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A Sole, Lucas y Lola,
sin ellos, nada, nada, nada1

hubiera sido posible.

1Leer esto con la entonación de M. E. Walsh en “Historia de una Princesa, su papá y

el Pŕıncipe Kinoto Fukasuka”.
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Abstract

We define a model for interacting systems involving continuous probabilis-

tic and nondeterministic choices over continuous state spaces. Our model

is a generalization of labeled Markov process, a well established formalism

that capture interacting probabilistic continuous systems with strong basis

in Measure Theory, but lacking internal nondeterminism. We define the ex-

tension to continuous internal nondeterminism in such a way that it allows

for quantification of nondeterminism through schedulers, and it also allows

for a sound definition of an existential modal operator. The model is used

to capture the semantics of a probabilistic timed stochastic process algebra,

a stochastic hybrid automata, and a probabilistic and nondeterministic pro-

gramming language; they are continuous systems involving a nontrivial mix

of probabilities and nondeterminism. We also compare our model with other

know continuous probabilistic and nondeterministic labeled transition sys-

tems and the embedding is defined if applicable. Behavioral equivalence is

captured by one notion of point-wise strong bisimulation, and two notions

of event-wise strong bisimulation. We show that the three notions are differ-

ent. We define a two-level infinitary modal logic that characterize the coarser

behavioral event-wise bisimulation. Finally we show that a model and a ran-

domized history-dependent scheduler resolving the nondeterminism renders

a probabilistic trace semantics.
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Resumen

En este trabajo definimos un modelo para sistemas interactivos con proba-

bilidades y nodeterminismo continuo sobre un espacio de estados continuo.

Nuestro modelo generaliza los procesos de Markov etiquetados, un formalis-

mo que captura sistemas interactivos continuos con probabilismo sobre una

base fuerte en Teoŕıa de la Medida, sin embargo, dicho modelo carece de no-

determinismo interno. Nuestra extensión a nodeterminismo interno continuo

permite por un lado cuantificar ese nodeterminismo a través de planificado-

res, y también permite definir de manera consistente un operador existencial

de lógica modal. Usamos nuestro modelo para capturar la semántica de un

álgebra de procesos estocástica con tiempo, de un autómata h́ıbrido estocásti-

co y de un lenguaje de programación probabiĺıstico y nodetermińıstico; todos

sistemas continuos que mezclan probabilidades y nodeterminismo de manera

no trivial. También comparamos nuestro formalismo con otros sistemas de

transición etiquetados conocidos que incluyen la posibilidad de nodeterminis-

mo y probabilidades continuas, y si resulta posible, damos la transformación

a nuestros sistemas. La equivalencia de comportamiento de los sistemas la

capturamos con una noción puntual de bisimulación fuerte y dos nociones de

bisimulación fuerte pero basada en eventos. Mostramos a través de ejemplos

que las tres nociones son diferentes. Definimos una lógica infinitaria de dos

niveles que caracteriza la equivalencia de comportamientos más gruesa basa-

da en eventos. Finalmente, mostramos que un modelo más un planificador

al azar que depende de la historia y resuelve el nodeterminismo, genera una

semántica de trazas probabiĺısticas.
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Chapter 1

Introduction

1.1 Motivation and Context

The interplay of probabilistic and nondeterministic choice in systems that live
in continuous state space is becoming more common. Nowadays software ap-
plications for mobile devices mix those ingredients. They have discrete state
(memory hierarchy) as well as continuous state (position, orientation, accel-
eration, battery voltage, etc.). These continuous quantities are perturbed
by the environment, and internally, many algorithms make use of discrete
probabilities. Moreover, they operate in meshes of devices where the relative
speeds of execution among them are not known in advance, therefore there is
no information on how these devices interleave their operations in the time-
line. Observations of discrete values like enabled or disabled buttons, and
also observations of continuous values like displayed roll angle in a cell phone,
are part of these systems.

The massive amount of production of those mobile devices implies that
the costs incurred in software faults are not minor. Methodologies, techniques
and formalisms to tackle the complexity of this continuous probabilistic and
nondeterministic systems, become an important part in the production and
maintenance cycles as well as in their related costs

This thesis addresses the problem of defining a model that captures la-
beled transition systems in continuous state space, continuous nondetermin-
ism, continuous probabilistic choices and continuous labels.

The work is centered in a sound mathematical definition of the model,
behavioral equivalences, modal logic and schedulers. We give enough evi-
dence that the definition is adequate, either by means of examples, as well as
nontrivial results relating behavioral equivalences on the model and a logic.

11



12 CHAPTER 1. INTRODUCTION

We also capture the semantics of previously defined models in the fields of
stochastic timed automata and stochastic hybrid systems.

We can classify the current modeling tools in the form of labeled transition
systems that include nondeterministic and probabilistic choice together. This
classification is by the type of state space (discrete or continuous) and the
possibility to include, beside a probabilistic choice, external as well as internal
nondeterminism. Table 1.1 summarizes our selection of models, and the
position that our nondeterministic labeled Markov processes (NLMPs) model
occupy.

Nondeterminism/State Space Discrete Continuous
None MC MP

External PLTS LMP
Internal & External PA NLMP

Table 1.1: Taxonomy of some probabilistic systems divided by kind of non-
determinism.

Markov chains (MC) [54] and Markov processes (MP) [27] are the clas-
sical models capturing discrete and continuous probabilities. If we augment
MC with observable labels, we obtain probabilistic labeled transition systems
(PLTS) [41]. This kind of systems are usually called reactive models. Labeled
Markov processes (LMPs) [20] provide a continuous counterpart. If internal
nondeterministic choice is added to the already present external nondeter-
minism of PLTS, we obtain probabilistic automata (PA) [58].

Our NLMPs are both an extension of PA to give them a measure theoretic
sound basis to continuous state space, and an extension of LMPs to include
internal nondeterministic choices.

One possible use of the nondeterminism is subspecification of systems.
Suppose we want to model a coin that can behave biased towards heads or
tails, but there is no information on how it is biased except that the prob-
abilities of each side cannot be lower than 1/4. Observe that from certain
perspective it represents a continuous span of probabilities, since every pos-
sible probabilistic behavior assigning at least 1/4 of chance to each side is
possible.

There are in the literature two ways to model this kind of continuous
probabilistic subspecification. They are represented in Figure 1.1.

On the left-hand side, there is a PA using discrete nondeterminism to
model a subspecified coin. With the usual resolution of nondeterminism
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s0

sh st

s1 s2

flip
1
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3
4

flip
3
4

1
4

heads tails

s0

sh st
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flip
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4
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Figure 1.1: Two ways of modeling continuous subspecification of probabilistic
choice.

provided by the schedulers, all possible intermediate probability distribu-
tions (convex combinations) can also be attained by involving a probabilistic
choice over the possible actions. On the right-hand side, a subprobability
distribution is used to encode partial information. This makes reference to
all possible completions of this subprobability to a probability measure.

The NLMP model attacks this problem in a different way. It defines a
transition function whose target is a (possibly) continuous set of probabilities.
We can encode the nondeterminism of the probabilistic choice of Figure 1.1
in a concise way:

Tflip(s0) = ∆=1({sh, st}) ∩∆≥1/4({sh}) ∩∆≥1/4({st})
Theads(sh) = ∆=1({s1})
Ttails(st) = ∆=1({s2})

The first line says that from s0 there is a transition with label flip to the set
of all probabilities such that:

• the probability is concentrated in states sh and st : ∆=1({sh, st});
• there is at least 1/4 of chance to move to state sh: ∆≥1/4({sh}); and
also

• there is at least 1/4 of chance to move to state st : ∆≥1/4({st}).

It is interesting to note that if we move from discrete to continuous state
space, similarly simple expressions capture continuous nondeterminism. For
example if we want to specify a system in which from s0 there is a transition
with label a such that:
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• it can reach the [0, 1] real interval with any probability measure; and

• there is at least 1/4 of the probability in the point {0}, and at least
1/4 in the point {1};
• the rest of the probability is in the interval [1/4, 3/4], but it is no greater
than 1/2.

This can be done with the following transition function of an NLMP:

Ta(s0) = ∆=1([0, 1]) ∩∆≥1/4({0}) ∩∆≥1/4({1}) ∩∆≤1/2([1/4, 3/4])

Here the expression ∆≤1/2([1/4, 3/4]) refers to the set of all measures such
that it quantifies at most 1/2 in the interval [1/4, 3/4], i.e.

∆≤1/2([1/4, 3/4]) = {µ | µ([1/4, 3/4]) ≤ 1/2}

Nondeterminism is more than subspecification, it also captures interleaving
of concurrent systems, design choices and abstractions. This is why in this
thesis we will develop NLMPs, a theory for nondeterministic and probabilistic
transition functions in the setting of general state spaces.

1.2 Our Contribution

We obtained a measure theoretical sound definition of a transition func-
tion targeting nondeterministic probabilistic choices over topology-free state
spaces. This allowed us to:

• define various notions of bisimulations, ranging from traditional to mea-
sure theoretic views,

• define a modal logic and prove that it characterizes some of the bisim-
ulations, and also

• resolve the nondeterminism by means of a scheduler.

We give examples showing the strong capabilities of the model for probabilis-
tic subspecification. We also show that our model captures the semantics of
various nontrivial probabilistic and nondeterministic systems.

1.3 Thesis Outline

Besides this introduction, this thesis is composed of the following chapters:



1.4. ORIGIN OF THE THESIS 15

Chapter 2: We briefly review the main concepts of labeled transitions sys-
tems (bisimulation, logical characterization, scheduler) that we are go-
ing to generalize to continuous state spaces.

Chapter 3: We present a strong background on Measure Theory, with spe-
cial emphasis on the tools that we are going to use.

Chapter 4: This chapter introduces NLMPs, the model of measurable tran-
sition functions capturing probabilistic and nondeterministic choices.

Chapter 5: We present the σ-algebra of measures ∆(Σ) as a specification
language. We also show how NLMPs captures the semantics of higher
level models including probabilistic and nondeterministic choice. We
compare similar models.

Chapter 6: We give three different notions of bisimulation for NLMPs, and
we show the relations among them.

Chapter 7: We define schedulers as a way to resolve the nondeterminism.
Using the schedulers we construct the probabilistic trace semantics.

Chapter 8: We summarize our work and achievements and give future di-
rections of research.

1.4 Origin of the Thesis

Many results presented in this thesis appeared before in some of our papers.
The definition of NLMPs (Chapter 4) and bisimulations (Chapter 6) are
from [17, 18]. The non-probabilistic NLMPs of Section 4.4 as well as the
examples in Section 6.2 separating the notions of bisimulation are from [17].
The semantics of SHA of Section 5.2 was presented in [28], but its technical
details are new in this thesis. Chapter 7 is a generalization of [67].
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Chapter 2

Background

Program semantics can be given as a transfer function from initial to final
states, and it is usually called denotational semantics. Program meaning can
also be captured by the so called small-step semantics where all the interme-
diate steps of the computation are explicit, therefore two different programs
having the same in/out function can be distinguished. In the latter case the
evolution of a program is given by a state relation s→ s′ giving rise to the so
called transition systems. It could be deterministic (one successor state) or
nondeterministic (many successor states). Nondeterministic constructs arise
in Computer Science as a way to subspecify a program, later to be special-
ized, or as the result of the independent execution of actions in a parallel
composition of interacting processes.

The parallel components evolve asynchronously but also synchronize
through some form of communication. The synchronization mechanism is
modeled in transition systems using labels. Those labels are a new compo-
nent of the transition relation, so transitions become s

a→ s′. At each state
there is a subset of enabled labels, the set of current interaction choices given
by the process and observed by the environment.

If the programming language enriches its semantics with a probabilis-
tic choice as in pGCL [46] (P1 ⊕ 1

4

P2), or random assignment (x :=

uniform([0, 1])), then the labeled transition system should change to a re-
lation where given a current state and a label, the next state is quantified by
a probability distribution.

Probabilistic and nondeterministic choice can coexist and this gives rise
to a very rich model where all the information levels are present: certainty
(deterministic), quantified uncertainty (probabilistic) and pure uncertainty
(nondeterministic). Moreover nondeterministic and probabilistic choices can
be present at the same time, giving rise to what we call probabilistic sub-
specification.

17
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The aim of the current section is to briefly review what we consider the
three most prominent labeled transition systems over discrete state spaces
that embody nondeterministic and probabilistic choices, and their combina-
tion. They are labeled transition systems (LTS) [37], probabilistic labeled
transition systems (PLTS) [41] and probabilistic automata (PA) [59]. In this
reviewing process we single out which are the main concepts we are going
to extend in our work, where the most expressive version, namely the PA, is
taken to the realms of continuous state space, continuous labels, continuous
nondeterminism and continuous probabilitistic choice.

For more information on discrete systems including probabilistic and non-
deterministic choices, we recommend [61, Chapter 2] and [63].

2.1 Labeled Transition Systems

Labeled transition systems (LTS) were introduced in [37] as a way to model
concurrent program semantics. Its definition is similar to nondeterministic
automata.

Definition 2.1 (LTS). A labeled transition system is a tuple (S, L,→), where
S is a countable set of states, L is a countable set of labels or actions, and
→ ⊆ S×L×S is a transition relation, where (s, a, s′) ∈ → is written s

a→ s′.

Our concern is on interactive behavior, where the labeled transition sys-
tems conceptually depart from nondeterministic automaton. Finite automata
is an accepting mechanism for words, whereas in LTS the focus is in the ac-
tions that are enabled at each step. The LTS mechanism is usually depicted
as a black box holding the transition relation, exposing enabled/disabled
buttons that the environment can observe and press, usually called external
nondeterminism (Figure 2.1).

a b
c

Figure 2.1: Reactive behavior of an LTS with labels L = {a, b, c}, where only
a is enabled.
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The following classical example [45] shows the difference between nonde-
terministic automata and LTS (see Figure 2.2).

Example 2.2. Here we show two language equivalent LTS (they both gen-
erate {ab, ac}), that are not behaviorally equivalent. In the left system after
label a is chosen, b or c could be chosen; whereas in the right system, given
that a was chosen, then either b or c may be refused, depending on which a
was first executed.

s0

s1

s2 s3

a

b c

t0

t1

t2

t3

t4

a

b

a

c

Figure 2.2: Language equivalent LTS that have different interactive behav-
iors.

The distributivity of sequential composition with respect to choice com-
position is lost: a(b+ c) 6= ab + ac. One of the many concept that captures
this behavioral equivalence is (strong) bisimulation [43, 51].

Definition 2.3 (Bisimulation). A relation R ⊆ S×S is a bisimulation if for
all s, t ∈ S such that s R t, for all a ∈ L, s a→ s′ implies that there is t′ such
that t

a→ t′ and s′ R t′; and vice versa, that is, t
a→ t′ implies there is s′ such

that s
a→ s′ and s′ R t′.

In Example 2.2 there is no bisimulation relation R between s0 and t0 in
the left and the right LTS respectively. If we relate s0 R t0 then s1 should be
related with both t1, t3, and s1 R t1 is not possible since there is no outgoing
transition from t1 labeled with c.

Consider the lifting of a relation R to sets encoding the universal-
existential quantification in both directions:

A R B
.
= (∀a ∈ A, ∃b ∈ B, a R b) ∧ (∀b ∈ B, ∃a ∈ A, a R b) (2.1)

then bisimulation can be compactly recast using this lifting:

s R t⇒ ∀a ∈ L, (s a→) R (t
a→) (2.2)

The largest bisimulation is called bisimilarity and it is an equivalence
relation.
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Definition 2.4 (Bisimilarity). The union of all bisimulations is a bisimula-
tion and also the largest one. It is called bisimilarity ∼ and it is also an
equivalence relation. The definition is as follows:

∼ .
=

⋃{R | R is bisimulation}

Bisimilar states can be interchanged keeping the behavior of the whole
system, and this is fundamental in order to provide different implementations
for parts of a system.

Bisimilarity has a logical characterization in terms of what is called
Hennessy-Milner logic [45, 60], a very terse logic with modalities.

Definition 2.5 (Hennessy-Milner logic). The Hennessy-Milner logic syntax
is defined inductively by:

φ ::= ⊤ | φ1 ∧ φ2 | ¬φ | 〈a〉φ

Its semantics is interpreted over LTS as the set of states where the formula
is valid, i.e. JφK = {s | s |= φ}. Its definition is:

J⊤K = S Jφ1 ∧ φ2K = Jφ1K ∩ Jφ2K J¬φK = JφKc

J〈a〉φK = {s | s a→ s′, s′ ∈ JφK}

The next theorem states that the logic characterizes the bisimulation for
finite LTS.

Theorem 2.1. Two states of an LTS are bisimilar iff they satisfy exactly the
same formulas of the Hennessy-Milner logic. i.e. s ∼ t iff ∀φ, s ∈ JφK⇔ t ∈
JφK.

Using Theorem 2.1 in Example 2.2, we can compactly say s0 ≁ t0, since
the semantics of the formula 〈a〉¬〈c〉⊤ includes t0 and excludes s0.

There are also many notions of behavioral equivalence [32], in which Def-
inition 2.3 (strong bisimulation) distinguishes more (the finer). At the other
end of the spectrum, the coarse trace equivalence is very close to language
equivalence of finite automata. There are intermediate notions suitable for
abstraction [31], where some labels are for internal silent steps.

2.2 Probabilistic Labeled Transition Systems

In the seminal work [41], deterministic LTS are extended with probability
distributions over discrete state spaces. Instead of giving a set of successor
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states with no information about the likelihood among them, probabilistic
labeled transition systems (PLTS) change the target of the transition relation,
from sets of states to probabilities over states. This quantified uncertainty
allows PLTS to represent small step semantics of probabilistic languages like
pGCL.

A PLTS modeling a fair coin is given in Figure 2.3.

s0

sh st

s1 s2

flip
1
2

1
2

heads tails

Figure 2.3: A fair coin modeled with a probabilistic labeled transition system.

The formal definition of PLTS is given in the following.

Definition 2.6 (PLTS). A probabilistic labeled transition system is a tuple
(S, L,→) where S is a countable set of states, L is a countable set of labels,
and → is a transition function → : S × L → ∆(S), where → ((s, a)) = µ is
written s

a→ µ, and ∆(S) is the set of discrete probability distributions over
S.

As in the nonprobabilistic case, probabilistic bisimulation is a relation on
the state space that equates the stepwise behavior of the system. The idea to
generalize bisimulation to probabilistic systems is not new, a similar notion
called lumpability for Markov chains [38] have been used in Queuing Theory
for decades. The key point is how to lift relation R to the target probabilities.
We will motivate it using the example shown in Figure 2.4.

The states r0 and s0 could be distinguished by an external observer by
repeating the experiment of pushing a and counting how many times b or c
are enabled. In the long run, the observer will be able to distinguish that the
system starting at r0 is biased towards enabling b, while the other is biased
towards c. These two states should not be related in a probabilistic version
of bisimilarity. On the contrary, states s0 and t0 are not distinguishable by
experimentation on the observable events, even though after pressing a, the
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Figure 2.4: Nonbisimilar and bisimilar PLTSs.

rightmost system diverge to t2, t3 in a probabilistic way. The accumulated
probability of t2 and t3 are the same as s2 and this is the main idea. The
probabilities should be equal for all the sets that are closed under the relation
R, where a set Q of states is R-closed if there is no state in Q that has an
outside R-related state. In symbols:

R-closed(Q)
.
= R(Q) ⊆ Q, where R(Q)

.
= {t | ∃s ∈ Q, s R t} (2.3)

Clearly if we want to capture observational equivalence the set {s2, t2, t3}
should be R-closed. The relation R can be lifted from states to probabilities
using R-closed sets as the events that should quantify the same. We write:

µ R µ′ .= ∀Q,R-closed(Q), µ(Q) = µ′(Q) (2.4)

Using (2.4), we can provide a definition for bisimulation on PLTS that re-
sembles the definition of bisimulation for LTS given in (2.2).

Definition 2.7 (Bisimulation for PLTS). A relation R ⊆ S × S is a bisimu-
lation for probabilistic labeled transition system (S, L,→) if,

s R t⇒ ∀a ∈ L, (s a→) R (t
a→)

The logic that characterizes bisimulation for PLTS was first given in [41].
The modal operator is augmented with probabilities and typically takes the
form 〈a〉qφ, with semantics:

J〈a〉qφK = {s | s a→ µ, q<µ(JφK)}

That is, the set of states such that there is an a transition to a measure that
when applied to the event φ quantifies greater than the rational q. In [20] it
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is shown that negation is not needed and it also covers the continuous state
space case. The reason is that two different probability distributions can be
distinguished by measuring a particular set1. One probability will be strictly
less than q, while the other will be strictly greater than q.

Theorem 2.2. The probabilistic Hennessy-Milner logic φ ::= ⊤ | φ1 ∧ φ2 |
〈a〉qφ characterizes probabilistic bisimulation for PLTS.

It is worth noting that in [41], the logical characterization included nega-
tion.

2.3 Probabilistic Automata

This modeling formalism was introduced by Segala & Lynch [58], and extends
PLTS with internal nondeterminism, i.e. a nondeterminism that cannot be
resolved externally by composition.

Suppose we have a coin that is not completely specified (subspecified), it
can be fair or biased towards heads, and it can be modeled as in Figure 2.5.
Even though we conduct an enormous amount of flip experiments, the best
we can get is that the observed heads ratio is greater than 1/2 and lower
than 2/3, while the tails ratio is between 1/3 to 1/2.

s0

sh st

s1 s2

flip
1
2

1
2

heads tails

flip
2
3

1
3

Figure 2.5: Nondeterministic unfair/fair coin modeled with probabilistic au-
tomata.

In order to quantify this system, the nondeterminism need to be resolved
by a scheduler or policy [54, 64] that chooses randomly among them. The

1See Proposition 3.40.
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underspecification is captured by the scheduler function that can deterministi-
cally choose the fair coin, the unfair, or any intermediate probability. There-
fore this discrete system is in fact representing a continuous spectrum of
probabilistic choices. This is consistent with other formalism’s semantics,
like the convex closure requirement for pGCL semantics [46].

We give a formal definition of probabilistic automata.

Definition 2.8 (PA). A probabilistic automata is a tuple (S, L,→), where S
is a countable set of states, L is a countable set of labels, and→ ⊆ S×L×∆(S)
is a countable transition relation, where (s, a, µ) ∈ → is written s

a→ µ, and
∆(S) is the set of discrete probability distributions over S.

Notice that an LTS can be embedded in a PA using Dirac delta probability
distributions δs, where:

δs({s′}) =
{

1 if s = s′

0 otherwise

The encoding is such that each s
a→ s′ corresponds to s

a→ δs′ and vice versa.
Bisimulation for PA was defined in [58]. We give its definition using the

same expression as before but lifting R twice through (2.4) for probabilities
first and (2.1) for nondeterminism afterward. Notice that this twice-lifted
relation involves a logic expression having alternating nested quantifiers of
depth three, exposing the complexity of the model. The complete expression
is:

(

∀s a→ µ, ∃t a→ µ′, ∀R-closed(Q), µ(Q) = µ′(Q)
)

∧
(

∀t a→ µ′, ∃s a→ µ, ∀R-closed(Q), µ(Q) = µ′(Q)
)

Definition 2.9 (Bisimulation for PA). A relation R ⊆ S×S is a bisimulation
for a probabilistic automata (S, L,→) if,

s R t⇒ ∀a ∈ L, (s a→) R (t
a→)

The logic characterizing bisimulation for PA is relatively new, it was
introduced first by [13] and latter by [52] for finite nondeterminism. The
continuous nondeterministic case was introduced by us in [18]. We take this
later form of presentation since we consider it neater.

Theorem 2.3. The two-level logic characterizes probabilistic bisimulation for
PA. Its syntax is defined:

φ ::= ⊤ | φ1 ∧ φ2 | 〈a〉ψ
ψ ::=

∨

iψi | ¬ψ | [φ]q,
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where the disjunction is denumerable, and q is a positive rational number not
greater than one. The first level semantics is given as the set of states that
verify the formula:

J⊤K = S Jφ1 ∧ φ2K = Jφ1K ∩ Jφ2K

J〈a〉ψK = {s | s a→ µ, µ ∈ JψK}

while the second level encodes sets of probabilities:

J
∨

iψiK =
⋃

iJψiK J¬ψK = JψKc

J[φ]qK = {µ | q<µ(JφK)}

The nondeterminism in Figure 2.5 can be resolved by an external agent
usually called scheduler or policy. The scheduler defines a probability distri-
bution of the possible labels and probabilities coming out of a state s. This
probabilistic choice could depend not only on the current state, but also on
previous history of states, labels and probabilities.

Definition 2.10 (Scheduler for PA). A scheduler for probabilistic automata
(S, L,→) is a function η from finite path traces to distributions over labels
and probabilities,

η : S × (L×∆(S)× S)⋆ → ∆(L×∆(S))

where for every finite path trace α = s1 a2µ2s2 . . . anµnsn ∈ S×(L×∆(S)×
S)⋆, the last state is denoted by last(α) = sn, and the probability of η(α) is

concentrated on {(a, µ) | last(α) a→ µ}, (i.e. η(α)(a, µ) = 0 if last(α)
a

6→ µ)
the set of outgoing labels and probabilities of the path last state.

The scheduler can be combined with the PA, resolving the nondetermin-
ism and giving rise to a purely probabilistic system.

Definition 2.11 (Combined transition for PA). Given PA (S, L,→) and
scheduler η, the combined transition is a function:

µη(·) : S × (L×∆(S)× S)⋆ → ∆(L×∆(S)× S)

defined as follows:

µη(α)(a, µ, s) = µ(s) · η(α)(a, µ)
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Notice that if a or µ do not belong to the outgoing transitions, by defini-
tion of the scheduler, its probability is zero. Given an initial state distribu-
tion, and a scheduler, the trace semantics for PA can be readily given as a
set of probabilistic words, or more precisely by the set of trace probabilities.

Definition 2.12 (Trace probability for PA). Given a PA (S, L,→), a sched-
uler η on it and an initial probability over states ν, the trace probability is
defined as follows:

Pν,η(s1) = ν(s1)

Pν,η(α anµnsn) = Pν,η(α) · µη(α)(anµnsn)

2.4 Concluding Remarks

We gave a summary of labeled transition systems including nondeterministic
and probabilistic choices over discrete state space.

If we move to continuous states, labels or nondeterminism, there are
known mathematical artifacts that could endanger the soundness of the def-
inition. Namely there are subsets that are not measurable (Vitali sets), and
this implies that core definitions like the semantics of the modal operator or
the scheduler cannot be given.

Also this uncountability leads to another problem. The quantification of
uncountable sets usually implies that single elements like in Definition 2.11
and 2.12, are assigned zero probability.

The mathematical structure that is tailored to the quantification of un-
countable sets is the measure space [2], This structure is studied in the math-
ematical field of Measure Theory, the main topic of the next chapter.



Chapter 3

Measure Theory

This chapter presents a revision of Measure Theory and Descriptive Set The-
ory. It contains what we consider a good selection, order and emphasis of
these mathematical fields, where the rest of the work is rooted. The material
is collected from [1, 2, 4, 9, 36]. Since none of the results are new, we do not
exhaustively recreate the proofs unless we consider it convenient.

The chapter is organized as follows. In Section 3.1, we introduce σ-
algebras and present three proof strategies to show properties on measurable
sets. In Section 3.2 we show how to build σ-algebras from families of func-
tions, and use this to define product σ-algebras and function space σ-algebras.
In Section 3.3, we introduce the notion of measure, and in Section 3.4, we
introduce Lebesgue integration for general measures. We also show how to
integrate new measures. We devoted Section 3.5 to the σ-algebra of measures
∆(Σ), a key mathematical object for the rest of the work. The chapter ends
in Section 3.6 with standard tools to endow the product σ-algebra with a
measure.

