 | σZ 6∼ /α . ∧ {σZ ′} = C(σZ)

∨ ∃σZ ∈ Em | σZ ∼ /α . ∧ η(σZ) 6= 1 :β ∧ {σZ ′} ∈ C(σZ)
(C.57)

In order to prove this claim, note that PRη[σs←β](σZ ′) 6= 0 (since σZ ′ ∈ E ′m). So, Lemma 7.5
ensures the existence of some σZ with nonzero probability such that σZ ′ ∈ C(σZ). Since the
changes introduced by C yield a stuttering equivalent labelling, and C can insert one action,
we have that σZ ∈ Em ∪Em+1. If σZ ∈ Em+1, and σZ ′ ∈ C(σZ), we conclude that σZ ′ ∼ /αβ.

or σZ ∼ /αβγ. , and

σZ ∈ Em+1 ∧ σZ 6∼ /α . ∧ {σZ ′} = C(σZ) (C.58)

holds. If σZ ∈ Em, then σZ ∼ /α. . If η(σZ) = 1 :β, we have a path σ ′′ ∈ Em+1 of the form
σZ.β.a.s ′ such that σZ ′ ∈ C(σ ′′). So, if η(σZ) = 1 :β, the case (C.58) holds. If η(σZ) 6= 1 :β, we
are in the case

σZ ∈ Em ∧ σZ ∼ /α . ∧ η(σZ) 6= 1 :β ∧ {σZ ′} ∈ C(σZ)

Lemma 7.7 205

Now, we are able to prove the inequality.∑
σZ∈Em PRη((σZ)

↑)

>
{

Split sum
}∑

σZ∈Em ∧ σZ∼/¬σs. PRη((σZ)
↑)

+
∑
σZ∈Em ∧ (σZ∼/αβ. ∨ σZ∼/αβγ.) PRη((σZ)

↑)

+
∑
σZ∈Em ∧ σZ∼/α. ∧ η(σZ)=1 :β PRη((σZ)

↑)

+
∑
σZ∈Em ∧ σZ∼/α. ∧ η(σZ) 6=β PRη((σZ)

↑)

>
{

Inclusions (C.55) and (C.56)
}∑

σZ∈Em ∧ σZ∼/¬σs. PRη[σs←β]((σZ)
↑)

+
∑
σZ∈Em+1 ∧ σZ∼/αβγ. PRη((σZ)

↑)

+
∑
σZ∈Em+1 ∧ σZ∼/αβ. PRη((σZ)

↑)

+
∑
σZ∈Em ∧ σZ∼/α. ∧ η(σZ) 6=1 :β PRη((σZ)

↑)

=
{

Lemma C.4
}∑

σZ∈Em ∧ σZ∼/¬σs. PRη[σs←β](C(σZ))

+
∑
σZ∈Em+1 ∧ (σZ∼/αβ. ∨ σZ∼/αβγ.) PRη[σs←β]((C(σZ))↑)

+
∑
σZ∈Em ∧ σZ∼/α. ∧ η(σZ) 6=1 :β

∑
σZ ′∈C(σZ) PRη[σs←β]((σZ ′)

↑)

>
{

Rewrite
}∑

σZ ′∈E ′m+1
∧ ∃σZ : {σZ ′}=C(σZ) ∧ σZ 6∼/α. PRη[σs←β]((σZ ′)

↑)

+
∑
σZ ′∈E ′m+1

∧ ∃σZ : σZ∼/α. ∧ η(σZ) 6=1 :β PRη[σs←β]((σZ ′)
↑)

>
{

Statement (C.57)
}∑

σZ ′∈E ′m+1
PRη[σs←β]((σZ ′)

↑)

So, we have proven Eqn. (C.51), which implies

PRη(Z(σ)) =
∑

σ ′∈C(σ)

PRη[σs←β](Z(σ ′)) .

Proof of Lemma 7.7. Let U = {(σ)↑ | TRACE(σ) ∼ `+1 , · · · , `+n` ′ ∧ `n 6= ` ′} ∪ {Z(σ) | TRACE(σ) ∼

`+1 , · · · , `+n−1}. From Eqn. (C.45), it suffices to prove:∑
U∈U

PRη(U) =
∑
U∈U

PRη[σs←β](U) .

To this end, we define a function M mapping the positive terms in
∑
U∈U PRη(U) to sets of

positive terms in
∑
U∈U PRη[σs←β](U). Using M, we show that

∑
U∈U PRη(U) is a reordering

of
∑
U∈U PRη[σs←β](U).

We define M as M((σ)↑) = {(σ ′)↑ | σ ′ ∈ C(σ)}, M(Z(σ)) = {Z(σ ′) | σ ′ ∈ C(σ)}. This function
complies with the following properties:

1. PRη(U) 6= 0 ∧ PRη(U ′) 6= 0 ∧ U ∈ U ∧ U ′ ∈ U ∧ M(U)∩M(U ′) 6= ∅ =⇒ U = U ′

2. PRη(U) =
∑
U ′∈M(U) PRη[σs←β](U ′)

3. for all U ′ such that PRη[σs←β](U ′) > 0 there exists U such that PRη(U) > 0 and U ′ ∈
M(U).

206 proofs of chapter 7

For the proof of property (1) suppose, towards a contradiction, that M(U) ∩M(U ′) 6= ∅,
PRη(U) 6= 0, PRη(U ′) 6= 0, and U 6= U ′. Then, by definition of M, it must be either (U = (σ)↑

and U ′ = (σ ′)↑) or (U = Z(σ) and U ′ = Z(σ ′)). In the first case, σ = σ ′ by Lemma 7.4, since
neither σ nor σ ′ can be of the form /αβ. (because TRACE(σ) ∼ `+1 , · · · , `+n` ′ with `n 6= ` ′, and
β is stutter). In the second case, it must be C(σ) ∩ C(σ ′) 6= ∅. By Lemma 7.4, it is possible
only if σ = σs.α1.a1.(s1

β
, s1

¬β
) · · ·αn.an.(sn

β
, sn

¬β
) and σ ′ = σ.β.(s ′β, s ′¬β) for some αk,

sk (or, symmetrically, σ is the path that finishes with β). Since PRη(σ ′) > 0, we have that
η(σs.α1.a1.(s1

β
, s1

¬β
) · · ·αn.an.(sn

β

n , sn
¬β

)) = β. In addition, L((snβ, sn
¬β

)) = `n−1 (see the
definition of U above) and, since β is stutter, the paths of the form

σs.α1.a1.(s1
β

, s1
¬β

) · · ·αn.an.(sn
β

, sn
¬β

)β.a.s ′

with L(s ′) 6= `n have probability 0. Then, all the paths in Z(σ) start with a prefix having
probability 0. Hence, PRη(U) = PRη(Z(σ)) = 0.

Property (2) holds by Lemma C.4 (in case U = (σ)↑) and Lemma C.5 (in case U = Z(σ)).
For property (3), in case U ′ = (σ ′)↑ the claim becomes Lemma 7.5. In case U ′ = Z(σ ′), since

PRη[σs←β]((σ ′)↑) > 0, there exists σ such that σ ′ ∈ C(σ) and PRη((σ)↑) > 0. Then, U ′ ∈M(Z(σ)).
Because of the property (2) for M proven above, we have the inequality

0 < PRη[σs←β](U ′) 6
∑

U ′′∈C(Z(σ))

PRη[σs←β](U ′′) = PRη(Z(σ)) .

So, we can take U = Z(σ).
By properties (1) and (3) we have∑

U ′∈U

PRη[σs←β](U ′) =
∑

{U ′∈U | PRη[σs←β](U ′)>0}

PRη[σs←β](U ′) =

∑
{U∈U | PRη(U)>0}

∑
U ′∈M(U)

PRη[σs←β](U ′) .

By property (2),∑
{U∈U | PRη(U)>0}

∑
U ′∈M(U)

PRη[σs←β](U ′) =
∑

{U∈U | PRη(U)>0}

PRη(U) =
∑
U∈U

PRη(U) .