Most of the set theoretic operations in this work are denumerable, there-
fore, to simplify the notation we write

⋃

iAi instead of
⋃

i∈NAi. Usually we
will omit all references to the index set N as in the denumerable family {Ai}i,
or the denumerable sequence of functions (fi)i. Arbitrary sets are denoted
by I, so an arbitrary intersection is

⋂

i∈I Ai. A disjoint union
⊎

iAi denotes
the union of the pair-wise disjoint family {Ai}i. The powerset of a set S
is denoted by 2S

.
= {A | A ⊆ S}. Given a set A the characteristic func-

tion χA is defined by χA(s) = 1 if s∈A, 0 otherwise. We will use point-free
operations on functions like f = χA + χB, meaning point-to-point equality
f(x) = χA(x) + χB(x).

We suggest the reader that is acquainted with Measure Theory to quickly
go through this chapter, in order to get used to our notation and the main

27
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results we need in the forthcoming chapters. For other summaries of Measure
Theory related to Concurrency Theory in Computer Science, please refer
to [25, 49, 50]

3.1 σ-algebra

Measure theory deals with events and their quantification. It is a generaliza-
tion of common concepts like length, area and probability. The events are
the measurable objects (segments) quantified by a measure (length). Given
a base set S we want to define a family of events Σ that are measurable by
the measure set function µ : Σ→ R+. We think of the events as possible out-
comes of an experiment we want to quantify with the measure. We formalize
the family of events.

Definition 3.1 (σ-algebra). A σ-algebra Σ on a set S is a nonempty family
of subsets of S such that it is closed under complement and denumerable
union:

A ∈ Σ⇒ Ac ∈ Σ (3.1)

{Ai}i ⊆ Σ⇒ ⋃

iAi ∈ Σ (3.2)

The elements A ∈ Σ are called measurable sets, and the pair (S,Σ) is a
measurable space.

Note that σ-algebras are also closed under finite union, as well as count-
able and finite intersection. Given that the family Σ is nonempty, by closure
properties it always includes ∅ and S. The smallest σ-algebra is {∅, S}, and
the largest is the powerset 2S. There are cases where 2S is too fine for our
measuring purposes (think of a dice used as a coin), or it simply introduces
mathematical artifacts (like non-measurable sets). For discrete sets S, the
usual measurable space is (S, 2S).

Definition 3.1 captures what is expected for events later to be measured.
If an event is measurable, its non-occurrence should also be measurable (3.1);
if a sequence of events is measurable, its aggregation should also be (3.2).
Perhaps what is not intuitive is why the union closure needs to hold for the
denumerable case, instead the more natural finite one. Citing [2]:

Closure under countable union and intersection is difficult to justify

physically, and perhaps the most convincing reason for requiring it

is that a richer mathematical theory is obtained. Specifically, we are

able to assert that the limit of a sequence of events is an event.
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If the structure imposed on the events only count for finite union, the family
is called an algebra of sets.

Definition 3.2 (Algebra of sets). An algebra Γ of a set S is a nonempty
family of subsets of S such that it is closed under complement and finite
union:

A ∈ Γ⇒ Ac ∈ Γ

{Ai}ni=1 ⊆ Γ⇒ ⋃n
i=1Ai ∈ Γ

We obtain an equivalent definition if we replace closure under finite union
with closure under binary union.

Example 3.3. It can be checked that the family Γ given by all the finite
disjoint unions of left-closed, right-open rational intervals [p, q) forms an
algebra. Notice that even though [0, 1 + 1/i) ∈ Γ for all i, its denumerable
intersection

⋂

i[0, 1 + 1/i) = [0, 1] does not belong to Γ.

Previous example shows the kind of denumerable closure properties that
do not hold for algebras and are essential in the development of Measure
Theory. The following example from [4] shows a non-trivial σ-algebra.

Example 3.4. Let Σ be a family of subsets of S that are either countable
or its complement is countable (i.e. it is cocountable). Notice that if S is
uncountable, then there is a set X such that both X and its complement are
uncountable hence X /∈ Σ. For S = R this set could be X = (1/2, 1]. Note
that X =

⋃

1/2<x≤1{x}, which shows that a σ-algebra might not be closed
under arbitrary union.

This example also gives a reason why σ-algebras are not closed under
arbitrary union. It would trivialize every σ-algebra having measurable sin-
gletons. The intersection of an arbitrary family of σ-algebras results in a new
σ-algebra. This calls for the idea of minimal σ-algebra containing a given
family, the set of generators.

Definition 3.5 (Generated σ-algebra). Given the generator family A ⊆ 2S,
the generated σ-algebra σ(A) is the intersection of all σ-algebras containing
A, that is:

σ(A) = ⋂{Σ ⊆ 2S | Σ ⊇ A}

It can be seen that this generated σ-algebra contains A and is minimal.
Now some basic facts about generated σ-algebras, that although simple, rep-
resent useful tools.
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Proposition 3.1. i. If A ⊆ A′, then σ(A) ⊆ σ(A′).

ii. If A ⊆ A′ ⊆ σ(A), then σ(A) = σ(A′).

A well-know generated σ-algebra is the Borel σ-algebra.

Definition 3.6 (Borel σ-algebra). The Borel σ-algebra on R is the σ-algebra
generated by the left-closed, right-open rational intervals, that is B(R) =
σ({[p, q) | p, q ∈ Q}).

This definition is one of many possible candidates since any kind of ratio-
nal interval would define the same set. Take for example these two generator
sets, A = {(p, q) | p, q ∈ Q}, A′ = {[p, q) | p, q ∈ Q}. The equalities
(p, q) =

⋃

p′∈Q,p<p′[p
′, q), and [p, q) =

⋂

p′∈Q,p′<p(p
′, q), imply that A ⊆ σ(A′)

and A′ ⊆ σ(A). By idempotence of the σ operator, A and A′ generate
the same σ-algebra. We also prove that Borel measurable sets generated by
real-valued intervals are equivalent to the Borel measurable sets generated
by rational-valued intervals.

Proposition 3.2. The Borel σ-algebra over the reals are either generated by
rational or real endpoint intervals.

Proof. Let A = {[p, q) | p, q ∈ Q} and A′ = {[a, b) | a, b ∈ R}, then A ⊂ A′.
Using equalities [a, q) =

⋂{(p, q) | p < a, p ∈ Q}, [a, b) =
⋃{[a, q) | q <

b, q ∈ Q} is clear that A′ ⊂ σ(A). By Proposition 3.1, σ(A) = σ(A′) = B(R).
Observe that both set operations are denumerable.

Given that Q, and therefore Q×Q are countable sets, the Borel σ-algebra
is generated by a denumerable family.

Definition 3.7 (Countably generated σ-algebra). A σ-algebra Σ is countably
generated or separable if it is generated by a countable class of sets.

A σ-algebra that is countably generated deserves a special status since it is
the main ingredient of many useful results throughout this thesis. Although
trivial from certain perspective, the next proposition proves useful to clean
out hypothesis of theorems related to countably generated σ-algebras.

Proposition 3.3. Given a countable family C, the closure of C with respect
to binary intersection, given by {⋂n

i=1Ai | {Ai}ni=1 ⊆ C, n ∈ N}, is also
countable.

Proof. The set of finite subsets of a countable set is also countable [1], and
thus the result holds.
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A simple corollary is that closing a countable set by binary/finite unions
and complements (i.e. obtaining an algebra out of a countable set) remains
countable.

It is relevant to notice that open and closed sets in the usual topology
of the reals are measurable. We include the proof given the unusual way it
uses union of a denumerable number of sets. Sometimes this result is taken
as definition of the Borel σ-algebra.

Proposition 3.4. The σ-algebra B(R) contains all open and closed sets.

Proof. Let G be open in R and x ∈ G, then there exists an open interval
with rational endpoints (px, qx) such that x ∈ (px, qx) ⊆ G. Then G =
⋃

x∈G(px, qx). Since there are countably many open intervals with rational
endpoints, we conclude G is measurable. For a closed set F it also follows,
since it is the complement of an open set.

Another important class of σ-algebras are the σ-algebras that can separate
points.

Definition 3.8. A measurable space (S,Σ) separates points if for all s, s′ ∈ S
such that s 6= s′, there is a measurable set A ∈ Σ with s /∈ A ∋ s′.

Note that if all singletons are measurable (∀s ∈ S, {s} ∈ Σ), Σ separates
points. The following proposition gives more conditions for σ-algebras that
separates points.

Proposition 3.5. Given A ⊆ 2S, A separates points iff σ(A) does.

Proof. The if part is trivial since generators are included in the generated
σ-algebra. For the other implication suppose towards a contradiction that
given s, s′, there is a Q ∈ σ(A) separating them s /∈ Q ∋ s′, but none of
the generators can separate, i.e. ∀A ∈ A, s ∈ A ⇔ s′ ∈ A. Being the
last property stable by complements and denumerable unions, we conclude
s ∈ Q⇔ s′ ∈ Q contradicting the assumption.

The following σ-algebra is countably generated but it does not separate
points nor its singletons are measurable.

Example 3.9 (Q-coQ). The σ-algebra Q-coQ
.
= 2Q ∪ {R \ Q | Q ∈ 2Q}

is generated by the denumerable family {{q} | q ∈ Q} ⊎ {∅}. Notice that
Q-coQ cannot separate one irrational from another (let alone asking for all
singletons being measurable).

On the contrary the Borel σ-algebra has many pleasant properties.
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Example 3.10. The Borel σ-algebra B(R) is countably generated, separates
points and has measurable singletons. All these properties are consequence
of the density of the rationals over the reals.

Given a σ-algebra, smaller ones can be defined.

Definition 3.11 (Sub-σ-algebra). Given σ-algebra Σ, the σ-algebra Λ is a
sub-σ-algebra of Σ if Λ ⊆ Σ.

Given a σ-algebra and an arbitrary set, we can define a new σ-algebra.

Definition 3.12 (Relative σ-algebra). Given the measurable space (S,Σ),
and the (arbitrary) set X ⊆ S, then the relative σ-algebra is defined by
Σ|X = {A ∩ X | A ∈ Σ}. If Σ = σ(A) then Σ|X = σ(A|X). Moreover, if
X ∈ Σ, then Σ|X = {A ∈ Σ | A ⊆ X}.

Using previous definition we can write B([0, 1]) for the relative σ-algebra
B(R)|[0, 1] = {A ∈ B(R) | A ⊆ [0, 1]}, that is the Borel σ-algebra generated
by all rational endpoints intervals in [0, 1].

We now give the first closure result for σ-algebras, namely that it includes
the limits of events, a property that algebras lack (see Example 3.3).

Definition 3.13 (Increasing/decreasing sequence limits). Given an increas-
ing (resp. decreasing) sequence (Ai)i, A is the limit of Ai denoted Ai ր A
(resp. Ai ց A), if A =

⋃

iAi (resp. A =
⋂

iAi).

A family of sets that is closed under limits is said to be monotone.

Definition 3.14 (Monotone family). A family A ⊆ 2S is monotone if
{Ai}i ⊆ A, then if either Ai ր A or Ai ց A, then A ∈ A.

Proposition 3.6. A σ-algebra is a monotone family.

The task of proving that properties holding on generators extend to the
whole σ-algebra is not direct. Special proof strategies exist. Now we describe
three different techniques used to show that a σ-algebra inherits properties
of its generators.
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Good Sets Principle. The first technique requires no assumptions on
the family of generators A, but it needs the strongest property of the three
techniques for the so-called good sets G.

Proposition 3.7 (Good sets principle). Let A be the family of generators
and G the family of good sets. If A ⊆ G and G is a σ-algebra, then σ(A) ⊆ G.
Namely, if the good sets form a σ-algebra, and it contains the generators,
then the generated σ-algebra consists of good sets.

Example 3.15. Let B be a Borel measurable set in B(R), then a + B
.
=

{a+ x | x ∈ B} is also Borel measurable. That is, Borel measurable sets are
measurable-invariant under translations.

The proof is as follows. Let the good sets family G = {B | a+B ∈ B(R)}.
The rational endpoints intervals A = {[p, q) | p, q ∈ Q} are good A ⊆ G. We
need to show that G is a σ-algebra. G is nonempty: clearly ∅ ∈ G. Notice that
G is closed under complements since {a+x | x ∈ B}c = {a+x | x ∈ Bc}, and
it is closed under denumerable unions since {a+ x | x ∈ ⋃

iBi} =
⋃

i{a+ x |
x ∈ Bi}. By the good sets principle the property follows.

We continue using G to denote the family of good sets in the next two
techniques.

Dynkin’s π-λ Lemma. The second tool trades a more restrictive property
of the family of generators, it needs it to be a π-system, for a less restrictive
condition on the family of good sets, it has to be a λ-system. First we define
these two new properties of families of sets.

Definition 3.16 (π-system). A nonempty family P ⊆ 2S is a π-system if it
is closed under binary (finite) intersection, that is,

X1, X2 ∈ P ⇒ X1 ∩X2 ∈ P

Definition 3.17 (λ-system). A nonempty family L ⊆ 2S is a λ-system if it
is closed under complements and countable disjoint union, that is:

X ∈ L ⇒ Xc ∈ L
{Xi}i ⊆ L ⇒

⊎

iXi ∈ L

A λ-system is not a stronger notion than a σ-algebra, since every σ-
algebra is also a λ-system. The inclusion is strict.

Example 3.18. The empty set together with the family L given by the
figure is a λ-system.
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1 2

3 4

However the union of {1, 2} and {1, 3} is not in L. This is the smallest model
that shows proper inclusion of σ-algebras in λ-systems.

Notice, however, that L is not a π-system, and this is due to the next
lemma.

Lemma 3.8. If A is a π-system and a λ-system, then A is a σ-algebra. The
converse is direct.

The next lemma is due to Eugene Dynkin, and it is the core of the second
technique.

Lemma 3.9 (Dynkin’s π-λ). If A is a π-system and G is a λ-system, then
A ⊆ G implies σ(A) ⊆ G.

The usage example, which is canonical in Measure Theory, is the unique-
ness of measures and we present it in Theorem 3.20.

Monotone Family Theorem. The third technique is the next theorem
that asks the strongest premise over the generators (they should form an
algebra) and the weakest over the good sets, they only need to be a monotone
family.

Theorem 3.10 (Monotone family). Let A be an algebra and G be a monotone
family, then A ⊆ G implies σ(A) ⊆ G.

The typical usage of Monotone Family Theorem is in the proof of
Carathéodory extension Theorem 3.21 and Fubini Theorem 3.44.

The importance of these techniques resides in the fact that there are
Borel sets that cannot be arrived from the intervals by any finite or count-
able sequence of set operations, where each of these operations are finite or
countable [4, p.26]. This result implicitly disregards natural induction as a
tool. Table 3.1 presents a summary of the techniques.

http://www.math.cornell.edu/~ebd/
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Name Generators Good sets
Good Sets Principle any σ-algebra
Dynkin’s Lemma π-system λ-system
Monotone Family Theorem algebra monotone family

Table 3.1: The three proof techniques for generated σ-algebras ordered by
the strength of the hypothesis over the generators.

3.2 Measurable Functions

Functions play an important role in measure theory. The key property is that
the inverse of a function f : S → S ′ preserves complements and arbitrary (in
particular countable) unions,

f−1(Xc) = (f−1(X))c

f−1(
⋃

iXi) =
⋃

i f
−1(Xi)

that is f−1 : 2S
′ → 2S preserves all set operations in S ′. A function whose

inverse preserves measurable sets is called measurable.

Definition 3.19 (Measurable function). Given a function f : S → S ′ and
measurable spaces (S,Σ), (S ′,Σ′), the function is measurable if f−1(A′) ∈ Σ
for all A′ ∈ Σ′. In this case we write f : (S,Σ)→ (S ′,Σ′).

If the domain and image of a function is the same measurable space
(S,Σ), then f is measurable if Σ is closed under f−1. Since denumerable
union and complement commute with the inverse of f , we have the following
proposition.

Proposition 3.11. Let (S,Σ) and (S ′,Σ′) be two measurable spaces and
A′ ⊆ 2S

′
such that Σ′ = σ(A′), then f : S → S ′ is measurable iff for all

A′ ∈ A′, f−1(A′) ∈ Σ.

Now we show how to construct a σ-algebra on a domain set S from
functions S → Si, where each Si has a σ-algebra attached [36].

Definition 3.20 (σ-algebra generated by a family of functions). Given set
S, an (arbitrary) family of measurable spaces ((Si,Σi))i∈I , and functions
fi : S → Si, the σ-algebra generated by (fi)i∈I , is defined by the family
of generators {f−1

i (Ai) | Ai ∈ Σi, i ∈ I}. If Σi is generated by Ai, then
{f−1

i (Ai) | Ai ∈ Ai, i ∈ I} also generates Σ.
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This σ-algebra Σ is the smallest σ-algebra on S that makes all maps
fi : (S,Σ) → (Si,Σi) measurable. Using this definition we now show how
to construct finite and denumerable product σ-algebras, and their general-
ization: σ-algebras over function spaces. Later on, using σ-algebras over
function spaces, we will construct ∆(Σ), the σ-algebra of measures that has
a prominent role in this work.

Products. If a σ-algebra represents the possible outcomes of an experi-
ment, the product σ-algebra captures the possible outcomes of repeating an
experiment a finite or denumerable number of times. In order to generate
a product σ-algebra on

∏

i∈ISi, we use projections πj :
∏

i∈ISi → Sj as the
generating function family, so that, by construction, all projections are mea-
surable functions.

Definition 3.21 (General product σ-algebra). The product σ-algebra on
measurable spaces ((Si,Σi))i∈I is generated by the sets

{π−1
i (Ai) | Ai ∈ Σi, i ∈ I}

Observe that the generators are exactly
∏

i∈I Ai where for all i ∈ I, Ai ∈
Σi, and |{Ai | Ai 6= Si, i ∈ I}| ≤ 1. The definition is equivalent if we allow
|{Ai | Ai 6= Si, i ∈ I}| ≤ n thanks to Proposition 3.1.

The standard definitions of finite product σ-algebra given in the literature
can be straightforwardly deduced from Definition 3.21.

Proposition 3.12 (Finite product σ-algebra). Given measurable spaces
((Si,Σi))

n
i=1, the finite product σ-algebra denoted by ⊗ni=1Σi is generated by

the measurable rectangles
∏n

i=1Ai with Ai ∈ Σi.

Proposition 3.13 (Denumerable product σ-algebra). Given measurable
spaces ((Si,Σi))i, the denumerable product σ-algebra denoted by

⊗

iΣi is
generated by the measurable rectangles (

∏n
i=1Ai)×

(
∏

n<i Si
)

with Ai ∈ Σi,
also called measurable rectangles with base A1, . . . , An.

Proposition 3.12 and Proposition 3.13 follows by the observation below
Definition 3.21. Some texts give the definition of denumerable product σ-
algebra using cylinders.

Proposition 3.14 (Denumerable product σ-algebra using cylinders). Given
measurable spaces ((Si,Σi))i, the denumerable product σ-algebra denoted by
⊗

iΣi is generated by Bn, the cylinders with base Bn, where Bn ∈⊗n
i=1Σi

is a measurable set in the n-dimensional product space, and Bn
.
= Bn ×

(
∏

n<i Si
)

.
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Proof. Note that A = {(∏n
i=1Ai) ×

(
∏

n<i Si
)

} ⊆ A′ = {Bn ×
(
∏

n<i Si
)

},
and by Proposition 3.1, σ(A) ⊆ σ(A′). The other inclusion, A′ ⊆ σ(A),
follows using the good sets principle.

Product σ-algebras of the same measurable space (S,Σ) are denoted by
Σn

.
=

⊗n
i=1Σ for the finite case, and Σω

.
=

⊗

iΣ for the countable case. The
property of being countably generated is inherited from its components.

Proposition 3.15. If Σ is countably generated, then Σn and Σω are also
countably generated.

If we observe the natural isomorphism between S1× (S2× S3) and (S1×
S2)× S3, then the product operator on σ-algebras is associative, parenthesis
can be omitted and we can write (Σ1 ⊗ Σ2) ⊗ Σ3 = Σ1 ⊗ (Σ2 ⊗ Σ3) =
Σ1 ⊗ Σ2 ⊗ Σ3.

A simple but useful result regarding product space Borel σ-algebras is a
direct consequence of Proposition 3.1.

Proposition 3.16. B(R)⊗ B(R) = B(R2).

This can be generalized to k-dimensional products, and as a consequence
B(R)k is generated by the rational endpoint rectangles

∏k
i=1[pi, qi].

Functions. Observe that there is an isomorphism between tuples in Sn

and functions from [1..n]→ S. If (s1, . . . , sn) ∈ Sn, we define f : [1..n] → S
by f(i) = si for all 1 ≤ i ≤ n. Conversely given a function f : [1..n] → S,
the related tuple is (f(1), . . . , f(n)). The projections in the tuple space play
the role of function evaluation in the function space.

In the case of a product measurable space (Sn,Σn), the σ-algebra con-
structed in Definition 3.21 guarantees that projections or evaluations (λf :
f(i)) : ([1..n] → S) → S are measurable for every i. The same argument is
valid for N used as index set (functions N → S), R used as index set (func-
tions R → S), or even arbitrary domains I (functions I → S). Therefore
definitions of function space σ-algebra are also a particular case of Defini-
tion 3.21.

Definition 3.22 (Function space σ-algebra). Given a measurable space
(S,Σ) and function space I → S (or equivalently SI) the function space
σ-algebra is the one generated by fA(i) = (λf : f(i))−1(A), with A ∈ Σ and
i ∈ I. If Σ = σ(A) then {fA(i) | A ∈ A, i ∈ I} also generates the σ-algebra.
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Notice that a generator fA(i) = {f ∈ I → S | f(i) ∈ A} contains all the
functions such that their value at i belongs to the measurable set A.

There is an operator over binary products of measurable spaces that enjoy
pleasant properties. It slices a measurable set in a binary product σ-algebra
at any given value of the first (second) measurable space, giving a measurable
set in the second (first) measurable space.

Definition 3.23. Given a measurable set A in the product measurable space
(S1 × S2,Σ1 ⊗ Σ2), the section of A at s1 is A|s1 = {s2 ∈ S2 | (s1, s2) ∈ A}.
Proposition 3.17. Given a product measurable space (S1×S2,Σ1⊗Σ2), for
all A ∈ Σ1 ⊗ Σ2, s1 ∈ S1, it is A|s1 ∈ Σ2.

Proof. It follows using Proposition 3.7 and good sets G = {A | A|s1 ∈ Σ}.
We point out that previous definition and proposition can be generalized

to finite and denumerable product spaces. The converse of Proposition 3.17
is not valid.

Example 3.24. Let (R,B(R)) be the Borel measurable space. We de-
fine the subset Vd = {(x, x) | x ∈ V } ⊆ R2, where V is a nonmeasur-
able Vitali set1. Every section Vd |x in both coordinates are either {x}
or ∅, therefore measurable. However Vd is not measurable in B(R2). Let
d(x) = (x, x) be the diagonal function. The function d is measurable since
for every rational-endpoint square, the inverse image of d is a closed interval,
d−1([p1, q1]× [p2, q2]) = {x | (x, x) ∈ [p1, q1]× [p2, q2]} ∈ B(R). If we suppose
Vd measurable, using the measurable d function, d−1(Vd) = V would be
measurable, contradicting the nonmeasurability of V .

Notice this is not a projection, it is a slice of a bidimensional set. We
remark there is not a standard notation to indicate the coordinate where the
sectioning is being done. It will be explicitly stated if needed.

Sums. Although it is not a particular case of Definition 3.20, we complete
this section with sum σ-algebras. Instead of building the product of measur-
able spaces, it is possible to obtain the sum σ-algebra by taking the disjoint
union of measurable sets.

Definition 3.25. Given measurable disjoint spaces (Si,Σi)i∈I , the sum mea-
surable space (

⊕

i∈I Si,
⊕

i∈I Σi) is defined by the disjoint union of the spaces
⊕

i∈I Si
.
=

⊎

i∈I Si, and the σ-algebras
⊕

i∈I Σi
.
=

⊎

i∈I Σi.

Observe that if the sets are not disjoint we can replace them by an iso-
morphic disjoint copy, and use the above definition.

1V ∈ 2R, but V /∈ B(R). It will be defined later on.
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3.3 Measures

Events defined by a σ-algebra can be quantified or measured. A measure is
the generalization of many quantifying functions like length, area, volume,
cost, energy, probability, etc.

Definition 3.26 (Measure). A measure on the measurable space (S,Σ) is a
function µ : Σ→ R+∪{∞} such that it is strict and σ-additive for pair-wise
disjoint measurable sets {Ai}i, that is:

µ(∅) = 0

µ(
⊎

iAi) =
∑

i µ(Ai)

A measure is called σ-finite if for some {Ai}i ⊆ Σ, S =
⊎

iAi and µ(Ai) <∞
for all i. It is finite if µ(S) <∞. If µ(S) = 1 then it is a probability measure, if
µ(S) ≤ 1 it is called subprobability measure. The triple (S,Σ, µ) is a measure
space.

The difference between general, σ-finite, finite, probability and subprob-
ability measures is not minor. Many results strongly depend on the type of
bounding that the measure has. We will emphasize this fact whenever needed.
Notice we could have completely avoided this problem living in the setting
of probability measures, where all properties hold. We rather pay the price
of generality where it can be obtained in order to capture not only measures
of probability but also other interesting measures like subprobabilities and
measures similar to length, volume and cost.

Example 3.27 (Counting measure). Given measurable space (S, 2S), the
counting measure µ is defined by µ(A) = |A| for finite sets, otherwise µ(A) =
∞. Clearly it is µ(∅) = 0 and it is σ-additive. If S is uncountable, countable
or finite then µ is a general measure, a σ-finite measure, or a finite measure
respectively.

Measures enjoy monotonicity and limit-preserving properties.

Theorem 3.18 (Monotonicity and continuity of measures). Let µ be a mea-
sure on (S,Σ), and a sequence (Ai)i of measurable sets, then:

i. Inclusion-Exclusion principle. µ(A1∪A2)+µ(A1∩A2) = µ(A1)+µ(A2).

ii. Monotonicity. A1 ⊆ A2 ⇒ µ(A1) ≤ µ(A2).

iii. Countable subadditivity. µ(
⋃

iAi) ≤
∑

i µ(Ai).

iv. Continuity from below. If Ai ր A, then µ(Ai)ր µ(A).
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v. Continuity from above. If Ai ց A and µ(A1) < ∞, then µ(Ai) ց
µ(A).

A measurable function induces measures in the target σ-algebra from a
measure in the source σ-algebra.

Proposition 3.19. Let (S1,Σ1) and (S2,Σ2) be two measurable spaces. Let
f : (S1,Σ1) → (S2,Σ2) be a measurable function. If µ1 is a measure on
(S1,Σ1), then µ2

.
= µ1 ◦ f−1 is an induced measure on (S2,Σ2).

Proof. The defined measure µ2 is strict since µ2(∅) = µ1(f
−1(∅)) =

µ1(∅) = 0. For σ-additivity we calculate with {Ai}i ⊆ Σ2: µ2(
⊎

iAi) =
µ1(f

−1(
⊎

iAi)) = µ1(
⊎

i f
−1(Ai)) =

∑

i µ1(f
−1(Ai)) =

∑

i µ2(Ai).

If a σ-algebra is generated by a π-system P, the measure on σ(P) is
uniquely defined by its values on the events of P. This fact is stated in the
following theorem. We also include the proof since it is the canonical use of
Lemma 3.9.

Theorem 3.20 (Measure uniqueness). Suppose µ1 and µ2 are finite measures
on σ(P) agreeing on S, µ1(S) = µ2(S) < ∞, where P is a π-system. If µ1

and µ2 agree on P, then they agree on σ(P).

Proof. Let G = {A ∈ σ(P) | µ1(A) = µ2(A)} be the good sets, namely the
measurable sets where the two measures agree. We will see G is a λ-system.
First notice it is nonempty since S belongs. Using µ1(S) = µ2(S) < ∞,
closure under complement follows by µ1(A

c) = µ1(S) − µ1(A) = µ2(S) −
µ2(A) = µ2(A

c). Closure under denumerable disjoint union is: µ1(
⊎

iAi) =
∑

i µ1(Ai) =
∑

i µ2(Ai) = µ1(
⊎

iAi). Given that P ⊆ G then by Lemma 3.9,
σ(P) ⊆ G, that is µ1 and µ2 agree in the generated σ-algebra.