D
P R O O F S O F C H A P T E R 9

d.1 theorem 9 .1

Given an MDPM, let P =‖α∈ACTIONSM Aα. Moreover, let P̂ be a reduction of MDP(P) complying with The definition of
MDP(P)

is Def. 6.2 in
p. 108

conditions A1–A4, by taking the independence relation to be I. Then,

sup
η∈SDISTP(L·M)

PRη(φ) 6 sup
η∈SCHED

P̂

PRη(φ) .

We prove this theorem in the same way as we did for Theorem 7.2, that is, we resort
to Theorem 7.3 using the full-communication projection |L·M|. To this aim, we propose an α
projection (πα,π¬α) and prove that (I, {(πα,π¬α)}α, |L·M|) is an independence structure. First,
we show that (I, {(πα,π¬α)}α, L·M) is an independence structure, and then we extend the result
to the projection |L·M| using Lemma C.2.

The following definition introduces the α-projections used in the proof.

Definit ion D.1. For all α ∈ ACTIONSM, s ∈ SM, we define πα(s) to be the valuation V ∈
V(WRITEVAR(α)) such that V(v) = s(v) for all v ∈ WRITEVAR(α). In addition, π¬α(s) is defined
as the valuation V ∈ V(VM \ WRITEVAR(α)) such that V(s) = s(v) for all v ∈ VM \ WRITEVAR(α).

Lemma D.1. The triple (I, {(πα,π¬α)}α, L·M) is an independence structure.

Proof. In this proof, α and β are any two actions such that αRIβ.
We prove each of the properties that an independence structure must comply with:
Property (1): if α(s,a, s ′) > 0, then s ′(v) = s(v) for all v 6∈ WRITEVAR(α). Since α and β are

independent, we have v 6∈ WRITEVAR(α) for all v ∈ READVAR(β). Hence, s ′(v) = s(v) for all
v ∈ READVAR(β), and property (1) follows from Equation (9.1).

Property (2): if α(

s︷ ︸︸ ︷
(sα, s¬α) , a ,

s ′︷ ︸︸ ︷
(s ′α, s ′¬α)) > 0, then s ′(v) = s(v) for all v 6∈ WRITEVAR(α).

Therefore, π¬α(s) = π¬α(s ′).

Property (3): if β(

s︷ ︸︸ ︷
(sα, s¬α) , a ,

s ′︷ ︸︸ ︷
(s ′α, s ′¬α)) > 0, then s ′(v) = s(v) for all v 6∈ WRITEVAR(β).

By α Iβ, we have

v ∈ WRITEVAR(α) =⇒ v 6∈ WRITEVAR(β) .

Hence, s ′(v) = s(v) for all v ∈ WRITEVAR(α). Therefore πα(s) = πα(s ′).
Property (4): first, we consider the case in which s ′′¬α(v) 6= s¬α(v), for some v ∈ VAR(α).

Since αIβ implies v 6∈ WRITEVAR(β), we have

β((s ′α, s¬α) , b , (s ′α, s ′′¬α))

= β((sα, s¬α) , b , (sα, s ′′¬α)

= 0

and the required equality holds.

207

208 proofs of chapter 9

The second case we consider is that in which s ′α(v) 6= sα(v) for some v ∈ VAR(β). Since
αIβ implies v 6∈ WRITEVAR(α), we have

α((sα, s¬α) , a , (s ′α, s¬α))

= α((sα, s ′′¬α) , a , (s ′α, s ′′¬α)

= 0

and the required equality holds.
Now, we consider the case in which

∀v ∈ VAR(α) : s ′′¬α(v) = s¬α(v) (D.1)

∀v ∈ VAR(β) : s ′α(v) = sα(v) (D.2)

Recall that the labels in the system are of the form aV (definition of ACTLABα). Suppose that
a = cV and b = dV ′ . If V 6= (s ′α)

∣∣
WRITEVAR(α)

or V ′ 6= (s ′′α)
∣∣

WRITEVAR(β)
, then both sides of the

equality is 0. Hence, assume V = (s ′α)
∣∣

WRITEVAR(α)
and V ′ = (s ′′α)

∣∣
WRITEVAR(β)

.

α((sα, s¬α) , aV , (s ′α, s¬α)) ·β((s ′α, s¬α) , bV ′ , (s ′α, s ′′¬α))

=
{

Equations (D.1),(9.3),

α only writes variables in WRITEVAR(α), definition of s¬α
}

α((sα, s ′′¬α) , aV , (s ′α, s ′′¬α)) ·β((s ′α, s¬α) , bV ′ , (s ′α, s ′′¬α))

=
{

Equations (D.2), (9.3),

WRITEVAR(β)∩WRITEVAR(α) = ∅, definition of sα
}

α((sα, s ′′¬α) , aV , (s ′α, s ′′¬α)) ·β((sα, s¬α) , bV ′ , (sα, s ′′¬α))

= β((sα, s¬α) , bV ′ , (sα, s ′′¬α)) ·α((sα, s ′′¬α) , aV , (s ′α, s ′′¬α))

Property (5): if α Iβ, we have α 6= β. Hence, ACTIVE(α) = Aα 6= Aβ = ACTIVE(β).Actually, it might
be difficult to find
where we have
restricted I so
that it cannot be
α Iα. The answer
is (9.2)

Property (6): the only atom in AFFECT(β) is Aβ: although there might some atoms Aj such
that aV ∈ ACTLABj, we have

∣∣Rj(s,aV)
∣∣ = 1 for all s, j, and so Aj 6∈ AFFECT(β). For all k, let

ak = dk
Vk

, where dk ∈ LM and Vk ∈ WRITEVAR(αk). Since αkIβ, we have

dk 6∈ READLAB(β) ∧ WRITEVAR(αk)∩ VAR(β) = ∅ . (D.3)

Hence

Lσ.α1.a1.s1. · · · .αn.an.snMβ
= (σ.α1.a1.s1. · · · .αn.an.sn)

∣∣
β

=
{

Definition of (·)
∣∣, Eqn. (D.3)

}
= (σ)

∣∣
β

= LσMβ

Property (7): if

Lσ.α1.a1.(sβ, s1
¬β

) · · ·αn.an.(sβ, sn
¬β

)Mγ

6= Lσ.α ′1.a ′1.(sβ, s ′1
¬β

) · · ·α ′n ′ .a ′n ′ .(sβ, s ′n
′¬β

)Mγ

then

Lσ.α1.a1.(sβ, s1
¬β

) · · ·αn.an.(sβ, sn
¬β

)Mγ = (σ)
∣∣
γ

.b1.s1γ. · · · .bm.smγ

D.1 theorem 9 .1 209

and

Lσ.α ′1.a ′1.(sβ, s ′1
¬β

) · · ·α ′n ′ .a ′n ′ .(sβ, s ′n
′¬β

)Mγ = (σ)
∣∣
γ

.b ′1.s ′1γ . · · · .b ′m.s ′mγ

for some bk,b ′k ∈ LM ∪ {κ}, skγ, s ′kγ ∈ V(VAR(γ)) such that

b1.s1γ. · · · .bm.smγ 6= b ′1.s ′1. · · · .b ′m
′
.s ′m

′
.

We consider two cases. In case a 6∈ ACTLABγ, we have

Lσ.β.a.(tβ, s¬β).α1.a1.(tβ, s1
¬β

) · · ·αn.an.(tβ, sn
¬β

)Mγ

= (σ)
∣∣
γ

.b1.s1γ. · · · .bm.sm
′

γ

6= (σ)
∣∣
γ

.b ′1.s ′1γ . · · · .b ′m
′
.s ′m

′
γ

= Lσ.β.a.(t ′β, s¬β).α ′1.a ′1.(t ′β, s ′1
¬β

) · · ·α ′n ′ .a ′n ′ .(t ′β, s ′n
′¬β

)Mγ

In case a ∈ ACTLABγ, there exist local states vγ, v ′γ ∈ V(VAR(γ)), d,d ′ ∈ LM ∪ {κ} such that

Lσ.β.a.(tβ, s¬β).α1.a1.(tβ, s1
¬β

) · · ·αn.an.(tβ, sn
¬β

)Mγ
= (σ)

∣∣
γ

.d.vγ.b1.s1γ. · · · .bm.smγ

and

Lσ.β.a.(t ′β, s¬β).α ′1.a ′1.(t ′β, s ′1
¬β

) · · ·α ′n ′ .a ′n ′ .(t ′β, s ′n
′¬β

)Mγ

= (σ)
∣∣
γ

.d ′.v ′γ.b ′1.s ′1γ . · · · .b ′m
′
.s ′m

′
γ

Then,

Lσ.β.a.(tβ, s¬β).α1.a1.(tβ, s1
¬β

) · · ·αn.an.(tβ, sn
¬β

)Mγ
= (σ)

∣∣
γ

.d.vγ.b1.s1γ. · · · .bm.smγ

6=
{
b1.s1γ. · · · .bm.smγ 6= b ′1.s ′1γ . · · · .b ′m

′
.s ′m

′
γ implies

d.vγ.b1.s1γ. · · · .bm.smγ 6= d ′.v ′γ.b ′1.s ′1γ . · · · .b ′m
′
.s ′m

′
γ

}
(σ)
∣∣
γ

.d ′.v ′γ.b ′1.s ′1γ . · · · .b ′m
′
.s ′m

′
γ

= Lσ.β.a.(t ′β, s¬β).α ′1.a ′1.(t ′β, s ′1
¬β

) · · ·α ′n ′ .a ′n ′ .(t ′β, s ′n
′¬β

)Mγ

Property (8) follows as in Lemma 7.1.

The same argument used to prove that [[·]] complies with (C.6), (C.7) and (C.8) can be
applied for L·M, and so Lemma C.2 implies:

Lemma D.2. The triple (I, {(πα,π¬α)}α, |L·M|) is an independence structure.

Proof of Theorem 9.1. The independence structure in Lemma D.2 complies with the hypothe-
ses of Theorem 7.3 since, by Theorem 4.5, the projection |L·M| is traceable. By applying Theo-
rem 7.3 to |L·M|) we get

sup
η∈SDISTP(|L·M|)

PRη(φ) 6 sup
η∈SCHED

P̂

PRη(φ) . (D.4)

By Theorems 4.4 and 2.3:

sup
η∈SDISTP(L·M)

PRη(φ) 6 sup
η∈SDISTP(|L·M|)

PRη(φ) . (D.5)

210 proofs of chapter 9

From (D.4) and (D.5), we obtain the desired inequality:

sup
η∈SDISTP(L·M)

PRη(φ) 6 sup
η∈SCHED

P̂

PRη(φ) .

G L O S S A R Y (I N C L U D I N G S Y M B O L S A N D N O T A T I O N S)

For each entry, we include a brief explanation and a list of page numbers. The first number
corresponds to the page in which the symbol in the entry is introduced. The remaining
numbers correspond to selected occurrences of the symbol. In page xv, we introduce basic
notation that you should have no problem to remember.

σ〈k〉 19, k-th transition in σ.

LAST(σ) 19, Last state in σ.

LEN(σ) 19, Number of states in σ.

‖ 17, P ‖ Q is the system whose atoms are
ATOMS(P)∪ ATOMS(Q). Given two atoms A and B,
A ‖ B denotes the system P having
ATOMS(P) = {A,B}.

σ↓k 20, k-th prefix of σ, ending in σ(k). If k is negative,
it ends in σ(LEN(σ) + k) .

σ↑k 20, 122, k-th suffix of σ, starts from s(k).

σ ′ v σ 20, σ ′ is a prefix of (or is equal to) σ.

σ(k) 19, k-th state in σ.

σ · σ ′ 20, Concatenation of σ and σ ′. Assumes
LAST(σ) = FIRST(σ ′).

(σ)↑ 20, Set comprising all infinite paths ω such that σ is
a prefix of ω.

ς 19, Fictitious transition executed when no generative
transitions are enabled in the system. ς(s, s ′) = 1 iff
s = s ′.

ACTIVE(c) 18, Atom that generates the output in compound
transition c.

ACTLAB(gi) 108, Labels that are output by gi with positive
probability.

APATHS(Ai) 17, 21, Paths in the atom Ai.

c(s, s ′) 18, Probability of reaching s ′ from s using c.

Cylinder 20, see (σ)↑.

DISTP 22, Set of distributed schedulers under projection
[[·]].

Extension set 20, Set of the form (σ)↑ for some σ.

211

212 glossary (including symbols and notations)

Fringe 84, Finite set {σm}m such that ∀m 6=m ′(σ)↑ ∩ (σ ′)↑ = ∅
and

⊎
m (σm)↑ = (INIT)↑.

Gi 17, Generative structure of atom Ai.

Generative structure 26, 212, Structure describing the generative (output)
transitions enabled in each state. G(s) is the set of
generative transitions enabled at state s.

Global enabledness
conditions

27, A system has global enabledness conditions iff the
set of transitions enabled at a given atom is a
function of the global state.

Global path 19, Path s1.c1.s2.c2 · · · cn−1.sn where the sk are
global states and the ck are compound transitions.

Glossary xv, This glossary.

LABEL(c) 18, Label a of a compound transition
c = (gi,a, rj1 , · · · , rjm).

Local enabledness
conditions

27, A system has local enabledness conditions iff the
set of transitions enabled at a given atom is a
function of the state of the atom.

N 17, Number of a atoms in a given system.

Path in an atom 17, Sequence s1i .a1. · · · .an−1.sni where the ski are
local states of the atom Ai and ak in ACTLABi.

Projection equivalent for a
set of atoms

77, 102, See Def. 4.6.

Ri 17, Reactive structure of atom Ai.

Rate scheduler 47, 212, Scheduler that chooses a rate for each local
path.

Rate-based interleaving
scheduler

47, Interleaving scheduler that can be obtained by
composing rate schedulers.

Rate-based scheduler 47, Scheduler whose corresponding interleaving
scheduler is rate-based.

REACH(U) 24, 90, Set comprising all infinite paths ω such that
ω(k) ∈ U for some k.

Reachability set 24, Set S of infinite paths such that as S = REACH(U)

for some U.

REACTIVE(c) 18, Atoms that react to the output in the compound
transition c. Formally,
REACTIVE(c) = {Ai | LABEL(c) ∈ ACTLABi}.

Reactive structure 26, 212, Structure describing the reactive (input)
transitions enabled for each state s and action label
a. R(s,a) is the set of reactive transitions enabled at
state s for the action label a.

glossary (including symbols and notations) 213

SCHEDP 35, Set comprising all schedulers for system P, for
all projections.

Strongly distributed
scheduler

42, Distributed scheduler in which the interleaving
scheduler is also restricted.

TGi 17, Set of generative transitions on (Si, ACTLABi).

TRi 17, Set of reactive transitions on (Si, ACTLABi).

Total order-based
interleaving scheduler

49, 213, Interleaving scheduler that selects the atom
having the minimum local path, according to a total
order on local paths.

Total order-based scheduler 49, Scheduler whose corresponding interleaving
scheduler is total order-based.

Traceable projection 75, See Def. 4.5, p. 75.

B I B L I O G R A P H Y

[1] Prism semantics. Available at: www.prismmodelchecker.org/doc/semantics.pdf.
(Cited on page 149.)

[2] Manindra Agrawal, Neeraj Kayal, and Nitin Saxena. PRIMES is in P. Annals of Mathe-
matics. Second Series, 160(2):781–793, 2004. (Cited on page 7.)

[3] James H. Anderson, Giuseppe Prencipe, and Roger Wattenhofer, editors. Principles of
Distributed Systems, 9th International Conference, OPODIS 2005, Pisa, Italy, December 12-14,
2005, Revised Selected Papers, volume 3974 of Lecture Notes in Computer Science. Springer,
2006. (Cited on page 218.)

[4] Suzana Andova. Process Algebra with Probabilistic Choice. In Katoen [106], pages
111–129. (Cited on page 8.)