A similar result trades more restrictive families where the measures coin-
cide, for more general measures. It is also stronger in the sense it shows the
existence of the measure.

Theorem 3.21 (Carathéodory extension). Let µ be a measure on the algebra
Γ of subsets of S, and assume that µ is σ-finite on Γ. Then µ has a unique
extension to the measure on σ(Γ).

Notice that in particular if two σ-finite measures coincide on an algebra,
they coincide in the generated σ-algebra. Another important result in this
line is that measures can be approximated by the family of the generators
given that they form an algebra [4].
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Corollary 3.22. Let Γ be an algebra, and let µ a finite measure on σ(Γ).
Then, for each A ∈ σ(Γ) and 0 < ε, there is a set B ∈ Γ such that µ(A△B) <
ε, where A△B .

= (A \B) ∪ (B \ A) is the symmetric difference.

Previous results are important since they characterize and approximate
the measure in terms of families smaller than the whole σ-algebra. This will
be fundamental in the proof of many forthcoming results. For example, if we
define a measure giving a value to each possible rational-endpoint generator
[p, q) of the Borel σ-algebra, there is a unique measure in the generated B(R),
because rational endpoint intervals form a π-system. The standard σ-finite
measure for the Borel measurable space is the Lebesgue measure.

Definition 3.28 (Lebesgue measure). For the Borel measurable space
(R,B(R)) the σ-finite measure defined on the generators by λ([p, q)) = q − p
is the Lebesgue measure.

The following example shows a measurable set A that is dense in [0, 1], it
has no interval included, and its Lebesgue measure is strictly between 0 and
12.

Example 3.29. Let dn(x) to be the n-th digit of the binary representation
of x ∈ (0, 1]; therefore each x can be thought as an infinite sequence of
coin tosses. We define the event An = {x ∈ (0, 1] | di(x) = di+n(x) =
di+2n(x), 1≤ i≤ n}, that is the set of all sequences of coin tosses such that
the initial n digits are immediately repeated two more times. For example,
A3 = {.0100100100101 . . . , .111111111111 . . . , .001001001111 . . . , . . . }. Let
A =

⋃

iAi be the event of having an infinite sequence of tosses of a coin, where
some finite initial segment is repeated twice over. The Lebesgue measure
of An is the probability of flipping a fair coin 3n times and getting the
first third equal to the other two, that is λ(An) = 2n/23n = 1/22n, with
n > 0. Therefore, by countable subadditivity (Theorem 3.18), 0 < λ(A) =
λ(
⋃

0<nAn) ≤
∑

0<n 1/2
2n = 1/3. What is remarkable is that the event A is

dense in [0, 1], no interval is included (∀p < q, [p, q) 6⊆ A), and it has a positive
measure that is strictly lower than 1. The example can be generalized to k
repetitions for large k in order that A measures less than an arbitrary ε>0.

One important result in Measure Theory is the existence of sets in the
real line that are not quantifiable by the Lebesgue measure. The theorem
by Vitali [4, p.41] [66, Theorem 3.38] says there are nonmeasurable sets in
the measure space (R,B(R), λ) These are called Vitali sets. Although this
result depends on the Axiom of Choice (AC), and therefore constructive

2Compare this with [0, 1] \Q that is dense, has no interval included, but it measures 1.
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mathematicians find it unacceptable, it is one of the most important reasons
to construct sound results based in Measure Theory.

If a measure is concentrated in a countable set, it is called discrete.

Definition 3.30 (Discrete measure). Given a measure space (S,Σ, µ), µ is
called discrete if for some countable A ⊆ S, µ(S \ A) = 0.

Measures defined by µ(A) =
∑

i ciχA(si), where ci ∈ R+ and {si}i ∈ Σ,
are discrete. They are also denoted {si 7→ ci}i. The Dirac delta is the
simplest discrete measure.

Example 3.31 (Dirac delta). The Dirac delta function δs(A) = χA(s) is a
discrete probability measure. Moreover, any discrete probability measure is
a denumerable convex combination of Dirac deltas µ(A) =

∑

i ciδsi(A) with
∑

i ci = 1.

The discrete part of a measure is contained in a countable set.

Proposition 3.23. For a σ-finite measure, the set of measurable singletons
having positive measure, {s | {s} ∈ Σ, 0 < µ({s})} is at most countable.

In contrast to discrete measures we define the continuous measures.

Definition 3.32 (Continuous measure). A measure µ in the measurable
space (S,Σ) is called continuous if µ({s}) = 0 for all {s} ∈ Σ, or equivalently
for all denumerable A ⊆ S, µ(A) = 0.

Properties that fail only in a null measure set, are said to be valid almost
everywhere with respect to the measure.

Definition 3.33 (µ-a.e.). Given a measure space (S,Σ, µ), we say that prop-
erty P ∈ Σ is µ-almost everywhere valid if µ(S \ P ) = 0. We write P µ-a.e.

A support set of a measure is a measurable set that concentrates all
measure mass. Even though it is widely used, its definition in full generality
has some drawbacks. The support may not exist [1, Example 12.15], or if it
does it may not be uniquely defined since C can be added a zero-measure set
Z still retaining all the mass. For measurable spaces coming from topological
spaces (B(Rk) for example), the definition is more precise and gains the status
of a function: given a σ-algebra coming from a topological space T , then there
exists a unique minimal closed set C0 such that µ(S \ C0) = 0 [4, Exercise
12.9].
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Definition 3.34 (Support). A set C is called support of µ, denoted
supp(µ) = C, if µ(S \ C) = 0.

We end this section defining the measure for sums of measure spaces.

Definition 3.35. Given measure spaces (Si,Σi, µi)i∈I , and the sum measur-
able space (

⊕

i∈I Si,
⊕

i∈I Σi), the sum measure µ is defined:

µ(A)
.
=

∑

i∈I

µi(A ∩ Si)

3.4 Integration

First we give some closure results for measurable functions. The basic fact
is that measurable functions are closed under composition.

Lemma 3.24. Given that f : (S,Σ) → (S ′,Σ′) and g : (S ′,Σ′) → (S ′′,Σ′′)
are measurable, then g ◦ f : (S,Σ)→ (S ′′,Σ′′) is also measurable.

A function with n-dimensional image is measurable exactly when each of
its components are.

Proposition 3.25. f : (S,Σ) → (S ′,Σ′)n is measurable iff fi = πi ◦ f are
measurable for every 1 ≤ i ≤ n.

Proof. The right to left implication is direct from the fact that measur-
able rectangles

∏n
i=1Ai generate the product measurable space, and that

f−1(
∏n

i=1Ai) =
⋂n
i=1 f

−1
i (Ai). The converse is also direct since projections

are measurable functions (Definition 3.21) and composition is a closed oper-
ator in the set of measurable functions (Lemma 3.24).

Measurable functions of the form f : (S,Σ) → (R+,B(R+)) are closed
under the usual operators on the real numbers, as well as limits of functions.

Theorem 3.26. Given measurable functions f, g : (S,Σ) → (R+,B(R+)),
and c ∈ R+, then

cf f + g f − g fg f/g f max g f min g

are measurable. Also if (fi)i is a sequence of measurable functions then

limi fi lim supi fi lim inf i fi

are also measurable.



44 CHAPTER 3. MEASURE THEORY

Using Theorem 3.26 we can easily build new and useful results.

Corollary 3.27. Given a sequence (fi)i of measurable functions fi : (S,Σ)→
(R+,B(R+)),

∑

i fi is also measurable.

Simple functions are the basis of measurable positive functions.

Definition 3.36 (Simple function). A function f : S → R+ is simple for
measurable space (S,Σ), if it can be written as f =

∑n
i=1 ciχAi

for disjoint
{Ai}ni=1 ⊆ Σ.

Observe that simple functions are measurable and take finitely many val-
ues. Although there are many ways of presenting the Lebesgue integral, we
prefer to center its definition around the next result. It states that every mea-
surable function has an increasing sequence of simple functions converging
point-wise to it.

Theorem 3.28. Given f : (S,Σ) → (R+,B(R+)), there is a sequence of
simple functions (fn)n such that fn ր f .

Proof. We fix n, and split the function range in two: [0, n) and [n,∞). The
first part is divided in 2n intervals [n i

2n
, n i+1

2n
) indexed by i, 0 ≤ i < 2n;

while the second is kept together. Given that the intervals are measurable
in B(R+), f−1([p, q)) is the measurable set of all domain values reaching the
range [p, q) through f . The fn is constructed as follows:

fn =
2n−1
∑

i=0

n
i

2n
χf−1([n i

2n
,n i+1

2n
)) + nχf−1([n,∞)) (3.3)

Figure 3.1 shows f(x) = 2+sin(x)+sin(2x) together with simple function
f2.

For simple functions the integral is a finite sum.

Definition 3.37 (Lebesgue integral of simple functions). Given a mea-
sure space (S,Σ, µ) and simple function f : (S,Σ) → (R+,B(R+)), f =
∑n

i=1 ciχAi
, the Lebesgue integral is defined by:

∫

fdµ
.
=

n
∑

i=1

ciµ(Ai)
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x

f(x)

0

1

2

π
2

π 2π 3π

2× χf−1([2,∞))

23
4
× χf−1([2 3

4
,2 4

4
))

22
4
× χf−1([2 2

4
,2 3

4
))

21
4
× χf−1([2 1

4
,2 2

4
))

20
4
× χf−1([2 0

4
,2 1

4
))

Figure 3.1: Simple function f2 below f(x) = 2 + sin(x) + sin(2x).

A problem of consistency could arise here, since there is not a unique way
to write a simple function. Suppose f =

∑n
i=1 aiχAi

=
∑m

j=1 bjχBj
, then we

can write f =
∑n

i=1

∑m
j=1 aiχAi∩Bj

. We unfold the definition of the integral
∫

f(x)dµ(x) =
∑n

i=1

∑m
j=1 aiµ(Ai∩Bj), taking the constant terms out of the

first sum
∑n

i=1 ai
∑m

j=1 µ(Ai ∩ Bi) and this is exactly
∑n

i=1 aiµ(Ai). We can
get

∑m
j=1 bjχBj

similarly, therefore the definition is consistent.

Given that every measurable function is the limit of increasing simple
functions, the integral of measurable functions can be readily defined.

Definition 3.38 (Lebesgue integral). Let (S,Σ, µ) be a measure space and
f : (S,Σ) → (R+,B(R+)) be a measurable function. The Lebesgue integral
of f on measure µ is defined as the right-hand side limit in case it is less
than ∞. We write

∫

fdµ
.
= lim

i

∫

fidµ

where fi ր f are the monotone converging simple functions of Theorem 3.28.

Sometimes we restrict the integration domain to a measurable set A, and
we denote this

∫

A

fdµ
.
=

∫

fχAdµ

Whenever we write f is µ integrable or
∫

fdµ, it means that f is measurable
and the limit is a real number.

There are mainly three different ways of writing the Lebesgue integral

∫

fdµ

∫

f(x)dµ(x)

∫

f(x)µ(dx)
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representing a trade-off between verbosity and precision. If we are integrating
a one parameter function, we rather write

∫

fdµ. If f has two or more
parameters, we write

∫

f(x1, x2)dµ(x1). Finally if the measure is defined in
more than one dimension, we will write

∫

f(x2)µ(x1, dx2).

Example 3.39. The typical example to show the virtues of Lebesgue integral
is that it can integrate the everywhere non-continuous f = χQ∩[0,1], where
∫

[0,1]
fdλ = 0 for the Lebesgue measure λ. The Riemann integral is undefined

for f since for every interval partition of the domain [0, 1] the minimum
and maximum value of the partition do not converge. It cannot be argued
that Riemann integral fails because of null measure sets, since Example 3.29
defines a set that is similar to Q ∩ [0, 1] but having a positive measure.

The Lebesgue integral has many pleasant properties, and that makes it
easier to manipulate than the Riemann integral. Many of this properties
are µ-a.e. invariant (Definition 3.33), since sets of µ-measure zero do not
contribute to the value of the integral. The next proposition show how this
µ-a.e. invariance works.

Proposition 3.29. Let 0 ≤ f be Borel measurable, f = 0 µ-a.e. iff
∫

fdµ =
0.

Proof. First the left to right implication. For simple functions f =
∑n

i=1 ciχAi

with 0 ≤ ci. If 0 < ci then µ(Ai) = 0 by hypothesis, therefore
∫

fdµ =
∑n

i=1 ciµ(Ai) = 0. Let fi ր f as in Theorem 3.28, then 0 ≤ fi ≤ f . Since
f = 0 µ-a.e., fi inherit the same property, then

∫

fidµ = 0 for all i, concluding
by the definition of the Lebesgue integral that

∫

fdµ = 0.
For the converse notice that the predicate f = 0 µ-a.e. is by definition

µ({x | 0 < f(x)}) = 0. Let B = {x | 0 < f(x)} and Bn = {x | 1/n <
f(x)}. By monotonicity of the integral, 0 ≤ fχBn

≤ fχB = f implies
∫

fχBn
dµ ≤

∫

fχBdµ =
∫

fdµ = 0. Given that 1/nµ(Bn) ≤
∫

fχBn
dµ ≤ 0,

then ∀n, µ(Bn) = 0. Since Bn ր B, by continuity from below we have
µ(B) = 0.

We end this part by showing various results concerning integration. First
we show results for the integral in terms of the function being integrated.

Theorem 3.30. i. Monotonicity. f ≤ g µ-a.e.⇒
∫

fdµ ≤
∫

gdµ.

ii. Linearity. a, b ∈ R+ ⇒
∫

(af + bg)dµ = a
∫

fdµ+ b
∫

gdµ.

Monotonicity implies small corollaries like f = 0 µ-a.e. ⇒
∫

fdµ = 0
(already given in Proposition 3.29), and f = g µ-a.e.⇒

∫

fdµ =
∫

gdµ. The
following result is very important, since it allows to move limits out of the
integral.
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Theorem 3.31 (Monotone convergence). Given non-negative functions such
that fi ր f , then

∫

fidµր
∫

fdµ.

The following corollary is a direct consequence of previous theorem and
linearity.

Corollary 3.32. If (fi)i are µ integrable then
∫

(
∑

i fi)dµ =
∑

i

∫

fidµ.

If the family {fi}i does not converge from below, but it is dominated by
an integrable g, then the interchange of limit and integral is also valid3.

Theorem 3.33 (Dominated convergence). Given non-negative and measur-
able f, {fi}i, g such that for all i, fi ≤ g µ-a.e., fi → f µ-a.e., and g is µ
integrable, then

∫

fidµ→
∫

fdµ.

Second, we show a property of the integral in terms of the measure.

Proposition 3.34. µ =
∑

i µi ⇒
∫

fdµ =
∑

i

∫

fdµi.

The integral is also measure limit preserving. This is given by the Port-
manteau Theorem [36]. It implies that if µi → µ, then

∫

fdµi →
∫

fdµi.
However this is only valid for separable metrizable space generating a topol-
ogy on the set of measures, and a continuous bounded function.

The next theorem states a kind of distributivity property of the integral
with respect to the disjoint union of measurable sets where the integral takes
place.

Theorem 3.35. For pair-wise disjoint {Ai}i and non-negative measurable f ,
∫

(
⊎

iAi)
fdµ =

∑

i

∫

Ai
fdµ.

Proof.

∫

(
⊎

iAi)
fdµ =

∫

χ(
⊎

iAi)fdµ =
∫

(
∑

iχAi
f)dµ (integral def. and disj. of Ai)

=
∑

i

∫

χAi
fdµ =

∑

i

∫

Ai
fdµ (Corollary 3.32 and def. again)

3There is one more classical result that lies between the monotone convergence theorem
and dominated convergence theorem, it is called Fatou’s lemma [2].
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Integration of New Measures. The Lebesgue integral of a function with
respect to a measure can be used to generate new measures. The integration
of a so called density function induces a new measure. First the integration
result.

Proposition 3.36. Let (S,Σ, µ) be a measure space and f : (S,Σ) →
(R+,B(R+)) be a measurable function. Then ν(A) =

∫

A
fdµ is a measure.

In this case, it is said that ν has density f with respect to µ.

Proof. Notice that ν is strict ν(∅) =
∫

χ∅fdµ = µ(∅), by Definition 3.37, and
it is also σ-additive: ν(

⊎

iAi) =
∑

i ν(Ai) by Theorem 3.35. Therefore ν is
a measure.

Notice that whenever µ(A) = 0 then ν(A) = 0. The Radon-Nikodym
theorem [2] goes in the opposite direction: if the last condition is fulfilled,
that is, ν can be disintegrated or derived from µ, in symbols f = dν

dµ
. Observe

that if we interpret the expression ν(A) =
∫

A
fdµ of Proposition 3.36 without

rigor, we could have written the equality dν = fdµ, however it must be shown
it is valid if used inside a Lebesgue integral.

Theorem 3.37. If ν has density f with respect to µ, and f is non-negative,
then

∫

gdν =
∫

gfdµ for all measurable function g mapping on the reals.

Proof. First we prove it for a characteristic function g = χA. Using Defini-
tion 3.37, Definition 3.38 and Proposition 3.36 we have:

∫

gdν =
∫

χAdν = ν(A) =
∫

A
fdµ =

∫

χAfdµ =
∫

gfdµ

Now suppose g =
∑n

i=1 ciχAi
is a simple function. Using linearity and our

previous result, the next equality holds:

∫

gdν =
∫

(
∑n

i=1 ciχAi
)dν =

∑n
i=1 ci

∫

χAi
dν

=
∑n

i=1 ci
∫

χAi
fdµ =

∫

(
∑n

i=1 ciχAi
)fdµ =

∫

gfdµ

Finally the general case when g is a non-negative measurable function. By
Theorem 3.28 there is a monotone sequence of simple functions such that
gn ր g, therefore we can use the monotone convergence theorem (Theo-
rem 3.31) and our previous result and write:

∫

gdν =
∫

(limi gi)dν = limi

∫

gidν

= limi

∫

gifdµ =
∫

(limi gi)fdµ =
∫

gfdµ
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Theorem 3.37 follows a typical proof strategy, that was also partially used
in Proposition 3.29.

• First the result is proved for characteristic functions χA,

• then for simple functions
∑n

i=1 ciχAi
,

• finally for non-negative measurable functions.

3.5 The σ-algebra of Measures ∆(Σ)

Given that measures on (S,Σ) are functions in Σ→ R+, using Definition 3.22
we can endow the space of measures with a σ-algebra. This structure is
usually attributed in the literature to [30], but it can also be found in earlier
works [26, 42].

Definition 3.40 (σ-algebra of measures). Given measurable space (S,Σ),
and the set of measures ∆(S), the σ-algebra ∆(Σ) is generated by Defini-
tion 3.20, with functions indexed by Q ∈ Σ

(λµ : µ(Q)) : ∆(S)→ R+

Usually the measures’ σ-algebra is stated as in the following proposition.

Proposition 3.38. The σ-algebra ∆(Σ) is generated by all sets of the form:

∆B(Q)
.
= (λµ : µ(Q))−1(B) = {µ ∈ ∆(S) | µ(Q) ∈ B},

where B ∈ B(R+) and Q ∈ Σ.

We remark that by definition of ∆(Σ), the evaluation of measures (λµ :
µ(Q)) : (∆(S),∆(Σ))→ (R+,B(R+)) is a measurable function for all Q ∈ Σ.

Mind the notation overloading for ∆, as it lifts the space S and the
σ-algebra Σ to the measurable space of measures (∆(S),∆(Σ)), and it
also denotes the generators of the σ-algebra4. We can write single bounds
∆⊲⊳q(Q) = {µ | µ(Q) ⊲⊳ q}, where ⊲⊳ ∈ {>,<,≥,≤}, as well as intervals of
measure values ∆[p,q)(Q) = {µ | p ≤ µ(Q) < q}.

The σ-algebra of measures is denoted by ∆(Σ) and not the other way
round: Σ(∆) or Σ∆. We adhere to the fact that ∆ is an endofunctor in
the category Meas of measurable spaces (objects) and measurable functions
(arrows), ∆ : Meas → Meas [47].

4There is also overloading for λ, as it was previously used for the Lebesgue measure.
We allow the clash since both of them are common notation.
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The notation ∆(Σ) does not specify the carrier set S, but it can be
obtained from Σ. It also does not specify if the measures are general, σ-
finite, finite, probabilities or subprobabilities, but it can be deduced from the
context. We can take the general definition of measures and its σ-algebra and
intersect it to obtain the relative σ-algebra (Definition 3.12) that we need.
The restriction sets defining the relative σ-algebras are ∆(Σ) measurable.
The following are particular cases that are important in this thesis:

∆≤1(S) subprobability measures (3.4)

∆=1(S) probability measures (3.5)
⋃

i∆
<i(S) finite measures (3.6)

For σ-finite measures it is not easy to describe it with ∆⊲⊳q(Q) generators,
nevertheless the definition of the relative σ-algebra accepts arbitrary sets, so
it is well defined.

Notice that by Definition 3.20 ∆>q(Q) = {µ ∈ ∆(S) | q < µ(Q)}, where
q ∈ Q+ also generates ∆(Σ) since {(q,∞) | q ∈ Q+} generates B(R+).
Even though the bounds are now countable, if the σ-algebra Σ is not count-
able, ∆(Σ) is, in principle, not countably generated. The following result is
from [65], and shows that if the underlying σ-algebra is generated by a π-
system, then the related σ-algebra on probability measures is also generated
by the same π-system.

Lemma 3.39. Let (S,Σ) be a measurable space and let P be a π-system such
that Σ = σ(P). Then ∆(Σ) = σ({∆>q(Q) | q ∈ Q ∩ [0, 1], Q ∈ P}).

Observe that q is bounded to the interval [0, 1]. For subprobabilities and
finite measures the proof can be easily adapted, however for σ-finite measures
the lemma is not valid in general.

By Proposition 3.3 and the previous lemma, it is sufficient that Σ is
countably generated for ∆(Σ) to be also countably generated. For example
∆(B(R+)) is countably generated for probability measures. Irrespective if the
underlying σ-algebra separates points or not (Definition 3.8), ∆(Σ) always
separates points.

Proposition 3.40. ∆(Σ) separates points.

Proof. Let µ 6= µ′, therefore there is Q ∈ Σ and q ∈ Q+ such that, with-
out loss of generality, µ(Q) < q < µ′(Q). Therefore the generator ∆>q(Q)
separates µ and µ′.



3.6. TRANSITION PROBABILITIES 51

3.6 Transition Probabilities

Suppose we have a product space (S1×S2,Σ1⊗Σ2), representing a two-stage
experiment, and two measures µ1, µ2 respectively. If the experiments are in-
dependent, the joint measure of the outcome A1 ∈ Σ1 and then the outcome
A2 ∈ Σ2, is the product of the measures µ(A1×A2) = µ1(A1)×µ2(A2). How-
ever there could be dependencies in the outcome of the second experiment
given the result of the first. Transition measures model the idea of dependent
quantification, where the quantification of an experiment (measure) depends
on previous experiment results.

In the next definition, given s ∈ S (the result of the previous experiment)
we can define the function f(s,Q) that measures the next experiment Q given
that the previous result was s. Also this conditional measure f(s,Q) has to
be a measurable function in the first parameter in order to integrate it with
the measure of the first experiment.

Definition 3.41 (Conditional measure). Given measurable spaces (S1,Σ1)
and (S2,Σ2), a transition measure or conditional measure is a function f :
S1 × Σ2 → R+, such that for all s ∈ S1 f(s, ·) : Σ2 → R+ is a measure, and
f(·, Q) : (S1,Σ1) → (R+,B(R+)) is measurable for all Q ∈ Σ2. If f(s, ·) is a
probability measure it is called conditional probability or Markov kernel.

We give a simple but useful result that shows the connection between
conditional measures and the σ-algebra of measures.

Lemma 3.41. Function f : S1 × Σ2 → R+ is a conditional measure iff its
curried version f : S1 → ∆(S2) is measurable.

Proof. It follows from the equalities

f(·, Q)−1(B) = {s | f(s,Q) ∈ B}
= {s | f(s)(Q) ∈ B} = {s | f(s) ∈ ∆B(Q)} = f−1(∆B(Q))

The main integration theorem says that a measure on Σ1 and a conditional
measure S1 × Σ2 → R+ can be integrated into a measure of the product
space Σ1 ⊗ Σ2. The proof is given for the finite measure case, since it shows
measure theoretic techniques previously developed. The σ-finite version of
the proof can be found, for example, in [2]; its proof requires different tools.
We use Dynkin’s Lemma twice instead of monotone convergence theorem and
Carathéodory extension theorem.
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Theorem 3.42 (Product measure). Let (S1,Σ1, µ1) be a measure space with
σ-finite µ1, let (S2,Σ2) be a measurable space, and let µ2 : S1 × Σ2 → R+

be a conditional measure that is uniformly σ-finite (σ-finite independently of
the first coordinate value). Then there is a unique product measure µ on
Σ1 ⊗ Σ2,

µ(A) =

∫

S1

µ2(s1, A|s1)dµ1(s1),

where A ∈ Σ1 ⊗ Σ2, such that for all A1 ∈ Σ1, and A2 ∈ Σ2,

µ(A1 × A2) =

∫

A1

µ2(s1, A2)dµ1(s1).

Proof. (finite measure case) First notice that by Proposition 3.17, A|s1 is a
measurable set. Then in order to show that µ2(s1, A|s1) : S1 → R+ is a
measurable function, we will use π-λ (Lemma 3.9) with good sets G = {A ∈
Σ1 ⊗ Σ2 | µ2(s1, A|s1) is measurable}. Let A be the generators (rectangles)
of the product σ-algebra forming a π-system. For elements A1×A2 ∈ A, we
have µ1(s1, (A1 × A2)|s1) = µ1(s1, A2)χA1

(s1). By Theorem 3.26 measurable
functions are closed under binary products, therefore A ⊆ G. We will show
that G is a λ-system therefore for every A ∈ Σ1⊗Σ2 the function µ1(s1, A|s1)
is measurable. Being the generators a subset of the good sets, we have
that S1 × S2 ∈ G. Using finiteness of the measure, we write µ1(s1, A

c

|s1
) =

µ1(s1, S1 × S2|s1
) − µ1(s1, A|s1), and again by Theorem 3.26, the good sets

are closed under complements. For denumerable disjoint union of good sets,
µ1(s1, (

⊎

iAi)|s1) =
∑

i µ1(s1, A|s1), therefore by Corollary 3.27 it is also good.
For the rectangle case it is direct, since:

µ(A1 × A2) =
∫

S1
µ2(s1, A2)χA1

(s1)dµ1(s1) =
∫

A1
µ2(s1, A2)dµ1(s1).

Uniqueness follows from Theorem 3.20, since the generators form a π-
system where the integrals should coincide.

We emphasize again the importance of singling out the integration vari-
able for this case, otherwise integrals like the ones appearing in the mid-
dle of previous proof should have been written in a less convenient way.
For example instead of

∫

S1
µ2(s1, A2)χA1

(s1)dµ1(s1) we could have written
∫

S1
µ2(·, A2)χA1

dµ1. The importance of this notation will become more evi-
dent in the generalization of this result to products of n spaces.

For a conditional measure that is independent of the first experiment,
namely ∀s1, s2 ∈ S, µ2(s1, Q) = µ2(s2, Q) (denoted µ2(Q)), we have the fol-
lowing classical result.
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Corollary 3.43 (Classical product measure). Let (S1,Σ1, µ1) and (S2,Σ2, µ2)
be measure spaces, where both µ1 and µ2 are σ-finite. The product measure
space (S1 × S2,Σ1 ⊗ Σ2, µ), with

µ(A) =

∫

µ2(A|s1)dµ1(s1) =

∫

µ1(A|s2)dµ2(s2)

being the unique measure such that µ(A1×A2) = µ1(A1)µ2(A2). This measure
is called product measure and it is written µ = µ1 × µ2.

The particular case of Corollary 3.43 for S1 = S2 = R, Σ1 = Σ2 = B(R),
can be alternatively obtained in a few steps. By Proposition 3.16, B(R) ⊗
B(R) = B(R2). The finite measure µ = µ1×µ2 is defined on the finite disjoint
unions of intervals of R2, µ(⊎ni=1([ai, bi) × [a′i, b

′
i))) =

∑n
i=1(bi − ai)(b′i − a′i).