[5] Suzana Andova and Sonja Georgievska. On Compositionality, Efficiency, and Appli-
cability of Abstraction in Probabilistic Systems. In Nielsen et al. [124], pages 67–78.
(Cited on page 9.)

[6] Jesús Arias-Fisteus, Luis Sánchez Fernández, and Carlos Delgado Kloos. Applying
model checking to BPEL4WS business collaborations. In Hisham Haddad, Lorie M.
Liebrock, Andrea Omicini, and Roger L. Wainwright, editors, SAC, pages 826–830.
ACM, 2005. (Cited on page 1.)

[7] Yonatan Aumann. Efficient Asynchronous Consensus with the Weak Adversary Sched-
uler. In PODC, pages 209–218, 1997. (Cited on page 163.)

[8] Yonatan Aumann and Michael A. Bender. Efficient low-contention asynchronous con-
sensus with the value-oblivious adversary scheduler. Distributed Computing, 17(3):191–
207, 2005. (Cited on page 163.)

[9] Yonatan Aumann and Avivit Kapah-Levy. Cooperative Sharing and Asynchronous
Consensus Using Single-Reader Single-Writer Registers. In SODA, pages 61–70, 1999.
(Cited on page 163.)

[10] Jos C. M. Baeten. A brief history of process algebra. Theor. Comput. Sci., 335(2-3):131–
146, 2005. (Cited on page 8.)

[11] Jos C. M. Baeten, Jan A. Bergstra, and Scott A. Smolka. Axiomatizing Probabilistic
Processes: ACP with Generative Probabilities. Inf. Comput., 121(2):234–255, 1995. (Cited
on page 8.)

[12] C. Baier, M. Größer, and F. Ciesinski. Partial Order Reduction for Probabilistic Systems.
In QEST ’04, pages 230–239, Washington, DC, USA, 2004. IEEE CS. (Cited on pages 2,
8, 121, 123, 126, 137, 138, and 140.)

[13] C. Baier, M. Größer, and F. Ciesinski. Quantitative Analysis of Distributed Randomized
Protocols. In Proc. of FMICS’05, pages 2–7. ACM, 2005.

[14] C. Baier and J.-P. Katoen. Principles of Model Checking. MIT Press, 2008. (Cited on
pages 1 and 8.)

215

www.prismmodelchecker.org/doc/semantics.pdf

216 bibliography

[15] Christel Baier. Polynomial Time Algorithms for Testing Probabilistic Bisimulation and
Simulation. In Rajeev Alur and Thomas A. Henzinger, editors, CAV, volume 1102 of
Lecture Notes in Computer Science, pages 50–61. Springer, 1996. (Cited on page 8.)

[16] Christel Baier, Nathalie Bertrand, and Marcus Größer. On decision problems for proba-
bilistic büchi automata. In Roberto M. Amadio, editor, FoSSaCS, volume 4962 of Lecture
Notes in Computer Science, pages 287–301. Springer, 2008. (Cited on page 102.)

[17] Christel Baier, Frank Ciesinski, and Marcus Größer. ProbMela and verification of
Markov decision processes. SIGMETRICS Perform. Eval. Rev., 32(4):22–27, 2005.

[18] Christel Baier, Edmund M. Clarke, Vassili Hartonas-Garmhausen, Marta Z.
Kwiatkowska, and Mark Ryan. Symbolic Model Checking for Probabilistic Processes.
In Degano et al. [67], pages 430–440. (Cited on page 1.)

[19] Christel Baier, Pedro R. D’Argenio, and Marcus Größer. Partial Order Reduction for
Probabilistic Branching Time. Electr. Notes Theor. Comput. Sci., 153(2):97–116, 2006.
(Cited on page 140.)

[20] Christel Baier and Marcus Größer. Recognizing omega-regular Languages with Prob-
abilistic Automata. In LICS, pages 137–146. IEEE Computer Society, 2005. (Cited on
page 102.)

[21] Christel Baier and Marta Z. Kwiatkowska. Model Checking for a Probabilistic Branch-
ing Time Logic with Fairness. Distributed Computing, 11(3):125–155, 1998. (Cited on
page 1.)

[22] Thomas Ball and Robert B. Jones, editors. Computer Aided Verification, 18th International
Conference, CAV 2006, Seattle, WA, USA, August 17-20, 2006, Proceedings, volume 4144 of
Lecture Notes in Computer Science. Springer, 2006. (Cited on page 222.)

[23] Marco Bernardo and Roberto Gorrieri. A Tutorial on EMPA: A Theory of Concurrent
Processes with Nondeterminism, Priorities, Probabilities and Time. Theor. Comput. Sci.,
202(1-2):1–54, 1998. (Cited on page 8.)

[24] Dirk Beyer, Thomas A. Henzinger, Ranjit Jhala, and Rupak Majumdar. The software
model checker Blast. STTT, 9(5-6):505–525, 2007. (Cited on page 1.)

[25] Andrea Bianco and Luca de Alfaro. Model Checking of Probabalistic and Nondeter-
ministic Systems. In Thiagarajan [143], pages 499–513. (Cited on pages 1, 4, 8, 62, 91,
111, 116, and 140.)

[26] Armin Biere, Edmund M. Clarke, Richard Raimi, and Yunshan Zhu. Verifiying Safety
Properties of a Power PC Microprocessor Using Symbolic Model Checking without
BDDs", booktitle = CAV. In Nicolas Halbwachs and Doron Peled, editors, CAV, volume
1633 of Lecture Notes in Computer Science, pages 60–71. Springer, 1999. (Cited on page 1.)

[27] G. Brassard and P. Bratley. Fundamentals of Algorithmics. Prentice-Hall, 1995. (Cited on
page 116.)

[28] Mario Bravetti, Marco Bernardo, and Roberto Gorrieri. Towards Performance Evalua-
tion with General Distributions in Process Algebras. In Sangiorgi and de Simone [132],
pages 405–422. (Cited on page 8.)

bibliography 217

[29] Mario Bravetti and Pedro R. D’Argenio. Tutte le Algebre Insieme: Concepts, Discus-
sions and Relations of Stochastic Process Algebras with General Distributions. In Chris-
tel Baier, Boudewijn R. Haverkort, Holger Hermanns, Joost-Pieter Katoen, and Markus
Siegle, editors, Validation of Stochastic Systems, volume 2925 of Lecture Notes in Computer
Science, pages 44–88. Springer, 2004. (Cited on page 8.)

[30] Robert Bringhurst. The Elements of Typographic Style. Version 2.5. Hartley & Marks,
Publishers, Point Roberts, WA, USA, 2002. (Cited on page 225.)

[31] James E. Burns, Paul Jackson, Nancy A. Lynch, Michael J. Fischer, and Gary L. Peterson.
Data Requirements for Implementation of N-Process Mutual Exclusion Using a Single
Shared Variable. J. ACM, 29(1):183–205, 1982. (Cited on page 7.)

[32] Nadia Busi. Analysis issues in Petri nets with inhibitor arcs. Theor. Comput. Sci., 275(1-
2):127–177, 2002. (Cited on page 60.)

[33] G. Calafiore, F. Dabbene, and R. Tempo. A Survey of Randomized Algorithms for
Control Synthesis and Performance Verification. COMPLEXITY: Journal of Complexity,
23, 2007. (Cited on page 7.)

[34] Ran Canetti, Ling Cheung, Dilsun Kirli Kaynar, Nancy A. Lynch, and Olivier Pereira.
Compositional Security for Task-PIOAs. In CSF, pages 125–139. IEEE Computer Society,
2007. (Cited on pages 37 and 49.)

[35] A. Cassandra. The POMDP page. www.pomdp.org. (Cited on pages 9 and 37.)

[36] Nathalie Chabrier and François Fages. Symbolic Model Checking of Biochemical Net-
works. In Corrado Priami, editor, CMSB, volume 2602 of Lecture Notes in Computer
Science, pages 149–162. Springer, 2003. (Cited on page 1.)