Since the finite disjoint unions of rectangles form an algebra, by Theorem 3.21
there is a unique extension of measure µ on the whole σ-algebra.

The product measure defined in Corollary 3.43 can be used to integrate a
measurable function f : S1×S2 → R+. This is done in Fubini’s Theorem for
dependent measures and in the classical Fubini theorem for the independent
measures. The result is given since it is needed for the proof of Theorem 3.46.

Theorem 3.44 (Fubini). Assume the hypothesis of Theorem 3.42, and let
f : S1 × S2 → R+ be measurable, then

∫

f(s1, s2)µ2(s1, ds2) is well defined
and measurable on s1. Besides it holds that:

∫

fdµ =

∫ (∫

f(s1, s2)µ2(s1, ds2)

)

µ1(ds1).

For the sake of completeness, given independent measures, we have the
classical version of Theorem 3.44. It states that the integral of f is equal to
the double iterated integral where the order among them is irrelevant.

Theorem 3.45 (Classical Fubini). Assume the hypothesis of Theorem 3.42,
with independent measures, µ = µ1 × µ2, and let f : S1 × S2 → R+ be
measurable, then
∫

fdµ =

∫
(
∫

f(s1, s2)dµ1(s1)

)

µ2(ds2) =

∫
(
∫

f(s1, s2)dµ2(s2)

)

µ1(ds1).

The simultaneous generalization of both Theorem 3.42 and Theorem 3.44
gives the definition of the product measure for finite product measurable
space, and how to iteratively integrate a measurable f . The conditional
measure µ2(s1, Q2) for a binary product space S1 × S2 can be generalized
straightforwardly to an n-stage experiment as µi(s1, . . . , sn−1, An), a condi-
tional measure for the product space

∏n
i=1 Si.
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Theorem 3.46 (Finite product measure). Let ((Si,Σi))
n
i=1 be measurable

spaces. Let µ1 be a σ-finite measure on Σ1, and let µi(s1, . . . , si−1, Ai) be
uniformly σ-finite conditional measures. There is a unique measure µ on
⊗n

i=1Σi such that for each measurable rectangle
∏n

i=1Ai,

µ(
∏n

i=1Ai) =

∫

A1

µ1(ds1)

∫

A2

µ2(s1, ds2) . . .

∫

An

µn(s1, . . . , sn−1, dsn).

For every measurable f :
∏n

i=1 Si → R+,

∫

fdµ =

∫

µ1(ds1)

∫

µ2(s1, ds2) . . .

∫

f(s1, . . . , sn)µn(s1, . . . , sn−1, dsn),

where the intermediate integrals are measurable functions
∏j

i=1 Si → R+,
with j < n.

Proof. By induction on n. The base case n = 2 is valid by Theorem 3.42 and
Theorem 3.44. Suppose it is valid for n, we prove it for n+ 1.

Using Theorem 3.42 we decompose the n+ 1 tuple in a pair of lengths n
and 1.

µ((
∏n

i=1Ai)× An+1) =

∫

∏n
i=1

Ai

µn+1(s1, . . . , sn, An+1)dµ(s1, . . . sn).

Notice we are overloading µ, it is the product measure for all finite dimen-
sions. The right-hand side is an integral of a measurable function in an
n-dimensional product measure space, therefore we apply induction hypoth-
esis using the fact that:

∫

∏n
i=1

Ai

fdµ =

∫

χ(
∏n

i=1
Ai)fdµ

=

∫

χA1
(s1)µ1(ds1)

∫

. . .

∫

f(s1, . . . , sn)χAn
(sn)µn(s1, . . . , sn−1, dsn).

Then
∫

A1

µ1(ds1)

∫

A2

µ2(s1, ds2) . . .

∫

An

µn+1(s1, . . . , sn, An+1)µn(s1, . . . , sn−1, dsn)

=

∫

A1

µ1(ds1)

∫

A2

µ2(s1, ds2) . . .

∫

An

µn(s1, . . . , sn−1, dsn)

∫

An+1

µn+1(s1, . . . , sn, dsn+1).

The
∫

fdµ case is handled in a similar way. We split in two the n+1 product,
apply the n = 2 case, and then the induction hypothesis.
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The previous theorem can be rearranged to obtain a recursive version of
the iterated integral:

µ(A1) = µ1(A1)

µ(A×An+1) =

∫

A

µn+1(s1, . . . , sn, An+1)dµ(s1, . . . , sn)

where A ∈ ⊗n
i=1Σi. Again observe that µ is overloaded, or in

mathematical terms, it is a measure in the sum measurable space
(
⊕

n(
∏n

i=1 Si),
⊕

n(
⊗n

i=1Σi)).

Likewise, denumerable product σ-algebras are defined in terms of finite
product σ-algebras; measures on denumerable product σ-algebras are defined
in terms of the measures on finite product σ-algebras. However, for the
unbounded denumerable product we can only consider probability measures.

Given the family of measurable spaces ((Si,Σi))i, its denumerable prod-
uct σ-algebra is built around measurable rectangles of the form (

∏n
i=1Ai)×

(
∏

n<i Si). This introduces a possible inconsistency. In a denumerable prod-
uct σ-algebra, the measurable rectangle with base A1 × A2 is equal to the
measurable rectangle with base A1 × A2 × S3. Therefore, in order to obtain
a well-defined measure on denumerable product σ-algebras, the two events
A1 × A2 and A1 × A2 × S3 should be equally quantified. Therefore, the
following theorem only applies to probability measures.

Theorem 3.47 (Denumerable product probability measure). Let ((Si,Σi))i
be a denumerable sequence of measurable spaces. Let µ1 be a probability mea-
sure on Σ1, and let µi(s1, . . . , si−1, Ai) be a transition probability or Markov
kernel. Then the following definition of probability measure over measurable
rectangles:

µ((
∏n

i=1Ai)× (
∏

n<i Si))
.
= µ(

∏n
i=1Ai)

extends uniquely to (
∏

i Si,
⊗

iΣi), where µ(
∏n

i=1Ai) is as in Theorem 3.46.

Note that each µi being a transition probability, any trailing
∏m

i=n+1 Si in
the measurable rectangles keeps all the probability mass.



56 CHAPTER 3. MEASURE THEORY



Chapter 4

Nondeterministic Labeled

Markov Processes

In Chapter 2, we presented a few classes of discrete transition systems intro-
ducing external nondeterminism, internal nondeterminism and probabilities
(see also Table 1.1). The discrete nature of these models simplifies all mea-
surability issues. Apart from this simplification, there is no apparent reason
why a model like PA should not be extended to continuous state space and
distributions.

For continuous state space the most basic model is a Markov process [27],
a mathematical tool devised to capture physical phenomena like Brownian
motion. This model augmented with external nondeterminism through labels
is called labeled Markov processes [20]. This extension is not minor (the
same consideration applies for the difference between MC and PLTS), since
labels introduce the ideas of behavioral equivalence, logical characterization
through modal logics, controlled compositionallity, schedulers, etc.

In this chapter, we extend LMPs with internal nondeterminism. We call
such extension nondeterministic labeled Markov processes (NLMPs). The ex-
tension is non-trivial since the nondeterminism has to be carefully embedded
in the measure theoretic framework. In the following, we first recall LMPs
and then introduce NLMPs. Afterwards we discuss two variants of NLMPs
that will be recurrent along this thesis.

4.1 Labeled Markov Processes

Labeled Markov processes (LMPs) [20] are models that capture probabilistic
choice and external nondeterminism in the setting of continuous state space.
LMPs propose a model that deals explicitly with measurability problems.

57
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The state space S is endowed with a σ-algebra Σ that defines measurable
events. The transition relation is captured by an (arbitrary) set of labeled
transition (sub)probability functions. Thus, for each label a we have the
transition function τa such τa(s,Q) is the (sub)probability of reaching the
event Q, from state s, by label a.

Definition 4.1 (LMP). A labeled Markov process (LMP) [20, 21] is a triple
(S,Σ, {τa | a ∈ L}) where Σ is a σ-algebra on the set of states S, and for
each label a ∈ L, τa : S×Σ→ [0, 1] is a transition (sub)probability function.

By Lemma 3.41, we can say that (S,Σ, {τa | a ∈ L}) is an LMP iff every
τa : S → ∆(S) is measurable. The next example is system modeling the
continuous motion of a fish with continuous stochastic behavior, where the
probability distribution is position-dependent.

Example 4.2 (Stochastic Fish [5]). Suppose we model the nondeterministic
and probabilistic behavior of a fish that lives in the (real) unidimensional
aquarium [0, 1] that is divided in two equal parts. From [0, 1/2) it is filled with
water, while in the other half [1/2, 1] some kids put cola soda (Figure 4.1).
The fish has two modes: swim and jump. In the swim mode, the fish moves
errant in the safe region of the aquarium with transition probability defined
by the rational-endpoint intervals,

τswim(x, [p, q]) =

{

2λ([p, q] ∩ [0, 1/2)) if x ∈ [0, 1/2)
0 otherwise

where λ is the Lebesgue measure (see Definition 3.28). The other mode
implies a probabilistic daredevil jump to the right, falling into a possibly
unsafe region of its living space. From position x there is 2(1/2− x) chance
of getting in the [x, 1/2) safe part, and 2x of getting into poisoned water.
This probability is clearly dependent on the fish position:

τjump(x, [p, q]) =

{

2λ([p, q] ∩ [x, 1/2)) + 4xλ([p, q] ∩ [1/2, 1]) if x ∈ [0, 1/2)
0 otherwise

By Theorem 3.20 there are exactly two measures on B([0, 1]) that coincides
with τswim and τjump as defined above. Notice also that both τswim and τjump

are transition probabilities, that is τswim(x, [0, 1]) = τjump(x, [0, 1]) = 1.
For the measurability of the transition function we use Lemma 3.39 since

the events in B([0, 1]) are generated by the π-system given by all the ratio-
nal endpoint intervals [p, q]. We take the jump transition and rewrite the
expression fixing the current position x and the target interval [p, q]:

τjump(x, [p, q]) = χ[0,1/2)(x) {2(max(min(q, 1/2), x) −min(max(p, x), 1/2))

+ 4x(max(min(q, 1), 1/2) −min(max(p, 1/2), 1))}
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Since the identity function f(x) = x and χA(x) with A ∈ B([0, 1]) are
measurable, by repeated uses of Theorem 3.26 and Lemma 3.24, the whole
expression is measurable in the first argument. The transition τswim is similar.

jump

swim

0 1
2

1

Figure 4.1: Stochastic fish modeled using labeled Markov process.

Notice that this LMP cannot be lumped to a discrete system, that is,
there is no discrete probabilistic automata that is behaviorally equivalent to
the stochastic fish.

4.2 Nondeterministic Labeled Markov Pro-

cesses

There have been several attempts to define nondeterministic continuous prob-
abilistic transition systems and all of them are straightforward extensions of
(simpler) discrete versions. There are two fundamental differences in our new
model. The first one is that the nondeterministic transition function Ta now
maps states to measurable sets of probability measures rather than arbitrary
sets as previous approaches. This is motivated by the fact that later on the
nondeterminism has to be resolved using schedulers. If we allowed the target
set of states to be an arbitrary subset (as some continuous ones [8, 12, 15]),
the system as a whole could suffer from nonmeasurability issues and there-
fore it could not be quantified. (Rigorously speaking, labels should also be
provided with a σ-algebra, but we omit it here since it is not needed.) The
second difference is inspired by the definition of LMP and Lemma 3.41: we
ask that, for each label a ∈ L, Ta is a measurable function. One of the reasons
for this restriction is to have well defined modal operators of a probabilistic
Hennessy-Milner logic, like in the LMP case.
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Definition 4.3 (NLMP). A nondeteministic labeled Markov process (NLMP)
is a triple (S,Σ, {Ta | a ∈ L}) where Σ is a σ-algebra on the set of states S,
and for each label a ∈ L,

Ta : S → ∆(Σ)

is a measurable function.

Notice that we changed the transition function symbol from τa in LMP
to Ta in order to emphasize the difference. For the requirement that Ta
is measurable, we need to endow ∆(Σ) with a σ-algebra. This is a key
construction to forthcoming definitions and theorems.

Definition 4.4 (Hit σ-algebra). Given measurable space (S,Σ), the hit σ-
algebra over Σ is the one generated by the hit sets HA

.
= {B ∈ Σ | B∩A 6= ∅}

for A ∈ Σ. Therefore the hit σ-algebra is H(Σ)
.
= σ({HA | A ∈ Σ}).

This construction is similar to that of the Effros-Borel space [36] and
resembles the so-called hit-and-miss topologies [48].

To prove measurability of Ta, is sufficient to check the generators of the
hit σ-algebra H(∆(Σ)) (Proposition 3.11), that is, we have to show that for
each ξ ∈ ∆(Σ), T−1

a (Hξ) ∈ Σ. Observe that

T−1
a (Hξ) = {s ∈ S | T (s) ∩ ξ 6= ∅}

is the set of all states s such that, through label a, the transition function
“hits” the set of measures in ξ. This forms the basis to existentially quantify
over the nondeterminism, and it is fundamental for the definition of the
bisimulation and the logic.

The next two examples (inspired by an example in [11]) show why Ta
is required to map into measurable sets and to be measurable. For these
examples we fix the state space and σ-algebra in the real unit interval with
the standard Borel σ-algebra.

Example 4.5. Let V = {δq | q ∈ V }, where V is a non-measurable Vitali
set in [0, 1]. The set V is not measurable in ∆(Σ). This can be verified by
first noting that the function (λs : δs) : S → ∆(S) is measurable: (λs :
δs)

−1(∆>q(Q)) is equal to Q if q < 1, otherwise it is ∅. Therefore if V were
measurable then (λs : δs)

−1(V) = V would also be measurable, contradicting
the nonmeasurability of V . We define the transition function (see left-hand
side of Figure 4.2)

Ta(0) = V
The resolution of the internal nondeterminism by means of schedulers would
require to assign probabilities to all possible choices, and this amounts to



4.2. NLMPS 61

measure the nonmeasurable set Ta(0). This is why we require that Ta maps
into measurable sets.

Example 4.6. We define the following transition function as in the right-
hand side of Figure 4.2,

Ta(0) = {µ}
Tb(s) = if (s ∈ V ) then {δ1} else ∅,

where s ∈ [0, 1], and µ is the uniform distribution in [0, 1]. Notice that Ta(s)
and Tb(s) are measurable sets for every s.

Assuming that there is a scheduler that chooses to first do a and then b
starting at 0, the probability of such set of executions cannot be measured. It
requires to apply µ to the set T−1

b (H∆(S)) = V which is not measurable. This
is why we ask for measurable Ta with respect to the hit σ-algebra. Besides,
we will later need that sets T−1

a (Hξ) are measurable so that the semantics of
the logic maps into measurable sets.

0 1

V

a

0 1

a

µ

V

b

Figure 4.2: Two non-probabilistic continuous LTS showing measurability
issues.

It is worth noting that the example do not make use of probabilistic
choice in transitions, it is purely nondeterministic. This kind of continuous
LTS endowed with a σ-algebra will continue to be used throughout this thesis.

We now show an example of a simple NLMP in terms of its definition,
but it encodes a strong nondeterminism in the probabilistic choice that is
dependent of the state.

Example 4.7. Let the structure ([0, 1],B([0, 1]), {Ta}) be such that

Ta(x) = ∆≥1/2([x, 1]) ∩∆=1([0, 1]) with x ∈ [0, 1]
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It represents a position-dependent transition function of a continuous sys-
tem. Notice that it encodes a strong nondeterminism, since given position x,
any probability measure µ such that 1/2 ≤ µ([x, 1]) is included. It can be
seen that the transition consists of intersection of ∆(Σ) generators, therefore
Ta(x) ∈ ∆(Σ) for all x ∈ [0, 1].

In addition, for ξ ∈ ∆(Σ), the inverse image of a generator is T−1
a (Hξ) =

Aξ = {x | ∆≥1/2([x, 1])∩∆=1([0, 1])∩ ξ 6= ∅}. Suppose x ∈ T−1
a (Hξ) and 0 ≤

y ≤ x. By monotonicity of the measures, ∆≥1/2([y, 1]) ⊇ ∆≥1/2([x, 1]). Hence
T−1
a (Hξ) = [0, sup(Aξ)] if the supremum is included in Aξ, or else T

−1
a (Hξ) =

[0, sup(Aξ)). Since both intervals are Borel measurable, we conclude that
([0, 1],B([0, 1]), {Ta}) is an NLMP.

NLMPs as a generalization of LMPs Notice that an LMP is an NLMP
without internal nondeterminism. That is, an NLMP in which Ta(s) is a
singleton for all a ∈ L and s ∈ S, is an LMP. In fact, an LMP can be
encoded as an NLMP by taking Ta(s) = {τa(s)}. (We will prove this formally
in Proposition 4.2.) As a consequence it is necessary that singletons {µ}
be measurable in ∆(Σ) for the NLMP to be well defined. The following
lemma gives sufficient conditions on the carrier σ-algebra Σ to ensure that
all singletons are measurable in ∆(Σ).

Lemma 4.1. Let the σ-algebra Σ be countably generated. Then, for all σ-
finite µ ∈ ∆(S), {µ} ∈ ∆(Σ).

Proof. Using the remark below Proposition 3.3 we build F , a denumerable
algebra such that Σ = σ(F). Notice that the set

⋂{∆>qi(Qi) | Qi ∈ F , qi ∈ Q ∩ [0, 1], qi < µ(Qi)} ∩
⋂{∆<qi(Qi) | Qi ∈ F , qi ∈ Q ∩ [0, 1], µ(Qi) < qi} (4.1)

is in ∆(Σ). Now it suffices to show that the set (4.1) is equal to {µ}. By
construction µ is in the non-empty intersection. Take µ′ such that µ 6= µ′.
By Theorem 3.21, there must be a Qi ∈ F such that µ(Qi) 6= µ′(Qi). If
µ(Qi) > µ′(Qi) then µ

′ does not belong to the first intersection; if µ(Qi) <
µ′(Qi), µ

′ does not belong to the second one.

Note that Lemma 4.1 also gives sufficient conditions to define NLMPs
with finite and denumerable nondeterminism. Once {µ} is measurable, we
define Ta(s) =

⋃

i{µi} with measurable image.
Notice also that asking for measurable singletons in ∆(Σ) does not trivi-

alize Σ (in the sense that Σ = 2S). A nontrivial example in which Lemma 4.1
holds is the standard Borel σ-algebra in R. A less obvious example is the
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σ-algebra Q-coQ from Example 3.9. Notice that Q-coQ cannot separate
one irrational from another (let alone asking for all singletons being measur-
able). Nevertheless, as it is generated by a denumerable family, it is under
the conditions of Lemma 4.1 and hence for every measure µ on it, {µ} is
measurable on ∆(Q-coQ).

The formal connection between NLMPs and LMPs is an immediate con-
sequence of the next proposition.

Proposition 4.2. Let Ta(s) = {τa(s)} for all s ∈ S and let Σ be a σ-algebra
on S. Then τa : S → ∆(S) is measurable iff Ta : S → ∆(Σ) is measurable.

Proof. Let ξ ∈ ∆(Σ). Note that Ta(s) ∈ Hξ iff {τa(s)} ∩ ξ 6= ∅ iff τa(s) ∈
ξ. Then T−1

a (Hξ) = τ−1
a (ξ). Therefore τa is measurable whenever Ta is

measurable. For the converse, we have that T−1
a (Hξ) is measurable for all

generators Hξ. As a consequence Ta is measurable in general.

4.3 Structure on the Labels

The definition of NLMPs does not impose any restriction on the set of labels
L. This could lead to measurability issues in the external nondeterminism.

Example 4.8. We define an NLMP conforming with Definition 4.3 with two
states {s, s′}, and a continuous set of labels L = [0, 1]. From initial state s
the system loops if the label r is in a set V , otherwise it jumps to s′, where
V is a Vitali set (Figure 4.3). We write the transition function:

Tr(s) = if (r ∈ V ) then {δs′} else {δs},

where r ∈ [0, 1]. Suppose there is an external source of nondeterminism
choosing the label, and this external source is implemented by a probabilistic
choice η. If we want to quantify the probability of jumping from s to s′, this
amounts to measure the nonmeasurable set

{r | Tr(s) ∩ {δs′} 6= ∅} = V

This example shows that in order to quantify the behavior of the environ-
ment, it is also needed to impose structure on the labels, even for continuous
LTS without probabilistic choice and nondeterminism.

Definition 4.9 (NLMP with structure on the labels). Let ΣL be a σ-algebra
on L such that the singletons are measurable. The structure (S,Σ,ΣL, T ) is



64 CHAPTER 4. NLMPS

0 1

s

s′

V

[0, 1] \V

Figure 4.3: Continuous deterministic LTS showing a measurability issue on
the labels.

an NLMP with structure on the labels if (S,Σ) is a measurable space and the
transition function

T : S → ΣL ⊗∆(Σ)

is such that for all a ∈ L, T (·)|a : S → ∆(Σ) is measurable.

Transition function T (·)|a is well defined since sections of measurable sets
in a product σ-algebra are also measurable sets (Proposition 3.17). We ask
{a} ∈ ΣL for technical reasons. This is a reasonable restriction since we still
want to provide the environment the possibility to push individual buttons.

Notice that the LTS in Example 4.8 does not conform to Definition 4.9.
We can rewrite the transition function in the form of Definition 4.9 as T (s) =
(([0, 1] \ V ) × {δs}) ⊎ (V × {δs′}), however T (s)|δs′ = V /∈ ΣL, where ΣL =
B([0, 1]), therefore T (s) /∈ ΣL ⊗∆(Σ) by Proposition 3.17.

Also note that NLMPs with structure on the labels are particular cases
of general NLMPs of Definition 4.3. Indeed, if (S,Σ,ΣL, T ) is an NLMP
with structure on the labels, then (S,Σ, {T (·)|a | a ∈ L}) is an NLMP as in
Definition 4.3.

Now we show that the transition function measurability condition of Defi-
nition 4.9 is strictly weaker than asking T : S → ΣL⊗∆(Σ) to be measurable
with the hit structure on ΣL ⊗∆(Σ).

Proposition 4.3. If T : S → ΣL ⊗∆(Σ) is measurable, then for all a ∈ L,
T (·)|a : S → ∆(Σ) is measurable.
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Proof. Let A ∈ ΣL ⊗ ∆(Σ). Then T−1(HA) ∈ Σ. Therefore T−1(H{a}×ξ) =
{s | T (s) ∩ ({a} × ξ) 6= ∅} ∈ Σ, with ξ ∈ ∆(Σ). It is not hard to see this set
is exactly {s | T (s)|a ∩ ξ 6= ∅}, concluding T−1

|a (Hξ) ∈ Σ.

Because of Example 3.24 the reverse implication is not valid in general.
The following example from [33] shows a concrete NLMP with structure on
the labels where T (·)|a : S → ∆(Σ) is measurable, but T : S → ΣL ⊗ ∆(Σ)
is not.

Example 4.10. Let (R,B(R), 2R, T ) be an NLMP with structure on the
labels where L = R, ΣL = 2R, and

T (s) = {(s, δ1)} ∪ ({s}c × {δ0})

Notice that the system moves deterministically to state 1 if the label agrees
with the current value of the state, or else it jumps to state 0. It can be
seen that T (s) ∈ 2R ⊗∆(B(R)) for all s ∈ R. In addition, for ξ ∈ ∆(B(R)),
T (·)−1

|s (Hξ) ∈ {∅,R, {s}, {s}c}, hence T (·)|s measurable for all s ∈ R. Now

let A = V × {δ1} ∈ 2R ⊗ ∆(B(R)), with V being a Vitali set. Note that
T−1(HA) = {s | T (s) ∩ (V × {δ1}) 6= ∅} = V /∈ B(R). Hence, even when
T (·)|s is measurable for all s ∈ R, T is not.

Instead of the stronger condition of T : S → ΣL ⊗∆(Σ) measurable, we
stick to the measurability condition of Definition 4.9 that is strictly weaker
in order to include more systems while keeping the structure that is needed.

4.4 Non-probabilistic NLMPs

Non-probabilistic NLMPs are a variation of the NLMPs where all transitions
are Dirac measures. This is basically a continuous LTS with a σ-algebra
attached. Let

δ(S)
.
= {δs | s ∈ S}

be the set of all Dirac probability measures over S. We define a restriction
of standard NLMPs, using the relative σ-algebra ∆(Σ)|δ(S).
Definition 4.11 (Non-probabilistic NLMP, I). A non-probabilistic NLMP is
a triple (S,Σ, {Ta | a ∈ L}) where Σ is a σ-algebra on the set of states S,
and for each label a ∈ L,

Ta : S → ∆(Σ)|δ(S)

is a measurable function. If we explicitly state the measurable spaces, Ta :
(S,Σ)→ (∆(Σ)|δ(S), H(∆(Σ)|δ(S))).
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Although ∆(Σ)|δ(S) is a σ-algebra. the set ξ ∩ δ(S) is not necessarily in
∆(Σ) where ξ ∈ ∆(Σ). We show that given some reasonable conditions in the
underlying σ-algebra, δ(S) is measurable; hence ξ ∩ δ(S) is also measurable.

Proposition 4.4. Given a countably generated σ-algebra Σ that separates
points, then the set of Dirac measures is measurable, that is, δ(S) ∈ ∆(Σ).

Proof. Let C be the countable set of generators. Consider the set:

∆=1(S) ∩⋂

Ai∈C
(∆=0(Ai) ∪∆=0(Ac

i )) (4.2)

We show that this set in ∆(Σ) is equal to δ(S). For the right to left inclusion,
let δs ∈ δ(S) be a Dirac measure. Clearly δs(S) = 1 so δs ∈ ∆=1(S). Using
δs(S) = δs(Ai) + δs(A

c

i ) = 1 for all i, it holds that either δs(Ai) = 0 or
δs(A

c

i) = 0, so δs ∈
⋂

Ai∈C
(∆=0(Ai) ∪∆=0(Ac

i )).

Let µ be a measure in the left-hand side. Using the set construction and
the property that Σ separates points, we will show there is x ∈ S such that
µ({x}) = 1.

First notice µ(S) = 1. Moreover, for all Ai ∈ C, µ(Ai) = 0 or µ(Ac

i ) = 0.
For each Ai ∈ C, let Bi = Ai if µ(Ai) = 1 or Bi = Ac

i if µ(A
c

i) = 1. Notice that
µ(Bi) = 1 for all i. Using Bi we construct a decreasing sequence C0 = B0,
Cn+1 = Cn ∩ Bn+1. The limit is the measurable set C =

⋂

iCi. Using
Theorem 3.18, we conclude µ(Ci)ց µ(C).

Next we show that the sequence µ(Ci) is constantly 1. This is valid for
µ(C0) = µ(B0) = 1. Taking it is valid for n, µ(Cn+1) = µ(Cn ∩ Bn+1) =
µ(Cn) + µ(Bn+1)− µ(Cn ∪Bn+1) = 1 + 1− 1 = 1, being the second equality
the inclusion-exclusion principle (Theorem 3.18). Therefore µ(C) = 1.

It remains to show that C is a singleton. Notice first it is nonempty since
µ(C) = 1. Suppose towards a contradiction that there are s, s′ ∈ C, s 6= s′.
Since Σ is separative and generated by {Ai}i then, by Proposition 3.5, there is
some Aj such that s /∈ Aj ∋ s′. Then, either s /∈ C =

⋂

iBi or s
′ /∈ C =

⋂

iBi

depending on whether Bj = Aj or Bj = Ac

j .

The above result can be generalized to arbitrary measurable sets.

Corollary 4.5. Let Σ be countably generated σ-algebra that separates points.
Then set of Dirac measures over Q ∈ Σ is measurable, that is δ(Q) ∈ ∆(Σ).

The previous result also implies that Q ∈ Σ ⇒ δ(Q) ∈ ∆(Σ)|δ(S). We
now prove that the converse holds.