[37] Tushar Deepak Chandra. Polylog Randomized Wait-Free Consensus. In PODC, pages
166–175, 1996. (Cited on page 163.)

[38] K. Chatterjee, R. Majumdar, and M. Jurdzinski. On Nash equilibria in stochastic games.
In CSL ’04, pages 26–40, 2004. (Cited on pages 4, 5, and 92.)

[39] K. Chatzikokolakis, S. Knight, and P. Panangaden. Epistemic Strategies and Games on
Concurrent Processes. In Proceedings of SOFSEM ’09, 2009. (Cited on page 8.)

[40] K. Chatzikokolakis and C. Palamidessi. A framework for analyzing probabilistic proto-
cols and its application to the Partial Secrets Exchange. Theor. Comput. Sci., 389(3):512–
527, 2007. (Cited on page 6.)

[41] Konstantinos Chatzikokolakis. Probabilistic and Information-Theoretic Approaches to
Anonymity. PhD thesis, LIX, École Polytechnique, 2007. (Cited on page 1.)

[42] Konstantinos Chatzikokolakis, Gethin Norman, and David Parker. Bisimulation for
Demonic Schedulers. In Luca de Alfaro, editor, FOSSACS, volume 5504 of Lecture
Notes in Computer Science, pages 318–332. Springer, 2009. (Cited on pages 1, 8, and 21.)

[43] Konstantinos Chatzikokolakis and Catuscia Palamidessi. Making Random Choices
Invisible to the Scheduler. In Luís Caires and Vasco Thudichum Vasconcelos, editors,
CONCUR, volume 4703 of Lecture Notes in Computer Science, pages 42–58. Springer, 2007.
(Cited on pages 6 and 8.)

[44] D. Chaum. The Dining Cryptographers Problem: Unconditional Sender and Recipient
Untraceability. J. Cryptology, 1(1):65–75, 1988. (Cited on pages 3, 40, 149, and 157.)

www.pomdp.org

218 bibliography

[45] L. Cheung. Reconciling Nondeterministic and Probabilistic Choices. PhD thesis, Radboud
Universiteit Nijmegen, 2006. (Cited on pages 1, 9, 21, 42, 50, 60, 93, 161, and 163.)

[46] L. Cheung, N. Lynch, R. Segala, and F. Vaandrager. Switched Probabilistic PIOA: Paral-
lel Composition via Distributed Scheduling. Theor. Comput. Sci., 365(1-2):83–108, 2006.
(Cited on pages 1, 6, 8, 13, 20, 21, 37, 38, 50, and 102.)

[47] Ling Cheung. Randomized Wait-Free Consensus Using an Atomicity Assumption. In
Anderson et al. [3], pages 47–60. (Cited on page 3.)

[48] Benny Chor, Amos Israeli, and Ming Li. On Processor Coordination Using Asyn-
chronous Hardware. In PODC, pages 86–97, 1987. (Cited on page 163.)

[49] Benny Chor, Amos Israeli, and Ming Li. Wait-Free Consensus Using Asynchronous
Hardware. SIAM J. Comput., 23(4):701–712, 1994. (Cited on pages 3, 7, and 163.)

[50] F. Ciesinski and C. Baier. LiQuor: A tool for Qualitative and Quantitative Linear Time
analysis of Reactive Systems. In QEST’06, pages 131–132. IEEE CS, 2006. (Cited on
pages 1, 5, and 160.)

[51] Alessandro Cimatti, Edmund M. Clarke, Fausto Giunchiglia, and Marco Roveri.
NUSMV: A New Symbolic Model Checker. STTT, 2(4):410–425, 2000. (Cited on page 1.)

[52] E. M. Clarke, O. Grumberg, M. Minea, and D. Peled. State Space Reduction Using
Partial Order Techniques. STTT, 2(3):279–287, 1999. (Cited on page 8.)

[53] Edmund M. Clarke and E. Allen Emerson. Design and Synthesis of Synchronization
Skeletons Using Branching-Time Temporal Logic. In Kozen [110], pages 52–71. (Cited
on page 1.)

[54] Edmund M. Clarke, Orna Grumberg, Hiromi Hiraishi, Somesh Jha, David E. Long, Ken-
neth L. McMillan, and Linda A. Ness. Verification of the futurebus+ cache coherence
protocol. Formal Methods in System Design, 6(2):217–232, 1995. (Cited on page 1.)

[55] Edmund M. Clarke, Somesh Jha, and Wilfredo R. Marrero. Efficient verification of
security protocols using partial-order reductions. STTT, 4(2):173–188, 2003. (Cited on
page 1.)

[56] E.M. Clarke, O. Grumberg, and D. Peled. Model Checking. MIT Press, 2000. (Cited on
pages 1, 8, 121, and 126.)

[57] P. R. D’Argenio and P. Niebert. Partial Order Reduction on Concurrent Probabilistic
Programs. In QEST ’04, pages 240–249, Washington, DC, USA, 2004. IEEE CS. (Cited
on pages 2, 8, 121, 123, and 140.)

[58] Pedro R. D’Argenio, Bertrand Jeannet, Henrik Ejersbo Jensen, and Kim Guldstrand
Larsen. Reachability Analysis of Probabilistic Systems by Successive Refinements. In
Luca de Alfaro and Stephen Gilmore, editors, PAPM-PROBMIV, volume 2165 of Lecture
Notes in Computer Science, pages 39–56. Springer, 2001. (Cited on page 9.)

[59] Pedro R. D’Argenio and Joost-Pieter Katoen. A theory of Stochastic systems. Part II:
Process algebra. Inf. Comput., 203(1):39–74, 2005. (Cited on page 8.)

[60] Pedro R. D’Argenio, Joost-Pieter Katoen, and Ed Brinksma. An algebraic approach to
the specification of stochastic systems. In David Gries and Willem P. de Roever, editors,
PROCOMET, volume 125 of IFIP Conference Proceedings, pages 126–147. Chapman &
Hall, 1998. (Cited on page 8.)

bibliography 219

[61] P.R. D’Argenio. Algebras and Automata for Timed and Stochastic Systems. PhD thesis,
Department of Computer Science, University of Twente, 1999. (Cited on page 2.)

[62] P.R. D’Argenio and J.-P. Katoen. A Theory of Stochastic Systems, Part I: Stochastic
Automata. Information and Computation, 203(1):1–38, 2005.

[63] L. de Alfaro. The verification of probabilistic systems under memoryless partial-
information policies is hard. In PROBMIV’99. TR CSR-99-8, pages 19–32. University
of Birmingham, 1999. (Cited on pages 6, 9, 37, 38, 50, and 102.)

[64] L. de Alfaro, T. A. Henzinger, and R. Jhala. Compositional Methods for Probabilistic
Systems. In CONCUR’01, LNCS 2154, pages 351–365. Springer, 2001. (Cited on pages 6,
9, 13, 20, 21, 37, 38, 50, 93, 102, 161, and 163.)

[65] Luca de Alfaro. Formal Verification of Probabilistic Systems. PhD thesis, Stanford Univer-
sity, 1997. (Cited on pages 87, 88, and 139.)

[66] Luca de Alfaro, Thomas A. Henzinger, and Orna Kupferman. Concurrent reachability
games. Theor. Comput. Sci., 386(3):188–217, 2007. (Cited on page 5.)

[67] Pierpaolo Degano, Roberto Gorrieri, and Alberto Marchetti-Spaccamela, editors. Au-
tomata, Languages and Programming, 24th International Colloquium, ICALP’97, Bologna,
Italy, 7-11 July 1997, Proceedings, volume 1256 of Lecture Notes in Computer Science.
Springer, 1997. (Cited on page 216.)

[68] Yuxin Deng, Catuscia Palamidessi, and Jun Pang. Weak Probabilistic Anonymity. Elec-
tron. Notes Theor. Comput. Sci., 180(1):55–76, 2007. (Cited on page 157.)