Proposition 4.6. For all ξ ∈ ∆(Σ)|δ(S), there is a Q ∈ Σ such that ξ =
δ(Q).
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Proof. Let the good sets G = {ξ ∈ ∆(Σ)|δ(S) | ∃Q ∈ Σ, ξ = δ(Q)}. The
∆(Σ) generators are included in G since ∆>q(Q) ∩ δ(S) is either δ(Q) or
∅. Suppose ξ = δ(Q), then ξc ∩ δ(S) = δ(Q)c ∩ δ(S) = δ(Qc), so G is
closed under complements. Closure under denumerable union follows since
⋃

i δ(Qi) = δ(
⋃

iQi). Using the good sets principle, the property is valid for
every measurable ξ ∈ ∆(Σ)|δ(S).

Corollary 4.5 and Proposition 4.6 shows there is a one-to-one correspon-
dence between the sets in Σ and in ∆(Σ)|δ(S). We can exploit this idea and
give an alternative definition of non-probabilistic NLMPs. This definition
does not involve the use of probabilities, since the hit σ-algebra can be taken
over the σ-algebra of states Σ. We change the definition of NLMPs so that
the target of the transition functions are measurable sets of states.

Definition 4.12 (Non-probabilistic NLMP, II). A non-probabilistic NLMP
is a triple (S,Σ, {T̃a | a ∈ L}) where Σ is a σ-algebra on the set of states S,
and for each label a ∈ L,

T̃a : S → Σ

is a measurable function. If we state the measurable spaces explicitly, T̃a :
(S,Σ)→ (Σ, H(Σ)).

The next proposition states that non-probabilistic NLMPs responding to
Definition 4.11 are equally expressive to those responding to Definition 4.12.

Proposition 4.7. Let Σ be a countably generated σ-algebra that separates
points. Then

i. if (S,Σ, {Ta | a ∈ L}) is a non-probabilistic NLMP in the sense of
Definition 4.11, and T̃a(s) = {t | µ ∈ Ta(s) ∧ µ({t}) = 1} for all a ∈ L
and s ∈ S, then (S,Σ, {T̃a | a ∈ L}) is a non-probabilistic NLMP in
the sense of Definition 4.12.

ii. if (S,Σ, {T̃a | a ∈ L}) is a non-probabilistic NLMP in the sense of
Definition 4.12, and Ta(s) = δ(T̃a(s)) for all a ∈ L and s ∈ S, then
(S,Σ, {Ta | a ∈ L}) is a non-probabilistic NLMP in the sense of Defi-
nition 4.11.

Proof. First notice that (λx : δx) is an isomorphism from (S,Σ) to
(δ(S),∆(Σ)|δ(S)) (this follows from Corollary 4.5 and Proposition 4.6).

For (i), we have that Ta(s) = δ(T̃a(s)) and T̃a(s) is measurable in Σ
because of Proposition 4.6. Moreover, using the fact that (λx : δx) is an
isomorphism, we can calculate that T̃−1

a (HQ) = T−1
a (Hδ(Q)) for all Q ∈ Σ

and hence T̃a is measurable. Then this new NLMP is well defined.
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For (ii) Ta(s) = δ(T̃a(s)) by definition and hence Ta(s) is measurable by
Corollary 4.5. Moreover, having Proposition 4.6 and the fact that (λx : δx) is
an isomorphism, we have that for all ξ ∈ ∆(Σ)|δ(S), T−1

a (Hξ) = T̃−1
a (HQ) for

some Q ∈ Σ. Thus Ta is measurable and the new NLMP is well defined.

4.5 Concluding Remarks

We generalized LMPs in order to include internal nondeterminism. We main-
tained the idea of transition function measurability to obtain measurable
semantics for a (forthcoming) modal operator. In doing so, we have to define
a custom σ-algebra, namely the hit σ-algebra. The image of the transition
function was modified to allow for measurable nondeterminism. This mea-
surability in the set of target probabilities will be essential to define sched-
ulers. In fact we have been careful in giving the most general definition
that rendered measurable systems. We also showed two transition systems
(Examples 4.5, 4.6) to motivate why the transition function is required to
map into measurable sets and to be measurable. The NLMP of Example 4.7
is new and it shows the modeling power of NLMPs. Throughout the chap-
ter we gave NLMPs all the possible freedom to capture not only probability
measures, but also subprobability, finite and σ-finite measures. For example
Lemma 4.1 was generalized with respect to [17]. Example 4.8 showed weak-
nesses of the initial proposed model for uncountable labels set. We tightened
the definition and showed that the new definition is not stronger than needed
(Proposition 4.3 and Example 4.10). The definition of NLMPs with struc-
ture on the labels is new with respect to our previous publications. We
also showed two alternative but equivalent definitions for non-probabilistic
NLMPs, where the definition of the hit σ-algebra was crucial to equate them.



Chapter 5

Uses and Comparisons

The definition of the transition function in NLMPs is based mainly in two
ideas: using measurable sets in ∆(Σ) to represent underspecification, and
capturing existential quantification by endowing ∆(Σ) with a hit σ-algebra.
In the first part of this chapter we develop the idea that ∆(Σ), and more
precisely their generators ∆>q(Q), form an appropriate basis for specifying
sets of measures with meaningful properties. We already gave some examples
in the previous chapter. In this one we explore and elaborate on the use of the
set of generators as a specification framework. Next, we use NLMPs as the
underlying semantics of two non-trivial modeling formalisms that allow for
the specification of probabilistic and nondeterministic continuous behavior.
Both formalisms were defined a priori and independently of NLMPs, therefore
they constitute a good testing scenario on the way NLMPs was defined. We
also show how NLMPs captures the semantics of pGCL, a probabilistic and
nondeterministic programming language. Finally, we compare NLMPs to
other classes of labeled transition systems including both probabilities and
nondeterminism. We show, whenever possible, how this framework translates
to NLMPs.

5.1 ∆(Σ) for Probabilistic Nondeterminism

The codomain of the transition functions in NLMPs, namely ∆(Σ), is a
powerful tool to model continuous probabilistic nondeterminism. When using
probabilistic automata (PA) and other discrete systems alike, transitions are
usually specified by enumerating all possible target distributions. That is,
we would usually write s

a→ {µ1, . . . , µn}. Underspecification of probabilistic
choices have also been represented through some kind of symbolic machinery.
Thus, a dense set of (sub)probability functions can be defined as the convex

69
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closure of a finite set of probability functions [58], the up-closure of a finite
set of subprobability functions [46], the set of all subprobability functions
matching a super-additive function [22], or the set of solutions of a linear
constraint [19]. In our case, the generators of ∆(Σ) seem to provide a natural
tool to describe underspecified models. Take, for example, the transition Ta
defined on [0, 1] by:

Ta(0) = ∆>1/2([1/4, 3/4]) ∩∆=1([0, 1])

and Ta(x) = ∅ for x 6= 0. This encodes all possible distributions such that the
probability of reaching states in [1/4, 3/4] is greater than 1/2 when starting
at the state 0. Notice that Ta(0) defines a continuous nondeterminism that
includes discrete distributions like µ = {0 7→ 1/5, 1/2 7→ 3/5, 1 7→ 1/5}, or
continuous distributions like the normal distribution N (0.5, 0.1). Besides,
notice that Ta is well defined in the Borel σ-algebra B([0, 1]). Indeed, Ta
maps into measurable sets (either ∆>1/2([1/4, 3/4]) ∩ ∆=1([0, 1]) or ∅), and
it is a measurable function as its preimage is either ∅ or {0}.

Denumerable set operations (unions, intersection and complements) on
generators are the constructors of a very expressive language for probabilistic
nondeterminism. This language is basically the language that constructs the
σ-algebra ∆(Σ). We have already seen examples of the usage of this language
where with a modest nesting level, we can capture interesting sets of measures.
We briefly recall a few of them:

⋃

i∆
<i(S) Finite measures (3.6)

∆=1(S) ∩⋂

Ai∈C
(∆=0(Ai) ∪∆=0(Ac

i )) Delta Dirac measures (4.2)

We also show how the convex combination given by a probabilistic scheduler
on the PA of Figure 5.1 (originally in Figure 1.1), can be compactly encoded
in ∆(Σ).

Tflip(s0) = ∆≥1/4({sh}) ∩∆≥1/4({st}) ∩∆=1({sh, st})
Theads(sh) = {δs1}
Ttails(st) = {δs2}

That is: tossing the coin should outcome heads with probability at least 1/4,
likewise for tails, and it can only produce heads or tails with probability 1. If
instead, we want to encode subprobability distributions in the same example,
we can change the flip transition function to

Tflip(s0) = ∆≥1/4({sh}) ∩∆≥1/4({st}) ∩∆=0(S \ {sh, st}) ∩∆=1(S)
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Figure 5.1: A dense set of probability functions is captured by convex com-
binations on PA with discrete nondeterminism.

Every discrete (sub)probability distribution, typically found in discrete prob-
abilistic systems, can also be encoded in ∆(Σ) as follows:

{si 7→ pi}ni=1 =
⋂n
i=1∆

=pi({si}) with
∑n

i=1 pi = 1

Up-closure of a discrete subprobability measure [46] {si 7→ p′i}ni=1 such that
∑n

i=1 p
′
i ≤ 1 can also be given in terms of ∆(Σ). This continuous set of

discrete probability distribution is encoded as:

{

{si 7→ pi}ni=1 |
∑n

i=1 pi = 1, ∀i ∈ [1..n], p′i ≤ pi
}

= ∆=1({si}ni=1) ∩
⋂n
i=1∆

≥p′i({si})

The geometric distribution over the discrete measurable space (N, 2N),
µ({k}) = (1 − p)kp, is encoded as a denumerable intersection of generators
in ∆(2N):

µ =
⋂

k∆
=(1−p)kp({k})

We have already shown that the set of all Dirac measures, namely δ(S), is
measurable in ∆(Σ) provided Σ is countably generated and separates points
(see Proposition 4.4). More precisely

δ(S) = ∆=1(S) ∩⋂

Ai∈C
(∆=0(Ac

i ) ∪∆=0(Ai))

where C is a countable set generating Σ. By slightly varying the proof of
Proposition 4.4, we can see that the set

Φ=1
.
= {cδs | 0 < c, s ∈ S} (5.1)
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of all one-point measures is also measurable. In fact

Φ=1 = ∆>0(S) ∩⋂

Ai∈C
(∆=0(Ac

i) ∪∆=0(Ai))

Moreover if 0 is the null measure, i.e. 0(S) = 0, then

Φ≤1
.
= 0 ∪ {cδs | 0 < c, s ∈ S} (5.2)

Therefore, this set is also measurable since

Φ≤1 = {0} ∪ Φ=1 =
⋂

Ai∈C
(∆=0(Ac

i ) ∪∆=0(Ai)) (5.3)

In Figure 5.2 it can be seen how Φ≤1 discards any two-point measure in
∆(B(R+)). Let µ2 = {s1 7→ c1, s2 7→ c2}, with s1, s2 ∈ R, s1 < s2 and
0 < c1, c2. There is a generator [q1, q

′
1] (closed interval with rational end-

points) such that s1 ∈ [q1, q
′
1] 6∋ s2. Therefore µ2 /∈ ∆=0([q1, q

′
1]
c) and

µ2 /∈ ∆=0([q1, q
′
1]), concluding µ2 is not in the intersection.

q1 q′1
s1 s2

Figure 5.2: A two-point measure is not in the measurable description of Φ≤1.

The generalization of (5.1) and (5.2) to n points are defined by:

Φ=n
.
=

{
∑n

i=1 ciδsi | {ci}ni=1 ⊆ R+ \ {0}, {si}ni=1 ⊆ S
}

(5.4)

Φ≤n
.
= {∑j

i=1 ciδsi | 0 ≤ j ≤ n, {ci}ji=1 ⊆ R+ \ {0}, {si}ji=1 ⊆ S} (5.5)

with
∑0

i=1 ciδsi = 0.

Equation (5.3) shows that is easier to define Φ≤n in terms of ∆>q(Q) than
Φ=n. We therefore capture Φ≤n in ∆(Σ) first, and express Φ=n in terms of
the former. First we motivate the generalization of (5.3) giving a measurable
set that captures Φ≤2 on the Real measurable space:

⋂

q1<q′1<q2<q
′
2

q1,q′1,q2,q
′
2
∈Q

∆=0(([q1, q
′
1] ∪ [q2, q

′
2])

c) ∪∆=0([q1, q
′
1]) ∪∆=0([q2, q

′
2])

Zero to two-point measures belong to the intersection since one of the three
generators contains an interval with null measure. However measures with
three or more points with positive measure are excluded. For example, the
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q1 q′1 q2 q′2
s1 s2 s3

Figure 5.3: A three-point measure is not in the measurable description of
Φ≤2.

discrete measure µ3 = {s1 7→ c1, s2 7→ c2, s3 7→ c3} with s1 < s2 < s3 and
0 < c1, c2, c3 is not in Φ≤2. Take [q1, q

′
1], [q2, q

′
2] around s1, s2 respectively

as depicted in Figure 5.3. It can be observed that µ3 /∈ ∆=0([q1, q
′
1]), µ3 /∈

∆=0([q2, q
′
2]), as well as µ3 /∈ ∆=0(([q1, q

′
1] ∪ [q2, q′2])c). Therefore the measure

µ3 is not in the intersection.
The next lemma is auxiliary to Proposition 5.2.

Lemma 5.1. Given a measurable space (S,Σ) that is countably generated
by an algebra F and separates points, for all 2 ≤ n, {si}ni=1 ⊆ S, there is a
partition {Ai}ni=1 ⊆ F separating those n points, i.e. ∀i, 1 ≤ i ≤ n, si ∈ Ai.

Proof. For the base case n = 2, we use Proposition 3.5 and without loss of
generality there is B1 ∈ F such that s1 ∈ B1 6∋ s2. The partition A1 = B1,
A2 = Bc

1 separates {s1, s2} and {A1, A2} ⊆ F .
Suppose {si}ni=1 are separated by {Ai}ni=1 ⊆ F , and we add sn+1. Again

without loss of generality there are {Bi}ni=1 ⊆ F such that for all 1 ≤ i ≤ n,
sn+1 ∈ Bi 6∋ si. The new partition is A′

i = Ai ∩ Bc

i for 1 ≤ i ≤ n, and
A′
n+1 =

⋃n
i=1Bi, is such that separates {si}n+1

i=1 and {A′
i}n+1
i=1 ⊆ F .

Measurability of Φ≤n is given in the next result.

Proposition 5.2. Given a measurable space (S,Σ) that is countably gener-
ated by C and separates points, then the set of all discrete measures up to n
points is measurable, Φ≤n ∈ ∆(Σ).

Proof. Let F be the countable algebra generated by C. We are going to prove
that

Φ≤n =
⋂

{Ai}ni=0
⊆F

Part({Ai}
n
i=0

)

(
⋃n
i=0∆

=0(Ai)
)

(5.6)

where Part({Ai}ni=1) is a predicate that is true iff {Ai}ni=1 is a partition of
S. The generation of the algebra is needed to ensure the existence of disjoint
sets covering S1.

1For example C = {(q,∞) | q ∈ Q} is a denumerable set generating B(R) but every
pair of sets in the family overlap.
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For the left to right inclusion, let µ ∈ Φ≤n. There are {si}ji=1 ⊆ S,
with 0 ≤ j ≤ n, having positive probability and µ(S \ {si}ji=1) = 0. Given
an arbitrary partition {Ai}ni=0 ⊆ F , it can be seen that 0 < |{Ak | Ak ∩
{si}ji=1 = ∅, 0 ≤ k ≤ n}|, since the lower possible value is 1. This lower
bound is attained if j = n and ∀i, 1 ≤ i ≤ n, si ∈ Af(i), with an injection f :
[1..n] → [0..n]. Therefore µ ∈ ∆=0(Ai) for some i, hence µ ∈ ⋃n

i=0∆
=0(Ai),

concluding that µ is in the denumerable intersection.
For the right to left inclusion, let µ belong to the intersection and

0 < µ(S), since the null measure case is again handled trivially. Since F is
countable, all the n+1 partitions can be enumerated by superscript j, {Aji}ni=0.
Let Bj =

⊎{Aji | 0 < µ(Aji ), 0 ≤ i ≤ n} be the sets of the j-th partition with
positive measure. Clearly Bc

j =
⊎{Aji | µ(Aji ) = 0, 0 ≤ i ≤ n}. It can be

seen that for all j, Bj 6= ∅ and Bc

j 6= ∅. The first follows by σ-additivity, since
0 < µ(S) =

∑n
i=0 µ(A

j
i ) implies 0 < µ(Aji ) for some 0 ≤ i ≤ n. The second

follows since µ ∈ ⋃n
i=0∆

=0(Aji ), so µ(A
j
i ) = 0 for some 0 ≤ i ≤ n. We define

the sequence C0 = B0, Cn+1 = Cn ∩ Bn+1. We prove inductively µ(Cc

i ) = 0
for all i. The base case is µ(Cc

0) = µ(Bc

0) = 0 by definition of Bi. For the
inductive step µ(Cc

n+1) = µ(Cc

n ∪ Bc

n+1) ≤ µ(Cc

n) + µ(Bc

n+1) = 0. Therefore
∀i, µ(Cc

i ) = 0, and given that 0 < µ(S), it holds ∀i, 0 < µ(Ci). Given that
Cc

i ր Cc =
⋃

j B
c

j , and µ(Cc

i ) = 0 for all i, it holds that µ(Cc) = 0, and
0 < µ(C). The rest of the proof amounts to show that C has at most n
elements. Suppose that C has at least n+ 1 elements. Then by Lemma 5.1,
there is a partition j, {Aji}ni=0 ⊆ F separating at least n+1 points. However
it was shown that for all i, neither Bi nor B

c

i are empty, therefore Bj includes
n elements at most, concluding that C cannot have n+ 1 elements.

The measurability of Φ=n is inherited from Φ≤n. We can write Φ=n =
Φ≤n ∩ (Φ≤n−1)

c.
Observe that the set where PA probabilities lives, that is the set of all

finite discrete probabilities, Probs(X) in Segala’s terms [57–59], is also ∆(Σ)-
measurable, Probs(X) = ∆=1(S) ∩⋃

iΦ≤i.
Previous results and definitions can be useful for the Hybrid Systems com-

munity, where most of the systems live in the space (Rk,B(Rk)). This space is
countably generated and separates points, therefore it satisfies the hypothesis
of Proposition 5.2, and the sets Φ≤n, Φ=n are measurable in ∆(B(Rk)).

5.2 Semantic Models Using NLMPs

In this section we give nontrivial examples on how NLMPs can be used to pro-
vide low-level semantics to probabilistic systems involving nondeterminism
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in continuous state spaces. We give semantics to stochastic automata [15],
stochastic hybrid automata [28] and the pGCL programming language [46].
Before we present some general results on measurable functions that ease the
proof of the measurability of the transition functions for LMPs and NLMPs.

A deterministic measurable transition function S → S induces a measur-
able function S → ∆(Σ).

Proposition 5.3. Given σ-algebras Σ and ∆(Σ) with measurable singletons,
a measurable function T̂ : S → S induces a measurable function T : S →
∆(Σ), defined by T (s) = {δT̂ (s)}.

Proof. Let T̃ (s) = {T̂ (s)} be a non-probabilistic transition function similar
to Definition 4.12. It is measurable since T̃−1(HA) = {s | T̂ (s) ∈ A} =
T̂−1(A) ∈ Σ. By Proposition 4.7, the result follows.

The convex combination of two measurable functions S → ∆(S) is again
a measurable function S → ∆(S).

Proposition 5.4. Let τ 1, τ 2 : S → ∆=1(S) be two measurable functions with
image in the set of probability measures. The function τ = pτ 1 + (1 − p)τ 2
with p ∈ [0, 1] is also measurable, and τ(s) is a probability measure.

Proof. It is easy to see that τ(s) is a probability measure, therefore in ∆(S)∩
∆=1(S). Being τ(s)(Q) a linear combination of measurable functions, by
Theorem 3.26 τ(·, Q) is measurable, therefore by Lemma 3.41 τ : S → ∆(S)
is also measurable.

Observe that previous result is also valid for countable convex combina-
tions. A countable set of measurable functions S → ∆(S) forms a measurable
function S → ∆(Σ), provided that singletons are measurable in ∆(Σ).

Proposition 5.5. Let {τ i}i be a denumerable set of measurable functions
S → ∆(S). If ∆(Σ) has measurable singletons, then the function T (s) =
{τ i(s)}i from S to ∆(Σ) is measurable.

Proof. Since ∆(Σ) has measurable singletons, T (s) =
⋃

i{τ i(s)} ∈ ∆(Σ).
Measurability of T is inherited from {τ i}i since T−1(Hξ) =

⋃

i(τ
i)−1(ξ).

Notice that the converse is not valid. Take the measurable space
([0, 1],B([0, 1])) and the measurable function T (s) = {τ 1(s), τ 2(s)} from S
to ∆(Σ). We define

τ 1(s) = if s ∈ V then δ1 else 0

τ 2(s) = if s /∈ V then δ1 else 0
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where V is a Vitali set in [0, 1]. None of the functions are measurable since
(τ 1)−1(∆>0({1})) = V and (τ 1)−1(∆>0({1})) = V c, however for all ξ ∈ ∆(Σ),
T−1(Hξ) ∈ {∅, S}, therefore it is measurable.

Finally, a conditional choice of two measurable functions S → ∆(Σ) with
a measurable guard, is also measurable.

Proposition 5.6. Let T 1, T 2 be two measurable functions S → ∆(Σ) and
A ∈ Σ be a measurable set denoting a condition, then T (s) = if s ∈
A then T 1(s) else T 2(s) is a measurable function S → ∆(Σ).

Proof. The target of T (s) is in ∆(Σ) since their choices T 1(s) and T 2(s)
belong to ∆(Σ). Measurability of T is direct from T−1(Hξ) = ((T 1)−1(Hξ)∩
A) ∪ ((T 2)−1(Hξ) ∩ Ac).

The previous results provide some simple tools to compose LMPs and
NLMPs.

We define deterministic LTS with a σ-algebra attached as (S,Σ, {T̂a | a ∈
L}), where T̂a : S → S is measurable. Proposition 5.3 embeds a measur-
able deterministic LTS into the NLMP (S,Σ, {Ta | a ∈ L}), where Ta(s) =
{δT̂a(s)}. Proposition 5.4 says that given two LMPs (S,Σ, {τ 1a | a ∈ L}),
(S,Σ, {τ 2a | a ∈ L}), its convex combination (S,Σ, {pτ 1a + (1− p)τ 2a | a ∈ L})
is also an LMP. This can be extended to a denumerable set of LMPs and
denumerable convex combinations. Proposition 5.5 is a partial extension of
the LMP to NLMP embedding (Proposition 4.2). Given a denumerable set
of LMPs {(S,Σ, {τ ia | a ∈ L})}i, we can define the denumerably branch-
ing NLMP (S,Σ, {Ta | a ∈ L}), where Ta(s) = {τ ia(s)}i. Finally Proposi-
tion 5.6 says that the conditional choice of NLMPs (S,Σ, {T 1

a | a ∈ L}),
(S,Σ, {T 2

a | a ∈ L}), over a measurable condition or guard A ∈ Σ, i.e. the
triple (S,Σ, {Ta | a ∈ L}), where T (s) = if s ∈ A then T 1(s) else T 2(s), is
an NLMP.

Stochastic Automata Stochastic Automata [8,15,16] provide a symbolic
framework to model soft real-timed systems. It can be seen as a nondeter-
ministic extension of generalized semi-Markov processes that is amenable to
composition. Stochastic Automata is usually interpreted in terms of contin-
uous probabilistic transition systems. Here we show that such interpretation
is indeed an NLMP, improving on [15] where measurability issues were not
taken into account. The definition below is a simplification of that appearing
in [8].
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Definition 5.1. A stochastic automaton (SA) is a tuple (St ,Ck ,Dst ,Act ,→, s0)
where:

• St is a finite set of control states with s0 ∈ St being the initial control
state,

• Ck is the finite set of clock names,

• Dst : Ck → ∆(R+) assigns a probability measure to each clock,

• Act is a finite set of actions, Act ∩ R+ = ∅, and
• → ⊆ St × 2Ck ×Act ×∆(2Ck × St) is the finite control transition.

We write s
C,a−→ ρ if (s, C, a, ρ) ∈ →. A clock has two values associated:

its current time (which increases synchronously with the current time of all
other clocks) and a termination value (which is set randomly according to
Dst(c)). We say that a clock has terminated if its current value exceeds the
termination value, otherwise it is active. The meaning of a control transition

s
C,a−→ ρ is the following. To trigger the transition, all clocks in the enabling

set C must terminate, that is, the transition cannot be executed as long as
a clock in C is active. Transitions are labeled with actions that can interact
with the environment. We say that a clock c has started, when its current
value is set to 0 and its termination value is set randomly according to Dst(c).
When a transition is executed, a probabilistic choice will take place according
to ρ, where ρ(C ′, s′) is the probability that all clocks in C ′ are started and
the system reaches the control state s′. Time is allowed to elapse as long as
no control transition becomes enabled, i.e., as long as all control transitions
still have some active clock.

Formally, an actual state records not only the control state s ∈ St but
also the current value and the termination value of each clock through the
valuations v ∈ (R+)Ck and e ∈ (R+)Ck , respectively. Hence, the set of states
is S = St×(R+)Ck×(R+)Ck , and it is equipped with the standard product σ-
algebra Σ = 2St ⊗ (B(R+))Ck ⊗ (B(R+))Ck . The labels of an NLMP represent
both the occurrence of actions in Act and the passage of time through positive
reals. Then L = Act ⊎ R+.

In the following we give some definitions to ease notation. Given C ⊆ Ck ,
by e(C) ≤ v(C) we denote the point-wise order relation ∀c ∈ C, e(c) ≤ v(c).
For valuation v and t ∈ R we define valuation v + t by (v + t)(c) = v(c) + t.

Before defining the nondeterministic transitions Ta, we construct proba-
bilistic transitions following [8], which are given in the left of Table 5.1. First
we define µv,eC′,s′ a probability measure in (S,Σ) that randomly activate clocks
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s
C,a−→ ρ e(C) ≤ v(C)

(s, v, e)
a−→ νv,eρ

0 < t ≤ min{maxc∈C(e(c) − v(c)) | ∃a, ρ : s
C,a−→ ρ}

(s, v, e)
t−→ δ(s,v+t,e)

Table 5.1: Probabilistic and timed transition rules for Stochastic Automata.

in C ′ while moving to s′ and leaving all other valuations of v, e unchanged:

µv,eC′,s′(A× I × I ′)
.
= δs′(A) ·

∏

c∈C′ δ0(I(c)) ·
∏

c∈Ck−C′ δv(c)(I(c))·
· ∏c∈C′ Dst(c)(I ′(c)) ·∏c∈Ck−C′ δe(c)(I ′(c))

where A ⊆ St and I and I ′ are measurable rectangles in (B(R+))Ck , i.e.
∀c ∈ Ck : I(c), I ′(c) ∈ B(R+). Using Theorem 3.20, the probability measure
µv,eC′,s′ on Σ is uniquely defined by its values on the rectangles.

The target distribution is then defined by a finite convex combination,
according to distribution ρ, of continuous probability measures µv,eC′,s′ ∈ ∆(S).

νv,eρ
.
=

∑

s′∈St,C′⊆Ck ρ(C
′, s′)µv,eC′,s′

The timed transition is defined in the right-hand side of Table 5.1. From
rules in Table 5.1 we obtain that:

Ta(s, v, e) = {νv,eρ | s
C,a−→ ρ ∧ e(C) ≤ v(C)} for a ∈ Act

Tt(s, v, e) = {δ(s,v+t,e)} if 0 < t ≤ min{max
c∈C

(e(c) − v(c)) | ∃a, ρ : s
C,a−→ ρ}

Notice that Ta, a ∈ Act , defines a finite nondeterministic choice of continuous
probabilities; while Tt, where t ∈ R+, defines a deterministic change in the
state. To claim that (S,Σ, {Ta | a ∈ L}) is indeed an NLMP we have to show
that for all a ∈ Act and t ∈ R+, Ta(s, v, e) and Tt(s, v, e) are in ∆(Σ), and
Ta and Tt are measurable.