[69] Mariangiola Dezani-Ciancaglini and Ugo Montanari, editors. International Symposium
on Programming, 5th Colloquium, Torino, Italy, April 6-8, 1982, Proceedings, volume 137 of
Lecture Notes in Computer Science. Springer, 1982. (Cited on page 223.)

[70] Martin Dietzfelbinger. Primality Testing in Polynomial Time, From Randomized Algorithms
to “PRIMES Is in P”, volume 3000 of Lecture Notes in Computer Science. Springer, 2004.
(Cited on page 7.)

[71] Javier Esparza. Decidability and Complexity of Petri Net Problems - An Introduction.
In Reisig and Rozenberg [131], pages 374–428.

[72] A. Fehnker and P. Gao. Formal Verification and Simulation for Performance Analysis
for Probabilistic Broadcast Protocols. In Proc. 5th International Conference on Ad-Hoc,
Mobile, and Wireless Networks (ADHOC-NOW’06), volume 4104 of LNCS, pages 128–141.
Springer, 2006. (Cited on page 1.)

[73] Luis María Ferrer Fioriti, Pedro R. D’Argenio (as advisor), and Sergio Giro (as co advi-
sor). Implementación de técnicas de Reducción de Orden Parcial para sistemas proba-
bilísticos (trabajo final de licenciatura), 2009. (Cited on page 149.)

[74] M. Fischer, N. A. Lynch, and M. S. Paterson. Impossibility of distributed consensus
with one faulty process. Journal of the ACM, 32(2):374–382, 1985. (Cited on page 7.)

[75] A. Giacalone, C.-C. Jou, and S. A. Smolka. Algebraic reasoning for probabilistic con-
current systems. In Proceedings IFIP TC2 Working Conference on Programming Concepts
and Methods, pages 443–458. North-Holland, 1990. (Cited on page 8.)

220 bibliography

[76] Stephen Gilmore and Jane Hillston. The PEPA Workbench: A Tool to Support a Process
Algebra-based Approach to Performance Modelling. In Haring and Kotsis [90], pages
353–368. (Cited on page 8.)

[77] Sergio Giro. Undecidability results for distributed probabilistic systems. In Marcel
Vinicius Medeiros Oliveira and Jim Woodcock, editors, SBMF, volume 5902 of Lecture
Notes in Computer Science, pages 220–235. Springer, 2009. (Cited on page 10.)

[78] Sergio Giro and Pedro R. D’Argenio. Quantitative model checking revisited: neither
Decidable nor Approximable. In J.-F. Raskin and P.S. Thiagarajan, editors, FORMATS,
volume 4763 of Lecture Notes in Computer Science, pages 179–194. Springer, 2007. (Cited
on pages 10, 92, 95, and 102.)

[79] Sergio Giro and Pedro R. D’Argenio. On the Expressive Power of Schedulers in
Distributed Probabilistic Systems. Electr. Notes Theor. Comput. Sci., 253(3):45–71, 2009.
(Cited on pages 10 and 20.)

[80] Sergio Giro and Pedro R. D’Argenio. On the verification of probabilistic I/O automata
with unspecified rates. In Sung Y. Shin and Sascha Ossowski, editors, SAC, pages
582–586. ACM, 2009. (Cited on page 10.)

[81] Sergio Giro, Pedro R. D’Argenio, and Luis María Ferrer Fioriti. Partial Order Reduction
for Probabilistic Systems: A Revision for Distributed Schedulers. In Mario Bravetti
and Gianluigi Zavattaro, editors, CONCUR, volume 5710 of Lecture Notes in Computer
Science, pages 338–353. Springer, 2009. (Cited on page 10.)

[82] R.J. van Glabbeek, S.A. Smolka, and B. Steffen. Reactive, generative, and stratified
models of probabilistic processes. Information and Computation, 121:59–80, 1995. (Cited
on pages 8 and 15.)

[83] P. Godefroid. Partial-Order Methods for the Verification of Concurrent Systems - An Approach
to the State-Explosion Problem. LNCS 1032. Springer, 1996. (Cited on pages 8 and 121.)

[84] Patrice Godefroid. Partial-Order Methods for the Verification of Concurrent Systems – An
Approach to the State-Explosion Problem. PhD thesis, University of Liège, 1994.

[85] B. L. Rothschild R. L. Graham and J. H. Spencer. Ramsey Theory. John Wiley & Sons,
1990. (Cited on page 60.)

[86] Marcus Größer. Reduction Methods for Probabilistic Model Checking. PhD thesis, Technis-
che Universität Dresden, 2008. (Cited on pages 102 and 138.)

[87] Marcus Größer, Gethin Norman, Christel Baier, Frank Ciesinski, Marta Z.
Kwiatkowska, and David Parker. On Reduction Criteria for Probabilistic Reward Mod-
els. In S. Arun-Kumar and Naveen Garg, editors, FSTTCS, volume 4337 of Lecture Notes
in Computer Science, pages 309–320. Springer, 2006. (Cited on page 140.)

[88] R. Gupta, S. A. Smolka, and S. Bhaskar. On Randomization in Sequential and Dis-
tributed Algorithms. ACM Computing Surveys, 26(1), 1994. (Cited on page 7.)

[89] Theo Härder, Hartmut Wedekind, and Gerhard Zimmermann, editors. Entwurf und
Betrieb verteilter Systeme, Fachtagung des Sonderforschungsbereiche 124 und 182, Dagstuhl,
19.-21. September 1990, Proceedings, volume 264 of Informatik-Fachberichte. Springer, 1990.
(Cited on page 221.)

bibliography 221

[90] Günter Haring and Gabriele Kotsis, editors. Computer Performance Evaluation, Mod-
eling Techniques and Tools, 7th International Conference, Vienna, Austria, May 3-6, 1994,
Proceedings, volume 794 of Lecture Notes in Computer Science. Springer, 1994. (Cited on
page 220.)

[91] Peter G. Harrison and B. Strulo. SPADES - a process algebra for discrete event simula-
tion. J. Log. Comput., 10(1):3–42, 2000. (Cited on page 8.)

[92] Klaus Havelund and Thomas Pressburger. Model Checking JAVA Programs using
JAVA PathFinder. STTT, 2(4):366–381, 2000. (Cited on page 1.)

[93] Holger Hermanns. Interactive Markov Chains: The Quest for Quantified Quality, volume
2428 of Lecture Notes in Computer Science. Springer, 2002. (Cited on page 8.)

[94] Holger Hermanns, Vassilis Mertsiotakis, and Michael Rettelbach. A Construction and
Analysis Tool Based on the Stochastic Process Algebra TIPP. In Margaria and Steffen
[120], pages 427–430. (Cited on page 8.)

[95] Holger Hermanns, Björn Wachter, and Lijun Zhang. Probabilistic CEGAR. In Aarti
Gupta and Sharad Malik, editors, CAV, volume 5123 of Lecture Notes in Computer Science,
pages 162–175. Springer, 2008. (Cited on page 163.)

[96] Ulrich Herzog. Formal Description, Time and Performance Analysis. A Framework. In
Härder et al. [89], pages 172–190. (Cited on page 8.)

[97] A. Hinton, M. Kwiatkowska, G. Norman, and D. Parker. PRISM: A Tool for Automatic
Verification of Probabilistic Systems. In Proc. of TACAS’06, LNCS 3920, pages 441–444.
Springer, 2006. (Cited on pages 1, 5, 25, and 149.)

[98] M. Hofmann and M. Felleisen, editors. Proceedings of the 34th ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, POPL 2007, Nice, France, January 17-
19, 2007. ACM, 2007.

[99] Gerard J. Holzmann. The Model Checker SPIN. IEEE Trans. Software Eng., 23(5):279–295,
1997. (Cited on page 1.)

[100] J. E. Hopcroft and J. D. Ullman. Introduction to Automata Theory, Language, and Compu-
tation. Addison–Wesley, 1979.

[101] Juraj Hromkovic. Randomized Communication Protocols (A Survey). In International
Symposium on Stochastic Algorithms: Foundations and Applications, volume 1 of Lecture
Notes in Computer Science, 2001. (Cited on page 7.)