Since S = St×(R+)Ck×(R+)Ck is countably generated, by Lemma 4.1 sin-
gletons in ∆(S) are measurable. Given that Tt(s, v, e), t ∈ R+ and Ta(s, v, e),
a ∈ Act have finite image, they are measurable. This concludes the proof of
the first part.

It remains to prove that Tt and Ta are measurable. We first show the case
in which a ∈ Act. For ξ ∈ ∆(Σ) we write:

T−1
a (Hξ) = {(s, v, e) | {νv,eρ | s

C,a−→ ρ ∧ e(C) ≤ v(C)} ∩ ξ 6= ∅}
=

⋃

s
C,a
−→ρ

(

(νv,eρ )−1(ξ) ∩ {(s, v, e) | e(C) ≤ v(C)}
)
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Notice that the union is bounded by control transition, therefore it is finite.
The set {(s, v, e) | e(C) ≤ v(C)} = S × {(v, e) | e(C) ≤ v(C)}, where
the right factor is a closed set in (R+)Ck × (R+)Ck, therefore the product is
measurable. The only proof obligation is that νv,eρ is measurable. Being νv,eρ
is a finite convex sum of µv,eC′,s′, Proposition 5.4 and the next result completes
the proof.

Proposition 5.7. Let fC′,s′ : S → ∆(S) be the map defined by fC′,s′(s, v, e) =
µv,eC′,s′. Then fC′,s′ is measurable.

Proof. First notice that the set of rectangles generating S form a π-system.
By Lemma 3.39, it suffices to prove that f−1

C′,s′(∆
>q(Q)) is measurable for

every rectangle Q and q ∈ Q ∩ [0, 1]. Since Q = A × I × I ′ is a rectangle,
then, for arbitrary v and e,

q < µv,eC′,s′(Q) iff s′ ∈ A

∧ (∀c ∈ C ′ : 0 ∈ I(c)) ∧ (∀c ∈ Ck − C ′ : v(c) ∈ I(c))
∧ (q <

∏

c∈C′ Dst(c)(I ′(c))) ∧ (∀c ∈ Ck − C ′ : e(c) ∈ I ′(c))

As a consequence, if s′ ∈ A, (∀c ∈ C ′ : 0 ∈ I(c)), and q <∏

c∈C′ Dst(c)(I ′(c)),
f−1
C′,s′(∆

>q(Q)) = {(s, v, e) | s ∈ St∧∀c ∈ Ck−C ′ : v(c) ∈ I(c)∧e(c) ∈ I ′(c)},
and f−1

C′,s′(∆
>q(Q)) = ∅, otherwise. So f−1

C′,s′(∆
>q(Q)) is a rectangle and hence

measurable.

It remains to be shown that Tt is measurable for all t ∈ R+. We fix
the time label t, and define the measurable set Bt = {(s, v, e) | 0 < t ≤
min{maxc∈C(e(c) − v(c)) | ∃a, ρ : s

C,a−→ ρ}}. We develop the inverse image
of a generator:

T−1
t (Hξ) = {(s, v, e) | {δ(s,v+t,e)} ∩ ξ 6= ∅} ∩ Bt

Let T̂t(s, v, e) = (s, v + t, e) be a function S → S. It is measurable since
(T̂t)

−1(A× I × I ′) = A× (I − t)× I ′ and this set is measurable (see Exam-
ple 3.15). By Proposition 5.3 the result follows.

In Chapter 4 we have already discussed the need for structure on the
labels. In particular Example 4.10 shows that a strong correlation between
continuous labels and states could give rise to measurability problems. In
the following, we show that the same definition of Table 5.1 yields an NLMP
with structure on the labels with ΣL = 2Act ⊕B(R+) being the σ-algebra on
the set Act ⊕ R+ of labels. (Notice that ΣL contains all singletons.) Now,
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function T is defined:

T (s, v, e)={(a, νv,eρ ) | a ∈ Act, s
C,a−→ ρ, e(C) ≤ v(C)} (5.7)

⊎ {(t, δ(s,v+t,e)) | t ∈ R+, 0<t≤min{max
c∈C

(e(c)−v(c)) | ∃a, ρ : s
C,a−→ ρ}}

Notice that T (s, v, e) =
(
⋃

a∈Act{a} × Ta(s, v, e)
)

⊎
(
⋃

t∈R+{t} × Tt(s, v, e)
)

.
Hence T (·)|l = Tl for all l ∈ Act⊕R+. As a consequence T (·)|l is measurable.
It remains to show that T (s, v, e) ∈ ΣL⊗∆(Σ). We separately show that the
two sets in the union of (5.7) are measurable. The first set is finite and hence
measurable since singletons sets are measurable. For the second set, we have
that ∆(Σ), that is countably generated and separates points, is isomorphic
to some Borel σ-algebra [36, Proposition 12.1]. Moreover, fixing s, v and e,
the mapping t 7→ δ(s,v+t,e) is measurable. Then, by [36, Proposition 12.4],
the graph defined by such measurable mapping is measurable in ΣL ⊗∆(Σ).
Therefore, the second set of the union in (5.7) is also measurable.

The semantics of SA discussed above is what is called residual lifetime
semantics in [8]. Although calculations were not straightforward, it should
not be surprising that this semantics is an NLMP since the ingredients (a
mix of finite sets and standard Borel spaces on the reals) have fine properties
in measure theory. For this same reason we expect that the so called spent
lifetime semantics [8] also can be modeled as NLMPs.

Stochastic Hybrid Automata This type of models deals with the in-
terplay of continuous time and randomness. In the following, we describe
stochastic hybrid automata [28], in which we allow continuous probability
distributions and uncountable non-determinism in discrete assignments, yet
not over continuous distributions. We show that the underlying semantics is
an NLMP.

Let m denote a variable ranging over a finite set of modes M =
{m1, . . . , mn}, and let x = (x1, . . . , xk) be a vector of variables ranging over
real numbers R, representing the position of some object. The derivative
of x representing the speed is denoted with ẋ = (ẋ1, . . . , ẋk), and it ranges
over Rk. With m′ and x

′ = (x′1, . . . , x
′
k) we denote primed versions of m and

x respectively. This is subsequently used to specify values resulting from
discrete jumps of a hybrid automaton.

Later on, S = M× Rk will denote the state-space of the semantics of the
hybrid automaton. We let Σ = 2M ⊗ B(Rk) denote the product σ-algebra on
the state-space. A state-space constraint is a set s ⊆ M×Rk over modes and
variables. A flow constraint is a set f ⊆ M × Rk × Rk over the variables m,
x, ẋ, that is, over mode, position and speed.
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A probabilistic guarded command c is defined as

condition → p1 : update1 + . . .+ pn : updaten

where 1 ≤ n denotes the cardinality of the probabilistic branching of c with
0 < pi for i ∈ [1..n] and

∑n
i=1 pi = 1. We demand that condition ∈ Σ is a

measurable constraint over (m,x), and that update i : (S,Σ)→ (Σ, H(Σ)) is
a non-probabilistic measurable function (like in Definition 4.12) denoting a
reset mapping for m and x for all i ∈ [1..n]. Observe that for i 6= j, it could
be the case that updatei(m,x)∩ updatej(m,x) 6= ∅. Variables not appearing
primed in an update, remain unchanged.

Example 5.2.

m = m1 → 0.2 : m′ = m2 ∧ x′1 ≤ x2 − 0.84

+ 0.2 : m′ = m2 ∧ x2 − 0.85 ≤ x′1 ≤ x2 − 0.25

+ 0.2 : m′ = m2 ∧ x2 − 0.26 ≤ x′1 ≤ x2 + 0.26

+ 0.2 : m′ = m2 ∧ x2 + 0.25 ≤ x′1 ≤ x2 + 0.85

+ 0.2 : m′ = m2 ∧ x′1 ≥ x2 + 0.84

is a probabilistic guarded command. It can be executed when the system is
in mode m1. With probability 1, we move to mode m2. With probability 0.2,
a particular interval is chosen, and the variable x1 is non-deterministically
set to some value within this interval. The endpoints of the intervals depend
on the value of x2. Other variables remain unchanged.

While in a previous work [68] the model was restricted to commands where
each update i maps a state to a unique successor, we here allow updates to
be predicates over successor states. This leads to a possibly uncountable
non-determinism, as in Example 5.2.

To model continuous measures, we introduce an additional form of
guarded commands. Let τ : (S,Σ)→ (∆(S),∆(Σ)) be a measurable function
mapping states to probability measures, i.e. a Markov process. A stochastic
guarded command is of the form:

condition → τ

Example 5.3. We specify τ(m1, x1, x2, . . . , xn) as

τ(m1, x1, x2, . . . , xn) (M ×
∏n

i=1[ai, bi])

= δm2
(M) ·





1√
2π

b1
∫

a1

e−
1

2
(x−x2)

2

dx



 ·∏n
i=2 δxi([ai, bi])
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and there is exactly one measure on the whole σ-algebra coinciding with this
function on the rectangles (Theorem 3.20). Then m = m1 → τ is a stochastic
guarded command, which we denote by c. It can execute when the system
is in state m1 and, once executed, it changes to state m2. Variable x1 is set
according to the normal distribution N (x2, 1) with expected value x2 and
standard deviation 1. The other variables do not change. In practice, the
normal distribution models perturbations arising from inexact measurements,
deviations of production parameters in a production line, etc.

Now, we can define stochastic hybrid automata as follows.

Definition 5.4 (Stochastic Hybrid Automata). A stochastic hybrid automa-
ton is a tuple H = (M,x, Init,Flow , C,UnSafe) where

• M is a finite set of modes and x is a set of k variables,

• Init ⊆ M× Rk is a constraint on the initial states,

• UnSafe ⊆ M× Rk is a constrain describing the unsafe states,

• Flow ⊆ M× Rk × Rk is a flow constraint and

• C is a finite set of guarded commands. We denote the subset of proba-
bilistic guarded commands as Cf and the subset of stochastic guarded
commands as Cc.

We require Flow to be measurable in the following sense: for each m ∈ M,
the pre-post-relation or transfer relation is:

Tm =















(x,y) ∈ Rk × Rk

∣

∣

∣

∣

∣

∣

∣

∣

∃e ≥ 0, f : [0, e]→ Rk differentiable :




f(0) = x

∧ f(e) = y

∧∀t ∈ [0, e] : (m, f(t), ḟ(t)) ∈ Flow



















given that the continuous flow Tm is a measurable set in B(Rk × Rk).
Moreover, we require postm(x)

.
= Tm|x

to be measurable, i.e. postm :

(Rk,B(Rk))→ (B(Rk), H(B(Rk))). Furthermore, we require Init and UnSafe
to be measurable sets in 2M ⊗ B(Rk).

Notice that the definition explicitly requires that the transfer relation
T given by the nondeterministic differential equations implied by Flow is
measurable forward and backwards.

The semantics of a stochastic hybrid automaton H = (M,x, Init,Flow , C,
UnSafe) is the tuple JHK

.
= (S,Σ, Init , Steps,UnSafe) where S

.
= M × Rk,

Σ
.
= 2M ⊗ B(Rk) and we define Steps as the union of two transition relations
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StepsT , StepsJ : S → ∆(Σ). Since SHA do not consider labels, neither does
our transition relation. The semantics of timed steps is defined as:

StepsT ((m,x))
.
= {δ(m,x′) | x′ ∈ postm(x)}

Now we define the semantics of guarded commands. To start with, we
define the semantics of a probabilistic guarded command C = cond → p1 :
u1 + . . .+ pn : un by: Steps

c
(s)

.
= ∅ if s 6∈ cond , and otherwise:

Steps
c
(s)

.
= {∑n

i=1 piδsi | (s1, . . . , sn)∈
∏n

i=1 ui(s)}

Inside the previous formula, we have weighted sums of Dirac probability mea-
sures. A step induced by a probabilistic guarded command has as successors
all discrete measures, such that with probability pi chooses some state of the
ith update. In case a state is the successor of two different updates, their
probabilities are added up.

Next, for a stochastic guarded command c = cond → τ we define
Steps

c
(s)

.
= ∅ if s 6∈ cond , and otherwise:

Steps
c
(s)

.
= {τ(s)}

Then for s ∈ S, we let:

StepsJ (s)
.
=

⋃

c∈C Stepsc(s)

and

Steps(s)
.
=

{

StepsT (s) ∪ StepsJ (s) if StepsT (s) ∪ StepsJ (s) 6= ∅
{δs} otherwise

The possible steps in the semantics are thus all possible transitions induced by
jumps or timed transitions. Self-loops introduced using Dirac distributions
are necessary to guarantee that each state has at least one successor measure.

It remains to show that the semantics is well-defined. That is, we have to
show that for all s ∈ S, Steps(s) is a measurable set in ∆(Σ) and that Steps
is a measurable function.

Lemma 5.8. Let JHK = (S,Σ, Init , Steps ,UnSafe) be a tuple that is the
semantics of a stochastic hybrid automaton H. Then, Steps : (S,Σ) →
(∆(Σ), H(∆(Σ))) is a measurable function mapping states to elements of
∆(Σ), that is, JHK is an NLMP augmented with initial states Init and unsafe
states UnSafe. In case H is purely probabilistic, JHK is a PA.
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Proof. We handle the two parts of Steps separately. Namely StepsT given by
flows, and StepsJ defined by probabilistic guarded commands and stochastic
guarded commands, are proven to be measurable functions S → ∆(Σ). More-
over, we only consider semantics with true guards, since conditions different
than true are handled by Proposition 5.6.

The proof stands on two results. First that f : S → ∆(S) is measurable
iff its uncurried version f : S×Σ→ [0, 1] is measurable in its first coordinate
(Lemma 3.41). Second, that δ(s) = δs is a measurable function S → ∆(S).

For the case StepsT we write StepsT (s) = {δs | s ∈ post(s)} = δ(post(s)).
Since the underlying measurable space (M×Rk, 2M⊗B(Rk)) is countably gen-
erated and separates points, and for all s ∈ S, post(s) ∈ Σ, by Corollary 4.5,
δ(post(s)) ∈ ∆(Σ).

To show that StepsT is measurable notice that

Steps−1
T (Hξ) = {s | StepsT (s) ∩ ξ 6= ∅}

= {s | δ(post(s)) ∩ ξ 6= ∅}
= post−1(Hδ−1(ξ))

Since post and δ are measurable, so is StepsT .

For StepsJ there are two components: probabilistic guarded commands
and stochastic guarded commands. We analyze each case separately. Let
c = true → p1 : u1 + . . . + pn : un a probabilistic guarded command with n
alternatives. We have to show that Steps

c
(s) = {∑n

i=1 piδsi | (s1, . . . , sn) ∈
∏n

i=1 ui(s)} is a measurable set for each s and that the function Steps
c
(s)

is measurable (S,Σ) → (∆(S), H(∆(Σ))). It can be shown that for disjoint
ui, the semantics is the set of point measures in Φ≤n (5.5), such that any of
those discrete measures when applied to event ui(s) is equal to pi. We write:

Steps
c
(s) = Φ≤n ∩

⋂n
i=1∆

=pi(ui(s))

Therefore Steps
c
(s) is measurable in ∆(Σ) by Proposition 5.2. Adding the

mode component of the state space S does not raise any measurability issue,
since it is a finite set having a finite number of subsets as measurable events.

If the sets ui(s) are not disjoint, the expression is still measurable. We
show this by taking into account the intersections where two different update
functions can choose the point measure, where the probabilities have to be
added. There are as many conditions of intersection combinations as parti-
tions of the set [1..n]. We denote the family of partitions of a discrete set A
as SetPart(B)

.
= {B | Part(A)}. For example SetPart([1..3]) is:

{

{

{1, 2, 3}
}

,
{

{1, 2}, {3}
}

,
{

{1}, {2, 3}
}

,
{

{1, 3}, {2}
}

,
{

{1}, {2}, {3}
}

}
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Here we use the measurable set Φ=n of n-points measures to express the
semantics of overlapping updates

Steps
c
(s) =

⋃

P∈SetPart([1..n])

Φ=|P | ∩
|P |
⋂

i=1

∆
=
∑

j∈Pi
pj(

⋂

j∈Pi
uj(s))

Let f(s1, . . . , sn) = p1δs1 + · · ·+ pnδsn be a function in Sn → ∆(S) gen-
erating discrete measures, and let u(s) = (u1(s), . . . , un(s)) be a function in
S → Sn building the cross product of the nondeterministic update functions.
Taking the set-wise extension of f we have that Steps

c
(s) = f(u(s)), for

c = true → p1 : u1 + . . .+ pn : un.
To show that Steps

c
is measurable notice that:

Steps−1
c
(Hξ)

= {s | f(u(s)) ∩ ξ 6= ∅}
= {s | ∃(s1, . . . , sn) ∈ u(s), f(s1, . . . , sn) ∈ ξ}
= u−1(Hf−1(ξ))

The uncurried version of f , namely f(s1, . . . , sn, Q), is a convex combination
of measurable functions (λs : δs), hence by Proposition 5.4, f : S → ∆(S)
is measurable. The function u is measurable since its components are mea-
surable (Proposition 3.25). Therefore we conclude that Steps−1

c
(Hξ) is a

measurable set.

For the stochastic guarded command component of StepsJ , notice that
StepsJ (s) = {τ(s)}. By Proposition 4.2 StepsJ (s) is measurable since τ(s)
is measurable. Notice that, by Lemma 4.1, singletons {µ} are measurable in
∆(Σ) since the reals are generated by a denumerable π-system.

Probabilistic Guarded Command Language Although Probabilistic
Guarded Command Language (pGCL) [46] semantics is not given in terms
of NLMPs, their semantics show interesting concepts. Therefore it is worth
checking if the semantics of pGCL can be captured by an NLMP. pGCL
is a probabilistic extension of the Dijkstra’s Guarded Command Language
(GCL) [24]. It features, besides nondeterministic choice P1 ⊓ P2, a discrete
probabilistic choice in the form of P1 ⊕p P2, where program P1 is executed
with probability p and P2 with probability 1− p. The semantics of pGCL is
given as a state transformer function S → 2∆(S). Such a state transformer
represents a nondeterministic choice of probabilistic behaviors, on a discrete
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state space S. However not every set of distributions is appropriate. [46]
considers only non-empty, up-closed, convex-closed, and Cauchy-closed sets.
We revisit up-closed and convex-closed properties since they are similar to
other probabilistic and nondeterministic models.

The semantics of pGCL also considers subprobabilities. Given a subprob-
ability measure µ, the “missing” part of the probability, i.e. 1 − µ(S), is in-
terpreted as the probability that the program aborts. That is, if the measure
given by a probabilistic and nondeterministic program over the whole state
space is less than one, the remaining part of the behavior is unpredictable.
This is consistent with the non-probabilistic case, where the semantics of the
aborting program is every possible final state. In the probabilistic semantics,
every probability measure that is event-wise greater than the sub-probability
measure is possible, so the semantics of a pGCL program should be up-closed.

Definition 5.5. A set of distributions Ω ⊆ ∆(S) is up-closed if µ ∈ Ω,
and µ ≤ µ′, then µ′ ∈ Ω, where ≤ is lifted to measures by the point-wise
ordering, that is, µ ≤ µ′ iff ∀A ∈ Σ, µ(A) ≤ µ′(A). In other words, a set of
subprobability distributions is up-closed if it is ≤ -closed (2.3).

Discrete nondeterminism in pGCL is semantically treated as all the con-
vex combinations of nondeterministic choices, so that probabilistic choice is
a refinement of nondeterministic choice. For example if the semantic inter-
pretation of a program is given by two probability distributions {µ1, µ2}, the
semantics should also include every convex combination pµ1 + (1− p)µ2.

Definition 5.6. A set of distributions Ω ⊆ ∆(S) is convex-closed if for every
µ1, µ2 ∈ Ω, the measure pµ1 + (1− p)µ2 is also in Ω, for every p ∈ [0, 1].

The semantics TP : S → 2∆(S) of relevant program constructors P of
pGCL is given in Table 5.2.

TP1;P2
(s)

.
= {

∫

TP2
(s′)dµ(s′) | µ ∈ TP1

(s)}
TP1⊕pP2

(s)
.
= {pµ1 + (1− p)µ2 | µ1 ∈ TP1

(s), µ2 ∈ TP2
(s)}

TP1⊓P2
(s)

.
=

⋃

p∈[0,1] TP1⊕pP2
(s)

Table 5.2: Semantics of sequential, probabilistic choice and nondeterministic
choice constructors of pGCL [46].

We are going to show that the semantic function TP is in S → ∆(Σ).
Instead of proving it by induction on the program structure, we will use that
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the semantics of pGCL is Cauchy-closed together with the following result.
It states that there is a bijection between certain measurable sets in [0, 1]n

and the measurable sets of discrete subprobability measures over state space
of n elements.

Lemma 5.9. Let S = {si}ni=1 be a finite state space, and let P =
{(x1, . . . , xn) |

∑n
i=1 xi ≤ 1} ∈ B([0, 1]n) be a measurable subspace of

[0, 1]n. We define the bijection f : P → ∆(S) ∩ ∆≤1(S), that sends
a point of a subspace of [0, 1]n to a discrete subprobability distribution,
i.e. f((x1, . . . , xn)) = {si 7→ xi}ni=1. If f is lifted to sets, then for all
B ∈ B([0, 1]n)|P , f(B) ∈ ∆(2S)|∆≤1(S). Moreover, if ξ ∈ ∆(2S)|∆≤1(S),
then f−1(ξ) ∈ B([0, 1]n)|P .

Proof. First observe that f(P ) = ∆≤1(S) and f−1(∆≤1(S)) = P . The gen-
erators in B([0, 1]n)|P are (

∏n
i=1Ai) ∩ P with Aj = (qj ,∞), 1 ≤ j ≤ n, and

∀i, 1 ≤ i ≤ n, i 6= j, Ai = [0, 1], that corresponds exactly to the generators
∆>qj({sj}) ∩ ∆≤1(S). If f is lifted to sets, then it preserves set operations.
As f−1 also preserve set operations by definition, we conclude that the lifting
of f to sets establishes a bijection between measurable sets in B([0, 1]n)|P
and measurable sets in ∆(2S) ∩∆≤1(S).

In pGCL Relational Semantics [46, Section 5.4], it is shown that the
semantics given in Table 5.2, TP : S → 2∆(S), is Cauchy-closed, and this
means that for all s ∈ S and pGCL program P , f−1(TP (s)) is a closed set in
B([0, 1]n). By Lemma 5.9 this means that TP (s) ∈ ∆(2S). Measurability of
the transition function is direct since S is finite.

5.3 Similar Models

Here we revisit similar transition systems models that capture continuous
nondeterminism of probabilistic choices. For the sake of completeness, we
first show that PAs are captured by NLMPs. The recent abstract proba-
bilistic automata [19] also fit in the NLMP model. Finally we consider the
infimum labeled Markov processes (infLMPs) [22].

Probabilistic Automata The encoding of PA (Definition 2.8) to NLMPs
is direct, the image of a transition is the set of all related measures, Given a
PA (S, L,→) like in Definition 2.8, we define the triple (S, 2S, {Ta | a ∈ L})
where

Ta(s) = {µ | s a→ µ}
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Since the state space S and the transition relation → are countable sets, the
powerset σ-algebra 2S is countably generated and by Lemma 4.1 {µ} ∈ ∆(2S).
Therefore Ta(s) =

⋃{µ | s a→ µ} ∈ ∆(2S). Measurability of Ta is direct since
in 2S every set is measurable. We conclude that the triple (S, 2S, {Ta | a ∈ L})
is an NLMP.

There are two important aspects of the definition of PA that impact the
translation. One is the cardinality of the state space, while the other is the
cardinality of the transition relation.

It is worth noting that in some definitions of PA the state space and the
transition relation are not restricted, and there the measurability problems
previously shown in Example 4.5 and Example 4.6 can arise.

It is interesting to remark that even if we restrict to finite state space
S, and labels L, but the transition relation is unrestricted there could be
measurability problems. The next example shows this.

Example 5.7. Let the PA ({s0, s1}, {a},→) where the transition relation is
defined

s0
a→ {pδs0+(1−p)δs1 | p ∈ V } (5.8)

and V a Vitali set in [0, 1]. We will show that the translation Ta(s0) = {µ |
s

a→ µ} /∈ ∆(Σ), where Σ = 2{s0,s1}.
Let S = {s0, s1} and notice that by Lemma 5.9, there is a measurable

bijection f between ∆(S) ∩ ∆=1(S) and the antidiagonal {(x, 1 − x) | x ∈
[0, 1]}. The function ad(x) = (x, 1 − x) is measurable, therefore for all
ξ ∈ ∆(Σ), ad−1(f−1(ξ)) ∈ B([0, 1]). However ad−1(f−1(Ta(s))) = V , hence
Ta(s0) /∈ ∆(Σ), and the above PA cannot be encoded as an NLMP.

Abstract Probabilistic Automata Abstract Probabilistic Automata
(APA) [19] presents a symbolic framework that allows for the partial rep-
resentation of PA. An APA is a structure (S, L,→) with a finite set of
states S = {si}ni=1, a finite set of labels L, and a finite transition relation
→ ⊆ S ×L×C(S), where C(S) is the set of finite Boolean expressions with
atoms being linear constraints with variables in {xi}ni=1. Each constraint in
C(S) should contain the equality

∑n
i=1 xi = 1, thus defining that each possi-

ble solution is also a probability distribution on S. (Notice that we do not
consider may and must modalities.) In Figure 5.4 a simple APA is shown.

A given PA is an implementation of an APA if for all abstract transitions
s

a→ ϕ in the APA, there is a concrete transition s
a→ µ in the PA, such that

µ = {si 7→ xi}ni=1 and (x1, . . . , xn) |= ϕ.
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s0

s1 s2

a

x1 x2

0.9 ≤ x1 ∧ x0 + x1 = 1

Figure 5.4: A simple abstract probabilistic automata (APA).

We now show some examples on how ∆(2S) is able to capture the con-
straint specification language for discrete probability measures. The simple
example from Figure 5.4 defines the set of measures {{s1 7→ x1, s2 7→ x2} |
0.9 ≤ x2 ∧ x1 + x2 = 1}. This set can be expressed with ∆(2S) generators
as ∆≥0.9({s2}) ∩∆=1({s1, s2}). Table 5.3 shows two more translations from
constraint specification language for discrete probabilities found in [19] to
measurable sets in ∆(2S).

APA Constraint

0.7 ≤ x2 + x3 ∧ 0.2 ≤ x4 + x5 ∧ x2 + x3 + x4 + x5 = 1
∆(2S) expression

∆≥0.7({s2, s3}) ∩∆≥0.2({s4, s5}) ∩∆=1({s2, s3, s4, s5})
APA Constraint

0 ≤ x2 ≤ 0.5 ∧ 0.2 ≤ x3 ≤ 0.7 ∧ 0 ≤ x4 ≤ 0.5 ∧ 0.4 ≤ x2 + x3 ≤ 0.8
∧x2 + x3 + x4 = 1

∆(2S) expression

∆≤0.5({s2}) ∩∆≥0.2,≤0.7({s3}) ∩∆≤0.5({s4}) ∩∆≥0.4,≤0.8({s2, s3})
∩∆=1({s2, s3, s4})

Table 5.3: Translation of APA constraints of discrete measures to ∆(2S)
measurable sets.

We now formalize the syntax and semantics of the constraint lan-
guage. The constraint language is a Boolean algebra with atoms in linear
(in)equalities:

ϕ ::= ϕ ∧ ϕ | ϕ ∨ ϕ | ¬ϕ | LinIneq({xi}ni=1)

LinIneq({xi}ni=1) ::= c0 ⊲⊳
∑n

i=1 cixi
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where {ci}ni=0 ⊆ R, and ⊲⊳∈ {>,<,≥,≤,=}. The satisfaction relation is
given by JϕK = {(x1, . . . , xn) | (x1, . . . , xn) |= ϕ} ⊆ Rn is defined below:

Jϕ1 ∧ ϕ2K = Jϕ1K ∩ Jϕ2K Jϕ1 ∨ ϕ2K = Jϕ1K ∪ Jϕ2K J¬ϕK = JϕKc

Jc0 ⊲⊳
∑n

i=1 cixiK = {(x1, . . . , xn) | c0 ⊲⊳
∑n

i=1 cixi}

Given a APA (S, L,→), we define the triple (S, 2S, {Ta | a ∈ L}), where the
transition function is defined:

Ta(s) = {µ | s a→ ϕ ∧ µ |= ϕ}

Given that JϕK is a measurable set in B([0, 1]n) (unions, intersection and
complements of open and closed sets), by Lemma 5.9, Ta(s) ∈ ∆(2S). Since
S is finite, measurability of Ta is direct.