[102] B. Jeannet, P.R. D’Argenio, and K.G. Larsen. Rapture: A tool for verifying Markov
Decision Processes. In I. Cerna, editor, Tools Day’02, Brno, Czech Republic, Technical
Report. Faculty of Informatics, Masaryk University Brno, 2002. (Cited on page 149.)

[103] Neil D. Jones and Markus Müller-Olm, editors. Verification, Model Checking, and Abstract
Interpretation, 10th International Conference, VMCAI 2009, Savannah, GA, USA, January 18-
20, 2009. Proceedings, volume 5403 of Lecture Notes in Computer Science. Springer, 2009.
(Cited on page 222.)

[104] Richard M. Karp. An introduction to randomized algorithms. Discrete Appl. Math.,
34:165–201, 1991. (Cited on page 7.)

222 bibliography

[105] J.-P. Katoen, M. Khattri, and I. S. Zapreev. A Markov Reward Model Checker. In
Quantitative Evaluation of Systems (QEST), pages 243–244, Los Alamos, CA, USA, 2005.
IEEE Computer Society. (Cited on page 1.)

[106] Joost-Pieter Katoen, editor. Formal Methods for Real-Time and Probabilistic Systems, 5th In-
ternational AMAST Workshop, ARTS’99, Bamberg, Germany, May 26-28, 1999. Proceedings,
volume 1601 of Lecture Notes in Computer Science. Springer, 1999. (Cited on page 215.)

[107] Mark Kattenbelt, Marta Z. Kwiatkowska, Gethin Norman, and David Parker. Abstrac-
tion Refinement for Probabilistic Software. In Jones and Müller-Olm [103], pages 182–
197. (Cited on page 9.)

[108] Robert M. Keller. Formal Verification of Parallel Programs. Commun. ACM, 19(7):371–
384, 1976. (Cited on page 8.)

[109] J. G. Kemeny, J. L. Snell, and A. W. Knapp. Denumerable Markov Chains. Van Nostrand
Company, 1966. (Cited on page 24.)

[110] Dexter Kozen, editor. Logics of Programs, Workshop, Yorktown Heights, New York, May
1981, volume 131 of Lecture Notes in Computer Science. Springer, 1982. (Cited on
page 218.)

[111] J. B. Kruskal. The theory of well-quasi-ordering: A frequently discovered concept. Jour-
nal of Combinatorial Theory, pages 297–305, 1972. (Cited on page 60.)

[112] M. Kwiatkowska, G. Norman, and D. Parker. Probabilistic Model Checking and Power-
Aware Computing. In Proc. 7th International Workshop on Performability Modeling of Com-
puter and Communication Systems (PMCCS’05), pages 6–9, 2005. (Cited on page 1.)

[113] Marta Z. Kwiatkowska, Gethin Norman, and David Parker. Symmetry Reduction for
Probabilistic Model Checking. In Ball and Jones [22], pages 234–248. (Cited on pages 2,
9, and 163.)

[114] M. Littman. POMDP information page. www.cs.duke.edu/~mlittman/topics/

pomdp-page.html. (Cited on pages 9 and 37.)

[115] N. Lynch, R. Segala, and F. Vaandrager. Compositionality for Probabilistic Automata.
In Proc. of CONCUR 03, LNCS 2761, pages 208–221. Springer, 2003.

[116] Nancy A. Lynch, Roberto Segala, and Frits W. Vaandrager. Compositionality for Prob-
abilistic Automata. In Roberto M. Amadio and Denis Lugiez, editors, CONCUR, vol-
ume 2761 of Lecture Notes in Computer Science, pages 204–222. Springer, 2003. (Cited on
page 163.)

[117] Nancy A. Lynch and Mark R. Tuttle. An introduction to input/output automata. CWI
Quarterly, 2(3):219–246, 1989. (Cited on page 17.)

[118] Omid Madani, Steve Hanks, and Anne Condon. On the undecidability of probabilistic
planning and related stochastic optimization problems. Artif. Intell., 147(1-2):5–34, 2003.
(Cited on pages 93, 94, and 95.)

[119] P. Malacaria. Assessing security threats of looping constructs. In M. Hofmann and
M. Felleisen, editors, Proc. of POPL 2007, pages 225–235. ACM, 2007.

[120] Tiziana Margaria and Bernhard Steffen, editors. Tools and Algorithms for Construction and
Analysis of Systems, Second International Workshop, TACAS ’96, Passau, Germany, March 27-
29, 1996, Proceedings, volume 1055 of Lecture Notes in Computer Science. Springer, 1996.
(Cited on page 221.)

www.cs.duke.edu/~mlittman/topics/pomdp-page.html
www.cs.duke.edu/~mlittman/topics/pomdp-page.html

bibliography 223

[121] M. Ajmone Marsan, G. Balbo, G. Conte, S. Donatelli, and G. Franceschinis. Modelling
with Generalized Stochastic Petri Nets. John Wiley & Sons, 1995.

[122] D. A. Martin. Borel determinacy. Annals of Mathematics, 102(2):363–371, 1975. (Cited
on page 92.)

[123] Peter Niebert. Personal communication. (Cited on page 97.)

[124] Mogens Nielsen, Antonín Kucera, Peter Bro Miltersen, Catuscia Palamidessi, Petr
Tuma, and Frank D. Valencia, editors. SOFSEM 2009: Theory and Practice of Com-
puter Science, 35th Conference on Current Trends in Theory and Practice of Computer Science,
Spindleruv Mlýn, Czech Republic, January 24-30, 2009. Proceedings, volume 5404 of Lecture
Notes in Computer Science. Springer, 2009. (Cited on page 215.)

[125] D. Peled. All from one, one for all: On Model Checking Using Representatives. In Proc.
of 5th CAV, LNCS 697, pages 409–423. Springer, 1993. (Cited on page 8.)

[126] M. Puterman. Markov Decision Processes: Discrete Stochastic Dynamic Programming. John
Wiley, 1994. (Cited on pages 4 and 8.)

[127] Jean-Pierre Queille and Joseph Sifakis. Specification and verification of concurrent
systems in CESAR. In Dezani-Ciancaglini and Montanari [69], pages 337–351. (Cited
on page 1.)

[128] Michael O. Rabin. Probabilistic algorithms. In Algorithms and Complexity: New Directions
and Results, pages 21–39. Academic Press, 1976. (Cited on page 7.)

[129] Michael O. Rabin. N-Process Mutual Exclusion with Bounded Waiting by 4 Log2 N-
Valued Shared Variable. J. Comput. Syst. Sci., 25(1):66–75, 1982. (Cited on page 7.)

[130] J.-F. Raskin and P. S. Thiagarajan, editors. Formal Modeling and Analysis of Timed Sys-
tems, 5th International Conference, FORMATS 2007, Salzburg, Austria, October 3-5, 2007,
Proceedings, volume 4763 of Lecture Notes in Computer Science. Springer, 2007.

[131] Wolfgang Reisig and Grzegorz Rozenberg, editors. Lectures on Petri Nets I: Basic Models,
Advances in Petri Nets, the volumes are based on the Advanced Course on Petri Nets, held
in Dagstuhl, September 1996, volume 1491 of Lecture Notes in Computer Science. Springer,
1998. (Cited on page 219.)

[132] Davide Sangiorgi and Robert de Simone, editors. CONCUR ’98: Concurrency Theory, 9th
International Conference, Nice, France, September 8-11, 1998, Proceedings, volume 1466 of
Lecture Notes in Computer Science. Springer, 1998. (Cited on page 216.)

[133] R. Segala. Modeling and Verification of Randomized Distributed Real-Time Systems. PhD
thesis, Laboratory for Computer Science, MIT, 1995. (Cited on pages 4, 6, 8, 37, 38,
and 91.)

[134] Roberto Segala. A Compositional Trace-Based Semantics for Probabilistic Automata.
In Insup Lee and Scott A. Smolka, editors, CONCUR, volume 962 of Lecture Notes in
Computer Science, pages 234–248. Springer, 1995. (Cited on page 163.)