Infimum Labeled Markov Process This model presented in [22] departs
from the PA line giving a completely different approach for subspecification
of continuous probabilistic systems. Its definition is a minor variation of the
LMP [20]. It only relaxes the σ-additivity of the transition subprobability
to super-additivity, and here is where the nondeterminism of probabilistic
choices is captured.

Definition 5.8 (Super-additivity). A set function f is super-additive if
f(A) + f(B) ≤ f(A ⊎ B).

The characterization of this subspecification in probabilistic choice is the
following.

Definition 5.9. Given super-additive function f , the set of all
(sub)probabilistic realizations in a measurable space (S,Σ) are the point-
to-point greater (sub)probability measures, i.e.

Θf
.
= {µ ∈ ∆(S) | ∀Q ∈ Σ, f(Q) ≤ µ(Q)} (5.9)

In a nutshell the gap between f(A) + f(B) and f(A ⊎ B) is not known
and every σ-additive probability measure point-to-point greater is possible.

Example 5.10. Let f be defined on 2S with S = {s1, s2, s3, s4} as follows.

f({s1}) = f({s2}) = f({s3}) = 1/8

f({s1, s2}) = 2/3 f({s1, s3}) = f({s2, s3}) = 1/4

f({s1, s2, s3}) = 1
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Clearly f is super-additive. Let µ be a discrete probability measure defined
by µ({s1}) = µ({s2}) = µ({s3}) = 1/3. Then µ ∈ Θf . Moreover notice that

Θf = {µ | 1/8 ≤ µ({si}), i ∈ [1..3], and 1/3 ≤ µ({s1, s2})}

is the (dense) set of probabilistic realizations of f .

The formal definition of infLMPs is as follows.

Definition 5.11 (Infimum labeled Markov process). An infimum Labeled
Markov Process (infLMP) [22] is a triple (S,Σ, {τa | a ∈ L}) where Σ is a
σ-algebra on the set of states S, τa : S × Σ → [0, 1] is a function such that
τa(s, ·) is a super-additive and τa(·, Q) is measurable, for each label a ∈ L,
state s ∈ S and measurable set Q ∈ Σ.

Not surprisingly most of the definitions, theorems and proofs behind
LMPs remain the same for infLMPs, simply because σ-additivity is not re-
quired on those places. Super-additivity allows subspecification of LMPs as
the following examples show.

Example 5.12. Let the measurable space (S,Σ) and super-additive func-
tion f as in Example 5.10. We define the infLMP (S, 2S, {τa}) partially
represented in Figure 5.5, where τa(s0) = f . Observe not only it encodes
lower bounds on probabilities, but also it is encoding upper bounds on prob-
abilities. For example the singleton {s3} is explicitly lower bounded but also
implicitly upper bounded by τa(s0, {s1, s2}) = 2/3 and τa(s0, S) = 1, so we
have 1/8 ≤ τa(s0, {s3}) ≤ 1/3. An LMP realization of (S, 2S, {τa}) is, for
example, (S, 2S, {τ ′a}), where τ ′a(s0, {si}) = 1/3 for i = 1, 2, 3.

Example 5.13. Consider an infLMP (S,Σ, {τa}) with transition function τa
such that τa(s, A) = 0, τa(s, B) = 0 and τa(s, A ⊎ B) = 1. The transition
function τa(s, ·) is super-additive. This means that from s and through label
a, it is certain that either A orB will occur, but it is not known the probability
of each individual event. It does not mean that event A or B are individually
impossible, but rather that under a demonic view of nondeterminism their
chances are null. Notice that this example also shows that infLMPs can
encode pure nondeterminism.

Given Definition 5.9, the translation from infLMP (S,Σ, {τa | a ∈ L})
to an NLMP seems direct. We define the triple (S,Σ, {Ta | a ∈ L}), where
Ta(s) = Θτa(s). The next proposition shows that if the underlying σ-algebra
is countably generated, the set Ta(s) is measurable.
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Figure 5.5: infLMP showing probabilistic subspecification of probabilistic
choice.

Proposition 5.10. Given measurable space (S,Σ) and super-additive set-
wise function f on Σ, if Σ is countably generated by C, then the set Θf a
measurable set in ∆(Σ).

Proof. Let F be the denumerable algebra generated by C. We will show that

Θf =
⋂

Q∈F

∆≥f(Q)(Q)

Left to right inclusion is direct since the inequality holds for every measurable
set, in particular for the sets in F .

For the other inclusion suppose µ /∈ Θf . Therefore, there exists Q ∈ Σ
such that µ(Q) < f(Q). Using the approximation result of Corollary 3.22
there is Q′ ∈ F with Q ⊆ Q′ such that µ(Q) ≤ µ(Q′) < f(Q) ≤ f(Q′).
Therefore Q′ witnesses that µ is not in the right-hand side.

The remaining proof obligation, namely that Ta is a measurable function,
cannot be deduced from the measurability of the infLMP transition function
τa. Therefore it is still not clear if infLMPs can be embedded into NLMPs.

For the other inclusion, an NLMP with a simple discrete nondeterminism
cannot be embedded in an infLMP. Consider the NLMP ({0, 1}, 2{0,1}, {Ta}),
where Ta = (∆=1/3({0})∩∆=2/3({1}))∪ (∆=2/3({0})∩∆=1/3({1})) (observe
this is basically a PA). The best attempt to capture that discrete nondeter-
minism over discrete state space with a super-additive function f would be:
f({0}) = f({1}) = 1/3 and f({0, 1}) = 1. However this super-additive func-
tion includes realizations like µ({0}) = µ({1}) = 1/2, that are not present in
the former NLMP. We can say that NLMPs can express subspecifications of
probabilistic choices in a finer way.

Observe that in [22] a translation from PA to infLMPs that is simulation
preserving is shown. The authors do not claim that PA can be embedded in
infLMPs.
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5.4 Concluding Remarks

An important portion of this chapter is unpublished material. Section 5.1 is
new, and for Section 5.2 although the SHA semantics main result was in [28,
Lemma 3], its proof was not part of the final published version, therefore we
present it here in full detail. Section 5.3 is also completely new.

The exercise of modeling underspecified systems using ∆(Σ) was fruitful
in many aspects. It gives us confidence in the model and it also augments
the well-known sets of measures that live in ∆(Σ). Discrete measures were
formally shown to be in ∆(Σ). For more inspiring examples of measurable
sets that are not trivial to define, please refer to [36, Examples, p.69–70]
where rather complex sets of functions are shown to be measurable. The use
of ∆⊲⊳q(Q) and set operators also triggered some ideas on symbolic model
checking for NLMPs. We will discuss them in the conclusions.

The semantics of soft real-time systems modeled through SA was devel-
oped using NLMPs. We proved it using simple and easily reusable tools.
Since the set of labels is dense to represent time passage, we also showed
that the semantics was conforming the requirement on an NLMP with struc-
ture on the labels. It must be remarked that Lemma 3.39 was fundamental
in the core of the proofs of measurability.

The semantics of a hybrid system featuring continuous nondetermin-
ism was also captured by NLMPs. This proof was important since the
definition of the hit σ-algebra was extensively used to show measurabil-
ity of the construction. In doing this we gained more confidence in the
way NLMPs was defined since it allowed us to capture a rather complex
model involving continuous nondeterminism and continuous probabilities. It
would be desirable that a measurable Flow restriction relation for the non-
deterministic differential equations renders a measurable transfer function
postm : (Rk,B(Rk)) → (B(Rk), H(B(Rk))). A result like this could not be
worked out, and the Hybrid Systems literature does not seem to deal with it
in full generality. The classical approach is dealing with a vector field and or-
dinary differential equations (ODEs), that is deterministic equations. There,
Lipschitz continuity, is a sufficient condition for existence and uniqueness of
a solution [6]. In the presence of nondeterminism in the vector field (differen-
tial inclusion as stated in [6]), the existence, uniqueness or even the analysis
of the transfer relation are not taken into account, see for example [55] that
uses a similar Flow relation. Others like [35] derive measurability of the
transfer function in terms of a measurable flow restriction that is inherently
nondeterministic. However the flow restrictions must be rectangular regions
and it is only valid for unidimensional trajectories. The basic idea is using
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the mean value theorem so that the pair (x,y) is in the flow relation if and
only if (x−y)/e ∈ Flow . An approach yet to be explored is to export results
from the field of Differential Topology [53]. There each point of the space is
associated with a cone, a subspace that is closed under vector sums. Cones
are functions of the position and they restrict the future trajectories, but
they are intrinsically nondeterministic. In this setting, one particular prob-
lem is defining the region of a hyperplane the particle trips could hit. The
similarities are striking, but the barriers of the uses and terminology between
the two fields have to be broken.

We also showed that pGCL [46] semantics can be captured by NLMPs.
Although the state space is discrete, its semantics deals with continuous non-
determinism in the form of up-closed and convex-closed sets of subprobability
measures. We use Lemma 5.9 relating the space [0, 1]n with subprobability
distributions in a finite space in order to prove that the transfer function has
measurable image. This lemma is a valuable tool to attack general problems
of continuous nondeterminism in discrete probability spaces.

NLMPs can also capture the semantics of structures like Markov set-
chains [34] and timed automata augmented with discrete probabilistic
choice [39, 40]. They are not included here since they are not essentially
different from what has been already shown.

A comparison with similar models was given in Section 5.3. First we
discuss how to capture PA. Although for finite state space, labels and tran-
sition relation the embedding is direct, we show in Example 5.7 that just
allowing arbitrary transition relations, measurability problems arise. This
is, to the author’s knowledge, the first time that PA shows a definability
problem, and this is not a minor issue since no scheduler can quantify over
this non-measurable nondeterminism. We also encode APA in NLMPs, and
show how to use ∆⊲⊳q(Q) to capture some particular examples. Here again
Lemma 5.9 proved useful to show that the embedding is an NLMP. infLMPs
present a promising alternative for the subspecification of continuous proba-
bilistic systems. It is really interesting in many aspects. The gaps given by
super-additivity are the source of nondeterminism, and from pure nondeter-
ministic choice to pure probabilistic choice, it seems that every intermediate
possibility is captured in a grain that is as fine or coarse as needed. Some
more work on infLMP model is needed in order to establish definitions and
results concerning the resolution of this continuous nondeterminism. Sched-
ulers and path probability definitions are missing in the original work [22].
Some more comparisons on the relative merits of the two forms of probabilis-
tic subspecification (super-additivity vs. ∆⊲⊳(Q) generators) are still needed.
A first impression is that infLMPs is not well suited to (sub)specify systems,
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however it has a really simple definition that could render proofs that are
shorter than in the NLMP counterpart. We expect that further work on
infLMPs can answer these questions and show how infLMPs behaves as a
modeling tool for probabilistic and nondeterministic continuous systems.

Even though stochastic transition systems (STS) [11,12] are presented as
the continuous counterpart of PA, we decided not to include them in this
chapter. STS departs from NLMPs and related models in one fundamental
aspect, instead of restricting the transition relation, they limit the power of
schedulers to take into account only those systems rendering a sound defini-
tion of path measure. They attack measurability problems in the semantic
part of the model. The referred work does not show any concrete example of
a system being an STS. Besides the main characterization result [12, Propo-
sition 1], does not provide any insight on what conditions render a so-called
measurable scheduler in the system itself. In that work, the comparison with
established work like LMPs, also falls short. It is nowhere defined why the
conditions on the definition or in the scheduler implies that an STS encoding
of an LMP sends back measurable sets to measurable sets, a fundamental
property for the semantics of any modal operator.
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Chapter 6

Bisimulations and Logics

In the previous two chapters we defined the NLMP model and gave enough
evidence of its applicability in the realm of real-time and hybrid systems, as
well as showing through examples that the generators of ∆(Σ) provide ade-
quate building blocks for probabilistic underspecification. In this chapter we
extend the notions of bisimulation for LMPs [21] and PA [58] to our model.
We give different generalizations of bisimulation to continuous nondetermin-
ism and compare them exhaustively.

The work is based on the ideas of traditional bisimulation for discrete
probabilistic systems [41] and LMPs [21]. We also took the concept of event
bisimulation [14] for LMPs. These ideas give rise to the three notions we
present here, two of which are an extension of traditional and event bisim-
ulation, while the other is new. Traditional bisimulation is an extension
of [21, 41], and it is strongly point-wise. Event bisimulation is an extension
of [14], and its definition is done completely in terms of measurable sets and
functions. The new notion is called state bisimulation. This definition is in
the middle of traditional and event bisimulation, introducing a novel mix of
point-wise and event-wise definitions.

We also extend the simple modal logic that characterizes bisimulation
for LMPs, to finite and continuous nondeterminism, showing that this logic
characterizes event bisimulation, but also state and traditional bisimulation
for some restricted spaces.

In order to give a more amenable organization to the chapter, we first
provide a detailed explanation of the bisimulations and the logic on LMPs
(Section 6.1). Occasionally, we provide revisited proofs of the results. Once
we explain the theory on this simpler framework, we introduce our results
generalizing the theory of bisimulations and logic to NLMPs (Section 6.2).

97
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6.1 Bisimulations and Logics in LMPs

In this section we give a summary of bisimulation and its logical character-
ization for LMPs. This work is based on [13, 14, 17, 18, 20, 21]. First we
introduce bisimulation in two flavors, traditional point-wise bisimulation [21]
and the relatively new event-wise bisimulation [14]. Then, we give the logi-
cal characterization of these bisimulations in terms of a Hennessy-Milner-like
logic.

Relations, Measures, and σ-algebras. Given that bisimulation is a re-
lation and LMPs are tied to σ-algebras, here we deal with some definitions
and results that relate σ-algebras and relations.

Definition 6.1 (R-closed). Given a relation R ⊆ S × S, the predicate
R-closed(Q) is used to denote R(Q) ⊆ Q, where R(Q)

.
= {t | s ∈ Q, s R t}.

Notice that if R is symmetric, R-closed(Q) iff ∀s, t, s R t, s ∈ Q⇔ t ∈ Q.

Given a symmetric relation R and a σ-algebra Σ, we can define the sub-
σ-algebra of R-closed sets.

Definition 6.2. Let (S,Σ) be a measurable space and let R be a symmetric
relation. We define Σ(R)

.
= {Q ∈ Σ | R-closed(Q)}.

Observe that Σ(R) is the sub-σ-algebra of Σ containing all R-closed Σ-
measurable sets.

It is important to remark that requiring that R is symmetric is sufficient
for Σ(R) to be complement-closed1, that is ∀Q ∈ Σ, R(Q) ⊆ Q ⇒ R(Qc) ⊆
Qc holds if R = R−1. The converse is not valid, for example Σ = {∅, {1, 2}}
and R = {(1, 2)}, showing there are weaker notions to fulfill the requirement
that Σ(R) is a σ-algebra. We stick to R = R−1.

The next proposition states that the inclusion order between two relations
transfers inversely to the σ-algebras induced by them and to the σ-algebra
of measures applied to these σ-algebras.

Proposition 6.1. Let R and R′ be symmetric relations such that R ⊆ R′.
Then

i. Σ(R) ⊇ Σ(R′) and

ii. ∆(Σ(R)) ⊇ ∆(Σ(R′)).

1This point is missing in some publications about LMPs [14, 20, 21].
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Proof. (i) follows from the fact that any measurable set that is R′-closed is
also R-closed whenever R ⊆ R′. For (ii), recall that ∆(Σ(R′)) is generated
by A′ = {∆>q(Q) | q ∈ Q+, Q ∈ Σ(R′)}. Since Σ(R′) ⊆ Σ(R) (by (i)), then
A′ ⊆ ∆(Σ(R)) from which the proposition follows.

We can lift R to an equivalence relation in ∆(S) as follows:

µ R µ′ iff ∀Q ∈ Σ(R), µ(Q) = µ′(Q)

Then, the notion of R-closed can be defined on subsets of ∆(S) just like
before. The following proposition will be useful.

Proposition 6.2. If R is a symmetric relation, every ∆(Σ(R))-measurable
set is R-closed.

Proof. We show this using good sets principle with G = {ξ ∈ ∆(Σ(R)) |
R-closed(ξ)}. For ∆>q(Q) with q ∈ Q+ and Q ∈ Σ(R) it holds that µ R
µ′ ⇒ (µ ∈ ∆>q(Q)⇔ µ′ ∈ ∆>q(Q)). Therefore ∆>q(Q) is R-closed.

Moreover, for any symmetric R, the property of being R-closed is pre-
served by denumerable union and complement. Since the lifted R is symmet-
ric, we can conclude that every measurable set in ∆(Σ(R)) is R-closed.

A σ-algebra induces a relation in the sense that two elements cannot be
distinguished iff they cannot be separated by any measurable set.

Definition 6.3. A σ-algebra Σ defines an equivalence relation R(Σ) as fol-
lows:

s R(Σ) t iff ∀Q ∈ Σ, s ∈ Q⇔ t ∈ Q

If Σ is a σ-algebra that separates points then R(Σ) is the identity. It is
also relevant to know that the inclusion of σ-algebras transfer inversely to
the relation.

Proposition 6.3. Let Λ and Λ′ be two σ-algebras such that Λ ⊆ Λ′. Then
R(Λ) ⊇ R(Λ′).

The following properties (due to [14]) appear here for the sake of complete-
ness; they relate σ-algebras and relations. In particular, (v) is a consequence
of (i) and (ii).

Proposition 6.4. Let (S,Σ) be a measurable space, R a symmetric relation
on S, and Λ ⊆ Σ a sub-σ-algebra of Σ. Then,

i. Λ ⊆ Σ(R(Λ));
ii. R ⊆ R(Σ(R));
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iii. if each R-equivalence class is in Σ, then R = R(Σ(R));
iv. R(Λ) = R(Σ(R(Λ))); and
v. Σ(R) = Σ(R(Σ(R)))2.

In [20,21], a notion of behavioral equivalence similar to probabilistic bisim-
ulation [41] is introduced.

Definition 6.4 (State bisimulation on LMP). R ⊆ S×S is a state bisimula-
tion on LMP (S,Σ, {τa | a ∈ L}) if it is symmetric3 and for all s, t ∈ S, a ∈ L,
s R t implies that τa(s) R τa(t), i.e., for all Q ∈ Σ(R), τa(s,Q) = τa(t, Q).

This definition is point-wise and not event-wise as one should expect in a
measure-theoretic setting; besides R has no restriction about measurability.
The largest state bisimulation, called state bisimilarity and denoted ∼s, is
the union of all bisimulation relations:

∼s .=
⋃{R | R is a state bisimulation}

It is customary to prove that bisimilarity is an equivalence relation [45]. The
relation ∼s is reflexive because the identity is a state bisimulation and sym-
metric since it is a restriction to properly define Σ(R). The proof of transi-
tivity provided by [20, 21] is painfully complicated, and it only applies to a
restricted class of state spaces (Polish or analytic). With the tools we have
nowadays, we provide in Section 6.2 a very simple and elegant proof showing
that ∼s is an equivalence.

In [14] a measure-theory aware notion of behavioral equivalence is intro-
duced.

Definition 6.5 (Event bisimulation on LMP). An event bisimulation on
LMP (S,Σ, {τa | a ∈ L}) is a sub-σ-algebra Λ of Σ such that τa is Λ-
measurable function for all a ∈ L.

With this notion the largest event bisimulation relation (induced by the
operator R), the event bisimilarity is defined by:

∼e .=
⋃{R(Λ)| Λ is an event bisimulation}

Showing that ∼e is an equivalence relation is straightforward: we only have
to prove that ∼e is transitive, since the union of equivalence relations is re-
flexive and symmetric, but not necessarily transitive. Notice that, if s R(Λ) t

2Proposition 6.4(v) appears in [14] but with the unnecessary condition that R is a state
bisimulation.

3The requirement of symmetry is needed otherwise Σ(R) may not be a σ-algebra.
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and t R(Λ′) u then s R(Λ ∩ Λ′) u. Moreover, if Λ and Λ′ are event bisimula-
tions so is Λ ∩ Λ′. As a consequence ∼e is transitive. Using Proposition 6.3,
the largest event bisimulation relation is defined by the smallest event bisim-
ulation, that is ∼e=R(Λ) such that any other event bisimulation Λ′ contains
Λ. We write ∼e = R(

⋂{Λ | Λ is an event bisimulation}).
In [14] it is shown that R is a state bisimulation iff Σ(R) is an event

bisimulation. This is an important result that leads to prove that the largest
state bisimulation is also an event bisimulation.

Lemma 6.5. Given an LMP (S,Σ, {τa | a ∈ L}) and a symmetric relation
R ⊆ S × S, R is state bisimulation iff Σ(R) is an event bisimulation.

Proof. Let q ∈ Q ∩ [0, 1] and Q ∈ Σ(R) Since τ−1(∆>q(Q)) is in Σ by the
definition of LMP, we only have to prove that R is a state bisimulation iff
τ−1
a (∆>q(Q)) is R-closed. For this we calculate:

R is a state bisimulation

iff (Def.)

s R t⇒ ∀Q ∈ Σ(R), τa(s,Q) = τa(t,Q)

iff (Equiv. in R)

s R t⇒ ∀Q ∈ Σ(R),∀q ∈ Q ∩ [0, 1], q < τa(s,Q)⇔ q < τa(t,Q)

iff (Def. of inv. and currification)

s R t⇒ ∀Q ∈ Σ(R),∀q ∈ Q ∩ [0, 1], s ∈ τ−1
a (∆>q(Q))⇔ t ∈ τ−1

a (∆>q(Q))

iff (Def. of R-closed)

∀Q ∈ Σ(R),∀q ∈ Q ∩ [0, 1], R-closed(τ−1
a (∆>q(Q)))

Hence every state bisimulation is also an event bisimulation (via the op-
erator R), therefore we have the following result.

Corollary 6.6. ∼s ⊆ ∼e.

Logical Characterization. A Hennessy-Milner probabilistic logic for
LMP Ls is based on a modal-probabilistic operator indexed by q ∈ Q∩ [0, 1],
the binary conjunction, and the top element:

φ ::= ⊤ | φ ∧ φ | 〈a〉qφ (6.1)

Observe that the set of terms produced by this syntactic definition is count-
able if and only if the set of labels is countable. The default assumption is
that L is an arbitrary set. The semantics of φ, denoted by JφK, is given by
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the set of states that make a formula φ valid. It is defined recursively as
follows:

J⊤K = S, Jφ1 ∧ φ2K = Jφ1K ∩ Jφ2K, J〈a〉qφK = τ−1
a (∆>q(JφK))

Let JLsK = {JφK | φ ∈ Ls}. Note that JLsK is a π-system and that the
semantics of every logical expression is a measurable set. The last claim is a
consequence of τa being measurable.

Proposition 6.7. For every φ ∈ Ls, we have JφK ∈ Σ.

Moreover JφK is closed for every state bisimulation relation.

Proposition 6.8. Let R be a state bisimulation. Then, ∀φ ∈
Ls, R-closed(JφK).

Proof. We proceed by induction on the structure of φ. For the base case
notice that J⊤K = S is trivially R-closed. For case φ1 ∧ φ2, by induc-
tion hypothesis s ∈ JφiK ⇔ t ∈ JφiK with i ∈ {1, 2}; therefore s ∈
Jφ1K ∩ Jφ2K ⇔ t ∈ Jφ1K ∩ Jφ2K. For φ = 〈a〉qφ′ suppose by induction hy-
pothesis that R-closed(Jφ′K). Take s R t. Since R is a state bisimulation,
∀Q ∈ Σ(R), τa(s,Q) = τa(t, Q). Therefore q < τa(s, Jφ

′K) ⇔ q < τa(t, Jφ
′K)

and hence s ∈ JφK⇔ t ∈ JφK. So R-closed(JφK).

By Proposition 6.7 and Proposition 6.8, we have that JLsK ⊆ Σ(R) for
every state bisimulation R.

Even though this logic is very terse, it allows to capture the differences in
small-step behavior for LMPs. Notice that the cardinality of the state space
does not play any role in the complexity of the logic. What is mandatory for
its distinguishing capabilities is that the modal operator captures a subset of
the ∆(Σ) generators. Therefore, the modal operator has enough separation
power to distinguish two different probability measures.

An important result relates the state bisimilarity and the semantics of
the logic. We say that the logic Ls characterizes state bisimulation if

s ∼s t⇔ s R(Ls) t
where s R(Ls) t is defined as ∀φ ∈ Ls, s ∈ JφK ⇔ t ∈ JφK. However this
result is not valid in general. We need to restrict the state space and the
cardinality of the label set.

Definition 6.6 (Polish and analytic spaces). A topological space is Polish
if it is separable (i.e. it contains a countable dense subset) and completely
metrizable. A topological space is analytic if it is the continuous image
of a Polish space. A measurable space is analytic (standard) Borel if it is
isomorphic to (X, σ(T )) where T is an analytic (Polish) topology on X .
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Every standard Borel space is analytic, but the converse is false. The
real line with the usual Borel σ-algebra, and more generally, AN with A a
countable discrete space, are standard Borel and therefore, analytic.

The next theorem from [23] essentially shows that in analytic Borel spaces,
R-closed measurable sets are well behaved when the relation R is defined in
terms of a sequence of measurable sets.

Theorem 6.9. Let (S,Σ) be an analytic Borel space. Let C ⊆ Σ be countable
and assume S ∈ C. Then Σ(R(C)) = σ(C).

The next lemma appears in [20,21]. We provide here an alternative proof.

Lemma 6.10. Ls characterizes state bisimulation on LMPs with analytic
state spaces and countable set of labels.

Proof. The left to right implication follows immediately from Proposition 6.8.
For the right to left implication, we show that R(Ls) is a state bisimula-

tion, that is, we have to show that

s R(Ls) t⇒ ∀Q ∈ Σ(R(Ls)), τa(s,Q) = τa(t, Q)

Since Ls is countable by the denumerability of L, by Theorem 6.9 we have
that the above expression is equivalent to

s R(Ls) t⇒ ∀Q ∈ σ(JLsK), τa(s,Q) = τa(t, Q)

However, given an arbitrary φ ∈ Ls, s R(Ls) t implies that ∀q ∈ Q ∩
[0, 1], s ∈ J〈a〉q(φ)K⇔ t ∈ J〈a〉q(φ)K. This is equivalent to ∀q ∈ Q∩ [0, 1], q <
τa(s, JφK) ⇔ q < τa(t, JφK), while in turn implies that τa(s, JφK) = τa(t, JφK).
It remains to be shown that this equality extends to σ(JLsK), but this is valid
by Theorem 3.20 since JLsK is a π-system.

For event bisimulations there is no restriction on the state space, and
this gives more evidence on the appropriateness of an event-wise behavioral
equivalence. As previously stated, ∼e is given by R(Λ), where Λ is the
smallest event bisimulation. We show that σ(JLsK) is such smallest σ-algebra.
We remark that an event bisimulation is a σ-algebra that is stable, where
stability is defined as follows.

Definition 6.7 (Stability). The family A ⊆ Σ is stable for the LMP
(S,Σ, {τa | a ∈ A}) if for all a ∈ L, q ∈ Q ∩ [0, 1], Q ∈ A, τ−1

a (∆>q(Q)) ∈ A.

We can alternatively express stability of the family A by {τ−1
a (∆>q(Q)) |

a ∈ L, q ∈ Q ∩ [0, 1], Q ∈ A} ⊆ A.
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Lemma 6.11. JLsK is the smallest stable π-system containing S for
(S,Σ, {τa | a ∈ L}).
Proof. We already know that JLsK is a π-system It is also stable since the
syntax of the modal operator is interpreted as τ−1

a . Finally suppose P is
another stable π-system containing S. By induction on the formula structure,
J⊤K = S ∈ P, since P contains S. If Jφ1K, Jφ2K ∈ P, then, given that P is a
π-system, Jφ1 ∧ φ2K ∈ P. For JφK ∈ P, since P is stable, τ−1

a (∆>q(JφK)) ∈ P,
and hence J〈a〉qφK ∈ P. Therefore JLsK ⊆ P.
Lemma 6.12. If P is a stable π-system containing S for the LMP (S,Σ, {τa |
a ∈ L}) where ∀s ∈ S, a ∈ L, τa(s) ∈ ∆=1(S), then σ(P) is also stable.