[135] Sven Seuken and Shlomo Zilberstein. Formal models and algorithms for decentral-
ized decision making under uncertainty. Autonomous Agents and Multi-Agent Systems,
17(2):190–250, 2008. (Cited on pages 9 and 37.)

224 bibliography

[136] A. Sokolova and E.P. de Vink. Probabilistic automata: system types, parallel compo-
sition and comparison. In C. Baier, B.R. Haverkort, H. Hermanns, J.-P. Katoen, and
M. Siegle, editors, Validation of Stochastic Systems: A Guide to Current Research, LNCS
2925, pages 1–43, 2004. (Cited on page 15.)

[137] E. Stark and G. Pemmasani. Implementation of a compositional performance analysis
algorithm for probabilistic I/O automata. In Proc. of PAPM ’99, pages 3–24. Prensas
Universitarias de Zaragoza, 1999. (Cited on pages 46, 47, and 148.)

[138] E. W. Stark, R. Cleaveland, and S. A. Smolka. A process-algebraic language for prob-
abilistic I/O automata. In Roberto M. Amadio and Denis Lugiez, editors, CONCUR
’03, volume 2761 of LNCS, pages 189–203. Springer-Verlag, 2003. (Cited on pages 46

and 47.)

[139] E. W. Stark and S. Smolka. Compositional analysis of expected delays in networks of
probabilistic I/O automata. In LICS 98, pages 466–477. IEEE CS Press, 1998. (Cited on
pages 46 and 47.)

[140] Eugene W. Stark. On behaviour equivalence for probabilistic I/O automata and its
relationship to probabilistic bisimulation. J. Autom. Lang. Comb., 8(2):361–395, 2003.
(Cited on pages 46 and 47.)

[141] M. Stoelinga. Alea jacta est: Verification of Probabilistic, Real-time and Parametric Systems.
PhD thesis, Katholieke Universiteit Nijmegen, 2002.

[142] Andrew S. Tanenbaum. Computer Networks. Prentice Hall, fourth edition, 2003. (Cited
on page 158.)

[143] P. S. Thiagarajan, editor. Foundations of Software Technology and Theoretical Computer Sci-
ence, 15th Conference (FSTTCS), Bangalore, India, December 18-20, 1995, Proceedings, vol-
ume 1026 of Lecture Notes in Computer Science. Springer, 1995. (Cited on page 216.)

[144] Stavros Tripakis. Undecidable problems of decentralized observation and control. In
Proc. of the 40th IEEE Conference on Decision and Control, volume 5, pages 4104–4109,
2001. (Cited on page 99.)

[145] Noel Vaillant. probability.net. Probability tutorials on line. Tutorial 2. (Cited on
pages 62 and 63.)

[146] D. Varacca and M. Nielsen. Probabilistic Petri nets and mazurkiewicz equivalence,
2003. Unpublished draft.

[147] S.-H. Wu, S. A. Smolka, and E. W. Stark. Composition and behaviors of probabilistic
I/O automata. Theor. Comput. Sci., 176(1-2):1–38, 1997. (Cited on pages 8, 37, 46, 47,
162, and 163.)

[148] H. Younes, M. Kwiatkowska, G. Norman, and D. Parker. Numerical vs. Statistical Prob-
abilistic Model Checking: An Empirical Study. In K. Jensen and A. Podelski, editors,
Proc. 10th International Conference on Tools and Algorithms for the Construction and Analysis
of Systems (TACAS’04), volume 2988 of LNCS, pages 46–60. Springer, 2004. (Cited on
page 1.)

colophon

This thesis was typeset with LATEX 2ε using Hermann Zapf’s Palatino and Euler type faces
(Type 1 PostScript fonts URW Palladio L and FPL were used). The listings are typeset in Bera
Mono, originally developed by Bitstream, Inc. as “Bitstream Vera”. (Type 1 PostScript fonts
were made available by Malte Rosenau and Ulrich Dirr.)

The typographic style was inspired by ’s genius as presented in The Elements of Typographic
Style [30]. It is available for LATEX via CTAN as “classicthesis”.

Final Version as of March 28, 2010 at 18:59.

http://www.ctan.org/tex-archive/macros/latex/contrib/classicthesis/

D E C L A R A T I O N

I declare that this thesis is my own work except where explicitly indicated.

Córdoba, March 2010

Sergio Giro

	Dedication
	Resumen
	Abstract
	Publications
	Contents
	List of Figures
	List of Tables
	Basic Notation
	0 Introduction
	0.1 Motivations
	0.1.1 The relevance of probabilities
	0.1.2 Probabilities and nondeterminism
	0.1.3 The role of information

	0.2 A Survey of Related Work
	0.3 Outline

	Probabilistic Systems and Schedulers
	1 A framework for distributed systems
	1.1 Simple Interleaved Probabilistic I/O Automata
	1.1.1 Input/Output Transitions
	1.1.2 Modelling symmetric choices
	1.1.3 Simple Interleaved Probabilistic I/O Automata
	1.1.4 Distributed schedulers

	1.2 Extended Interleaved Probabilistic I/O automata
	1.2.1 Extended transitions
	1.2.2 Global enabledness conditions
	1.2.3 Extended systems

	1.3 Generalized projections and schedulers
	1.3.1 Projections
	1.3.2 Schedulers

	1.4 Comparison with existing approaches

	2 Restrictions on the interleaving scheduler
	2.1 Strongly distributed schedulers
	2.2 Rate schedulers
	2.3 Total order-based schedulers
	2.4 Comparison with existing approaches

	3 Limit schedulers
	3.1 Limit schedulers
	3.2 Finitely falsifiable sets and closure under limits
	3.3 Distributed schedulers are closed under limits
	3.4 Discussion and further work

	4 On the expressive power of different classes of schedulers
	4.1 Non-randomized distributed schedulers
	4.2 Non-randomized strongly distributed schedulers
	4.2.1 Randomization adds power to strongly distributed schedulers
	4.2.2 Expressive non-randomized strongly distributed schedulers
	4.2.3 Full-communication version of a projection
	4.2.4 Proof of Theorem 4.3

	4.3 Inexistence of a scheduler yielding the supremum probability
	4.4 Finite-memory (and Markovian) schedulers
	4.5 Discussion

	5 Undecidability
	5.1 Quantitative case
	5.2 Finite memory schedulers
	5.3 Qualitative case
	5.3.1 Distributed schedulers
	5.3.2 Strongly distributed schedulers

	5.4 Comparison with existing results

	Techniques and Algorithms
	6 Algorithms
	6.1 From IPIOA to MDPs
	6.2 An overestimation for total order-based schedulers
	6.3 Underestimation of probabilities under distributed schedulers
	6.4 Further work

	7 Partial Order Reduction
	7.1 Partial Order Reduction and Restricted Schedulers
	7.2 An improvement for restricted schedulers
	7.3 Correctness of our techniques
	7.3.1 Overview of the proof
	7.3.2 Proof of the correctness theorems

	7.4 Using our technique with existing model checking algorithms
	7.5 Related work

	Applications and Conclusions
	8 Anonymous fair service
	8.1 The specification of the protocol
	8.2 Analysis
	8.3 Further work

	9 Partial Order Reduction in practice
	9.1 Partial Order Reduction for PRISM modules
	9.2 Analysing the dining cryptographers
	9.3 Analysing the binary exponential backoff protocol
	9.4 Discussion and further work

	10 Concluding remarks
	10.1 Contributions
	10.2 Future research directions
	10.3 A conclusion's conclusion

	Appendix
	A Proofs of Chapter 4
	Theorem 4.7
	Lemma 4.10

	B Proofs of Chapter 6
	C Proofs of Chapter 7
	Lemma 7.1
	Lemma 7.2
	Lemma 7.3
	Lemma 7.4
	Lemma 7.5
	Lemma 7.6
	Lemma 7.7

	D Proofs of Chapter 9
	D.1 Theorem 9.1

	Glossary (including symbols and notations)
	Bibliography
	Colophon
	Declaration