Proof. We prove it using Dynkin’s π-λ Lemma (Lemma 3.9). Let

G = {A ∈ Σ | ∀a ∈ L, ∀q ∈ Q ∩ [0, 1], τ−1
a (∆>q(A)) ∈ σ(P)}

be the family of good sets and notice that P ⊆ G because P is stable. If
we show that G forms a λ-system, then σ(P) ⊆ G, concluding that σ(P) is
stable.

The family G is nonempty since S ∈ P. For complement and disjoint
union closure, we first show that the expressions ∆>q(Ac) and ∆>q(

⊎

iAi)
can be conveniently rewritten in terms of denumerable set operations on
∆>q′(A) and ∆>q′i(Ai) respectively:

∆>p(Ac) =
⋂

n> 1

1−p
(∆>1−p− 1

n (A))c (6.2)

∆>p(A1 ⊎A2) =
⋂

n

⋃

In
(∆> l

n (A1) ∩∆>m
n (A2)) (6.3)

∆>p(
⊎

iAi) =
⋂

m≥ 1

p

⋃

n∆
>p− 1

m (
⊎n
i=1Ai) (6.4)

where In = {(l, m) | l, m ∈ N ∧ l, m ≤ n ∧ l+m ≥ ⌊np⌋ − 2} for a given p.
These expressions are a minor adaptation of similar expressions appearing in
the proof of [65, Lemma 3.6]4.

Let A ∈ G, then for arbitrary q ∈ Q ∩ [0, 1], τ−1
a (∆>q(A)) ∈ σ(P). Us-

ing expression (6.2) and observing that τ−1
a commutes with set operations,

we conclude that given an arbitrary q ∈ Q ∩ [0, 1], τ−1
a (∆>q(Ac)) ∈ σ(P),

therefore Ac ∈ G. For disjoint union we proceed similarly.

Observe that in the previous proof, the equation (6.2) uses the hypothesis
µ(S) = 1, therefore the logical characterization of event bisimulation is only
valid for probability measures. It can be easily generalized to finite measures
including subprobabilities.

4In [65], the notation βp(A) is the generator ∆≥p(A). For ∆>p(A) expression (6.2) had
to be changed, while the other two remained unchanged. (6.3) is valid since p < 1.
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Proposition 6.13. σ(JLsK) is the smallest stable σ-algebra included in Σ.

Proof. JLsK is a stable π-system by Lemma 6.11, therefore by Lemma 6.12,
σ(JLsK) is a stable σ-algebra included in Σ (Proposition 6.7). Let Σm be a
stable σ-algebra included in Σ. Since JLsK is the smallest stable π-system,
JLsK ⊆ Σm, since Σm is in particular a π-system. Therefore σ(JLsK) ⊆ Σm,
concluding the proof.

Lemma 6.14. Ls characterizes event bisimulations on LMPs.

Proof. Since σ(JLsK) is stable, it is also an event bisimulation. Since it also
is the smallest event bisimulation, it follows that R(σ(JLsK)) = ∼e.

Now, the obvious question is whether ∼s = ∼e or there is an event bisim-
ulation on an LMP that is not an state bisimulation. Recently in [56], it
was shown that state and event bisimulation for LMPs differ outside ana-
lytic spaces. This raises the question of whether we should abandon state
bisimulation in favor of event bisimulation. For NLMPs the situation will be
different.

6.2 Bisimulations and Logics in NLMPs

Event bisimulation in NLMPs is defined exactly in the same way as for LMPs:
an event bisimulation is a sub-σ-algebra for which the transition function is
measurable.

Definition 6.8 (Event bisimulation on NLMP). An event bisimulation on
an NLMP (S,Σ, {Ta | a ∈ L}) is a sub-σ-algebra Λ of Σ such that Ta :
(S,Λ)→ (∆(Σ), H(∆(Λ))) is measurable for each a ∈ L.

Notice that the transition function Ta does not change its domain and
codomain base sets. On the other hand, the σ-algebras attached do change.
For Λ to be an event bisimulation, Ta should be measurable from Λ to
H(∆(Λ)). Here, H(∆(Λ)) is the sub-σ-algebra of H(∆(Σ)) generated by
{Hξ | ξ ∈ ∆(Λ)}. If we take T−1

a (Hξ) = {s | Ta(s) ∩ ξ 6= ∅} with ξ ∈ ∆(Λ),
the inner intersection is between two slightly different type of sets. The el-
ements of the left-hand side are in Σ → [0, 1], while the elements of the
right-hand side are in Λ → [0, 1]. The solution is restrict Σ to Λ, since a
measure in Σ → [0, 1] is, by restriction, a measure in Λ → [0, 1]. A similar
digression is applicable to LMPs event bisimulations.

The definition of state bisimulation is less standard. Following the original
definition of [44] (which was lifted to discrete probabilistic models by [41]), a
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traditional definition of bisimulation (see Definition 6.10) verifies that, when-
ever s R t, every measure on Ta(s) has a corresponding one (modulo R) in
Ta(t). Rather than looking point-wise at probability measures, our definition
follows the idea of Definition 4.4 and verifies that both Ta(s) and Ta(t) hit
the same measurable sets of measures.

Definition 6.9 (State bisimulation on an NLMP). A relation R ⊆ S × S is
a state bisimulation on an NLMP (S,Σ, {Ta | a ∈ L}) if it is symmetric and
for all a ∈ L, s R t implies ∀ξ ∈ ∆(Σ(R)), Ta(s) ∩ ξ 6= ∅ ⇔ Ta(t) ∩ ξ 6= ∅.

The following property, which also holds in LMPs, states the fundamental
relation between state bisimulation and event bisimulation.

Lemma 6.15. Given an NLMP (S,Σ, {Ta | a ∈ L}) and a symmetric R ⊆
S × S, R is state bisimulation iff Σ(R) is an event bisimulation.

Proof. By Definition 6.8, Σ(R) is an event bisimulation iff Ta is Σ(R)-
measurable. Since Ta is Σ-measurable, it suffices to prove that T−1

a (Hξ) is
R-closed for all labels a ∈ L and generators Hξ, ξ ∈ ∆(Σ(R)). We calculate:

R-closed(T−1
a (Hξ))

iff (R is symmetric)

s R t⇒
(

s ∈ T−1
a (Hξ)⇔ t ∈ T−1

a (Hξ)
)

iff (Def. inverse function)

s R t⇒ (Ta(s) ∈ Hξ ⇔ Ta(t) ∈ Hξ)

iff (Def. of Hξ)

s R t⇒ (Ta(s) ∩ ξ 6= ∅ ⇔ Ta(t) ∩ ξ 6= ∅) .

This completes the proof as the last statement is the definition of state bisim-
ulation.

The following results are consequences of Proposition 6.4 and, for the case
of Lemma 6.16 (iii), Lemma 6.15 and the fact that R(Λ) is an equivalence
relation. The proofs are the same as the proofs of similar results for LMPs
in [14].

Lemma 6.16. Let R be a state bisimulation. Then:

i. R is an event bisimulation iff R = R(Σ(R)).
ii. If the equivalence classes of R are in Σ, R is an event bisimulation.

iii. R(Σ(R)) is both a state bisimulation and an event bisimulation.
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Let ∼s =
⋃{R | R is a state bisimulation}. In the following we show that

∼s is also a state bisimulation and hence the largest one. Moreover, we show
that ∼s is also an event bisimulation and, as a consequence, an equivalence
relation.

Theorem 6.17. ∼s is:

i. the largest state bisimulation;

ii. an event bisimulation (and hence ∼s ⊆ ∼e); and
iii. an equivalence relation.

Proof. (i) Take s, t ∈ S such that s ∼s t. Then there is a state bisimulation
R with s R t. Take a measurable set ξ ∈ ∆(Σ(∼s)). Since R ⊆ ∼s, by Propo-
sition 6.1, ∆(Σ(R)) ⊇ ∆(Σ(∼s)). Hence ξ ∈ ∆(Σ(R)) and by Definition 6.9,
Ta(s)∩ξ 6= ∅ ⇔ Ta(t)∩ξ 6= ∅ which proves that ∼s is a state bisimulation. By
definition, it is the largest one. (ii) Since ∼s is a state bisimulation, R(Σ(∼s))
is a state bisimulation and an event bisimulation (Lemma 6.16 (iii)). Since
∼s is the largest bisimulation then ∼s = R(Σ(∼s)) and hence it is an event
bisimulation. (iii) By definition, every event bisimulation is an equivalence
relation.

We have already stated that our definition of state bisimulation differs
from a more traditional view such as those in [7,8,15,16,62]. These definitions
closely resemble the definition given in [41]. The only difference is that two
measures are considered equivalent if they agree in every measurable union of
equivalence classes induced by the relation. We will now give a variant using
the twice lifted relation R as in the PA bisimulation (see Definition 2.9).

Definition 6.10 (Traditional bisimulation on an NLMP). A relation R is a
traditional bisimulation on an NLMP (S,Σ, {Ta | a ∈ L}) if it is symmetric
and for all a ∈ L, s R t implies Ta(s) R Ta(t). We say that s, t ∈ S are
traditionally bisimilar, denoted by s ∼t t, if there is a traditional bisimulation
R such that s R t.

The proof of the next proposition follows the standard strategy of the
classic bisimulation as in [44]. Other than in the probabilistic treatment, it
only differs in that the composition R ◦ R′ is granted to be a traditional
bisimulation if R and R′ are reflexive traditional bisimulations. (If one of R
or R′ is not reflexive, R ◦R′ may not be a traditional bisimulation.)

Proposition 6.18. ∼t is a traditional bisimulation and an equivalence rela-
tion.
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In the following we discuss the relation between state bisimulations and
traditional bisimulations. Lemma 6.19 states that every traditional bisimula-
tion is a state bisimulation. Theorems 6.20 and 6.21 give sufficient conditions
to strengthen Lemma 6.19 so that the converse also holds.

Lemma 6.19. If R is a traditional bisimulation, then R is a state bisimula-
tion.

Proof. Let s R t and ξ ∈ ∆(Σ(R)). If Ta(s) ∩ ξ 6= ∅, then there is µ ∈ Ta(s)
such that µ ∈ ξ. Since R is a traditional bisimulation, Ta(s) R Ta(t), i.e.,
there is µ′ ∈ Ta(t) such that µ R µ′. By Proposition 6.2 R-closed(ξ), so
µ′ ∈ ξ, and hence Ta(t)∩ ξ 6= ∅ as required. The other implication follows by
symmetry.

In the following we give two sufficient conditions that ensure that a state
bisimulation is also a traditional bisimulation. The first condition focuses on
the NLMP, it requires the NLMP to be image denumerable. (By a minor
extension of Proposition 5.5, any countable set of LMPs form a denumerably
branching NLMP.)

Definition 6.11. An NLMP (S,Σ, {Ta | a ∈ L}) is image denumerable iff
for all a ∈ L, s ∈ S, the image of the transition Ta(s) is denumerable.

Theorem 6.20. Let (S,Σ, {Ta | a ∈ L}) be an image denumerable NLMP.
Then R is a traditional bisimulation iff it is a state bisimulation.

Proof. The left to right implication is Lemma 6.19. For the other implication
we proceed as follows.

Let s R t and for all ξ ∈ ∆(Σ(R)), Ta(s) ∩ ξ 6= ∅ ⇔ Ta(t) ∩ ξ 6= ∅.
Suppose towards a contradiction that Ta(s) 6R Ta(t), i.e. ∃µ ∈ Ta(s), ∀µ′

i ∈
Ta(t) : ∃Qi ∈ Σ(R) : µ(Qi) ⊲⊳i µ

′
i(Qi), where {⊲⊳i}i ⊆ {>,<} (the NLMP is

image denumerable). By density of the rationals, there are {qi}i ⊆ Q+ such
that µ(Qi) ⊲⊳i qi ⊲⊳i µ

′
i(Qi). Then µ ∈ ∆⊲⊳iqi(Qi) 6∋ µ′

i. Let ξ
.
=

⋂

i∆
⊲⊳iqi(Qi).

This set is measurable, moreover, since every Qi ∈ Σ(R), so ξ ∈ ∆(Σ(R)).
Then µ ∈ Ta(s)∩ξ, but Ta(t)∩ξ = ∅, hence contradicting the assumption.

After reading the proof, it should be clear that we can relax the sufficient
condition so that we only require that the partition Ta(s)/R is denumerable
for each state s and label a instead of requiring image denumerability.

Observe that a state bisimulation on an LMP is a traditional bisimulation
on the encoding NLMP and vice versa since {τa(s)} = Ta(s) R Ta(t) =
{τa(t)} iff τa(s) R τa(t). As a consequence of Lemma 6.19 and Theorem 6.20
(a deterministic NLMP is image denumerable), we conclude that a state
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bisimulation on an LMP is a state bisimulation on the encoding NLMP and
vice versa.

The second sufficient condition looks at the σ-algebra Σ(R) induced by
the state bisimulation R. It turns out that if Σ(R) is countably generated,
then R is also a traditional bisimulation.

Theorem 6.21. Let (S,Σ, {Ta | a ∈ L}) be an NLMP and R a symmetric
relation such that Σ(R) is generated by a denumerable family C. Then R is
a traditional bisimulation iff it is a state bisimulation.

Proof. As before, the left to right implication is Lemma 6.19. For the other
implication we proceed as follows. Suppose towards a contradiction that
s R t and Ta(s) 6R Ta(t), that is ∃µ ∈ Ta(s), ∀µ′ ∈ Ta(t) : µ 6R µ′. First we
generate the denumerable algebra F out of C (see below Proposition 3.3). By
Theorem 3.21, this implies that there exists Qi ∈ F such that µ(Qi) 6= µ′(Qi).
The rest of the proof is as in Theorem 6.20.

Logical Characterization. For systems (i.e. LMPs) with no internal non-
determinism, the logic that characterizes bisimulation is very simple: it suf-
fices with a binary conjunction and a modal operator. This logic could have
been equivalently written in a two-level syntax, a first level of formulas valid
on states: φ ::= ⊤ | φ1∧φ2 | 〈a〉ψ, and a second level describing sets of prob-
abilities over states ψ ::= [φ]q. The semantics of the new operators are given
by J〈a〉ψK = τ−1

a (JψK), and J[φ]qK = ∆>q(JφK). We decoupled the modal
operator of (6.1) in order to stress how the logical characterization works.
The first level of the logic forms a π-system on states, and the second level
are the generators on ∆(Σ). The following example due to [13], shows that
for a finitely branching NLMP, the logic that only captures generators in the
second level of the logic is not sufficient. The semantics of this two-level logic
is interpreted over NLMPs as follows

J〈a〉ψK = T−1
a (HJψK) J[φ]qK = ∆>q(JφK)

Example 6.12. Take the discrete NLMP depicted in Figure 6.1. States s
and t are not bisimilar since given a µ ∈ Ta(s), there is no µ′ ∈ Ta(t) such
that µ(Q) = µ′(Q) for all Q ∈ {{x}, {y}, {z}} (which are the only relevant
possible R-closed sets). A logic having modalities that can only describe one
behavior after a label will not be able to distinguish between s and t. For
example, J〈a〉[φ]qK = {s | Ta(s) ∩ ∆>q(JφK) 6= ∅} will always have s and t
together. Observe that negation, denumerable conjunction or disjunction, do
not add any distinguishing power (on an image finite setting).
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Figure 6.1: s and t are not bisimilar

The essential need for a more expressive second level of the logic also
shows that our σ-algebra H(∆(Σ)) in Definition 4.4 cannot be simplified
to σ({H∆>q(Q) : q ∈ Q ∩ [0, 1], Q ∈ Σ}). States s and t in the example
above should be observationally distinguished from each other. Formally,
this amounts to saying that there must be some label a and some measurable
Θ ∈ H(∆(Σ)) such that T−1

a (Θ) separates {s} from {t}. Therefore, the same
must be true for some generator Θ, but this does not hold for the family
{H∆>q(Q) : q ∈ Q ∩ [0, 1], Q ∈ Σ}. The problem is that hit sets do not
transfer intersections nor complements.

The hypothesis is that the logic should accompany the branching of the
nondeterminism. Following that idea, [13, 18] define a two-level logic Lf
where the probabilistic level is able to distinguish between two finite sets of
measures. We will quickly review it and present with more detail the logic
that captures unbounded nondeterminism. The syntax is as follows:

φ ::= ⊤ | φ1 ∧ φ2 | 〈a〉ψ
ψ ::= [ ⊲⊳iqiφi]

n
i=1

where a ∈ L, ⊲⊳i∈ {>,<}, q ∈ Q ∩ [0, 1]. The semantics of the modal and
probabilistic level is:

J〈a〉ψK = T−1
a (HJψK)

J[ ⊲⊳iqiφi]
n
i=1K =

⋂n
i=1∆

⊲⊳iqi(JφiK)

Notice that Ls ⊆ Lf , an that Lf is countable if and only if L is countable. The
fact that Lf is countable is important for the proof of logical characterization
of traditional bisimulation on analytic spaces.

We need the possibility to quantify with both inequalities, > and <. With-
out them, the LTSs shown in Figure 6.2 cannot be distinguished, since bisim-
ulation on nondeterministic models requires some form of negation. The only
formula distinguishing them in Hennessy-Milner logic is 〈a〉¬〈b〉⊤, which is
translated to 〈a〉[ >0〈b〉[ <0⊤]] in our logic.
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Figure 6.2: Two discrete space LTSs showing that [ >qiφi]
n
i=1 is not sufficient

in presence of finitary nondeterminism.

In the following, we show that for image finite NLMPs, the logic Lf
is enough to single out non-bisimilar states, that is, the so called transfer
property can be encoded using the modality.

Lemma 6.22. Let (S,Σ, {Ta | a ∈ L}) be an image finite NLMP. Then for
every pair of states such that s R(Lf ) t and µ ∈ Ta(s), there is a µ′ ∈ Ta(t)
such that ∀φ ∈ Lf , µ(JφK) = µ′(JφK).

Proof. Suppose towards a contradiction that there are s, t with s R(Lf ) t
and there is a µ ∈ Ta(s), such that for all µ′

i ∈ Ta(t) there is a formula
φi ∈ Lf with µ(JφiK) 6= µ′

i(JφiK). Since Ta(t) is finite, there are at most n
different µ′

i. We can choose ⊲⊳i ∈ {>,<}, qi ∈ Q ∩ [0, 1] accordingly to make
µ(JφiK) ⊲⊳i qi ⊲⊳i µ

′
i(JφiK). Take φ = 〈a〉[ ⊲⊳iqiφi]ni=1. Then s ∈ JφK but t /∈ JφK

contradicting s R(Lf ) t.
The main result from [13] (presented also in [18]) says that traditional

bisimilarity is characterized by Lf for finitely branching NLMPs on analytic
state spaces. Its proof is similar to its LMP counterpart (Lemma 6.10).

Lemma 6.23. Let (S,Σ, {Ta | a ∈ L}) be an image finite NLMP, with (S,Σ)
analytic and denumerable L, then ∼t = R(Lf).
Proof. Left to right implication follows from a minor extension of Proposi-
tion 6.8 to include the modal operator 〈a〉[ ⊲⊳iqiφi]ni=1.

For the right to left implication we show that R(Lf) is a traditional
bisimulation, that is,

s R(Lf ) t⇒
(

∀µ ∈ Ta(s), ∃µ′ ∈ Ta(t), ∀Q ∈ Σ(R(Lf )), µ(Q) = µ′(Q)
)

Since Lf is countable, by Theorem 6.9 we have that the previous expression
is equivalent to

s R(Lf) t⇒
(

∀µ ∈ Ta(s), ∃µ′ ∈ Ta(t), ∀Q ∈ σ(JLfK), µ(Q) = µ′(Q)
)
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The above expression is basically Lemma 6.22, where we extend the equality
from values Q ∈ JLfK to values Q ∈ σ(JLfK) using Theorem 3.20 since JLfK
is a π-system.

We present in the following a more general logic that completely charac-
terizes event bisimulation on arbitrary NLMPs.

φ ::= ⊤ | φ1 ∧ φ2 | 〈a〉ψ
ψ ::=

∨

i ψi | ¬ψ | [φ]q

where a ∈ L, the disjunction is denumerable, and q ∈ Q ∩ [0, 1]. We denote
by L the set of all formulas generated by the first production and by L∆

the set of all formulas generated by the second production. Notice that the
countability of the logic is lost, even if we restrict L to be countable.

The semantics is defined with respect to an NLMP (S,Σ, {Ta | a ∈ L}).
Formulas in L are interpreted as sets of states in which they are true, and
formulas in L∆ are interpreted as sets of measures on the state space as
follows:

J⊤K = S J
∨

i ψiK =
⋃

iJψiK

Jφ1 ∧ φ2K = Jφ1K ∩ Jφ2K J¬ψK = JψKc

J〈a〉ψK = T−1
a (HJψK) J[φ]qK = ∆>q(JφK)

In particular, notice that 〈a〉ψ is valid in a state s whenever there is some
measure µ ∈ Ta(s) that makes ψ valid (existential quantification over nonde-
terminism), and that [φ]q is valid in a measure µ whenever q < µ(JφK). As a
consequence, we need the sets JφK and JψK to be measurable in Σ and ∆(Σ),
respectively. Indeed, this follows in the same way we proved it for LMPs, by
induction on the construction of the formula, after observing that all oper-
ations involved in the definition of the semantics preserve measurability (in
particular Ta is a measurable function). For the rest of this section, we fix
JLK = {JφK | φ ∈ L} and JL∆K = {JψK | ψ ∈ L∆}.

We show that L characterizes event bisimulation. This is again an im-
mediate consequence of the fact that σ(JLK), the σ-algebra generated by the
logic L, is the smallest event bisimulation, which is what we aim to prove
in this part of the section. The proof strategy resembles that of Section 6.1
but it is properly tailored to our two level logic. Moreover, such a separation
and the definition of the hit σ-algebra allowed us to find an alternative to
Dynkin’s Lemma (used in Section 6.1 and in the original proof [14]).

The concept of stable family of measurable sets is crucial to the proof of
Theorem 6.28.
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Definition 6.13 (NLMP stable). The family A ⊆ Σ is stable for NLMP
(S,Σ, {Ta | a ∈ A}) if for all a ∈ L, ξ ∈ ∆(A), we have T−1

a (Hξ) ∈ A.

Notice that ∆(A) is the σ-algebra generated by ∆>q(Q) where Q ∈ A,
therefore A is an event bisimulation iff it is a stable σ-algebra.

The key point of the proof is to show that JLK is the smallest stable
π-system, which is stated in Lemma 6.25. The next lemma is auxiliary to
Lemma 6.25.

Lemma 6.24. JL∆K = ∆(JLK).

Proof. JL∆K is a σ-algebra since:

i. ∅ = J[⊤]1K ∈ JL∆K, therefore it is nonempty;

ii. for ξi ∈ JL∆K there are ψi ∈ L∆ such that ξi = JψiK, and hence
⋃

i ξi =
⋃

iJψiK = J
∨

i ψiK ∈ JL∆K; and

iii. for ξ ∈ JL∆K there is ψ ∈ L∆ such that ξ = JψK, and hence ξc = JψKc =
J¬ψK ∈ JL∆K.

Moreover, since J[φ]qK = ∆>q(JφK), every generator set of ∆(JLK) is in JL∆K
and hence ∆(JLK) ⊆ JL∆K.

Finally, it can be proven by induction on the depth of the formula that
JL∆K ⊆ C for any σ-algebra C containing all the sets J[φ]qK = ∆>q(JφK) for
q ∈ Q ∩ [0, 1] and φ ∈ L. Then JL∆K is the smallest σ-algebra containing all
generator sets of ∆(JLK). Therefore JL∆K = ∆(JLK).

Lemma 6.25. JLK is the smallest stable π-system containing S for a given
NLMP (S,Σ, {Ta | a ∈ L}).

Proof. JLK contains S since J⊤K = S and it is a π-system since for Q1, Q2 ∈
JLK there are φ1, φ2 ∈ L such that Q1 = Jφ1K and Q2 = Jφ2K, and hence
Q1 ∩Q2 = Jφ1K ∩ Jφ2K = Jφ1 ∧ φ2K ∈ JLK.

For stability, let ξ ∈ ∆(JLK). By Lemma 6.24, there is ψ ∈ L∆ such that
JψK = ξ. Then T−1

a (Hξ) = T−1
a (HJψK) = J〈a〉ψK ∈ JLK.

Let P be another stable π-system for the NLMP (S,Σ, {Ta | a ∈ L}) con-
taining S. By induction on the depth of the formula we show simultaneously
that JLK ⊆ P and ∆(JLK) ⊆ ∆(P). First note that J⊤K = S ∈ P since P
contains S. Now suppose as induction hypothesis that JφK, Jφ1K, Jφ2K ∈ P
and JψK, JψiK ∈ ∆(P). Then:

i. Jφ1 ∧ φ2K = Jφ1K ∩ Jφ2K ∈ P, because P is a π-system;

ii. J〈a〉ψK = T−1
a (HJψK) ∈ P, because P is stable;
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iii. J
∨

i ψiK =
⋃

iJψiK ∈ ∆(P) and
iv. J¬ψK = JψKc ∈ ∆(P) because ∆(P) is a σ-algebra; and finally,

v. J[φ]pK = ∆>p(JφK) ∈ ∆(P) by definition of generator set of ∆(P).

Lemma 6.26 is auxiliary to Lemma 6.27. It is also significantly simpler
than its related lemma in [14, Lemma 5.4] and its alternative version given
in Lemma 6.12. This is due to our definition of stability and the powerful
technical result from [65].

Lemma 6.26. If P is a stable π-system for the NLMP (S,Σ, {Ta | a ∈ L}),
then σ(P) is also stable.

Proof. First notice that P is stable iff {T−1
a (Hξ) | a ∈ L, ξ ∈ ∆(P)} ⊆ P. By

Lemma 3.39, ∆(P) = ∆(σ(P)). Then {T−1
a (Hξ) | a ∈ L, ξ ∈ ∆(σ(P))} ⊆

P ⊆ σ(P), which proves that σ(P) is stable.
The next lemma is central to the proof that L characterizes event bisim-

ulation, which is then presented in Theorem 6.28.

Lemma 6.27. σ(L) is the smallest stable σ-algebra included in Σ.

Proof. Let A be the smallest stable σ-algebra included in Σ. By Lemma 6.25,
JLK ⊆ A, since A is a stable π-system. Therefore σ(L) ⊆ A since A is also a
σ-algebra. For the other inclusion, we observe that JLK is a stable π-system
because of Lemma 6.25. Then by Lemma 6.26, σ(L) is stable, and thus it
contains A.

Theorem 6.28. The logic L completely characterizes event bisimulations for
NLMPs. In other words, R(L) = ∼e
Proof. Lemma 6.27 establishes that σ(L) is stable, that is, it is an event
bisimulation. Being the smallest, it implies that any other event bisimulation
preserves L formulas.

A consequence of this theorem together with Theorem 6.17 and
Lemma 6.19 is that both traditional and state bisimulation are sound
for L, that is, they preserve the validity of formulas.

Theorem 6.29. ∼t ⊆ ∼s ⊆ ∼e = R(L).

An immediate corollary of this result, together with Lemma 6.23, is that,
for image finite NLMP on analytic spaces, the four notions of behavioral
equivalence coincide.
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Corollary 6.30. For a finitely branching NLMP (S,Σ, {Ta | a ∈ L}) over
an analytic space S, it holds ∼t = ∼s = ∼e = R(Lf ).

Proof. Since JLfK ⊆ JLK, by Proposition 6.3 we have R(L)⊆R(Lf ). By
Lemma 6.23 ∼t=R(Lf ), transforming the two inclusions of Theorem 6.29
into equalities.

Examples separating NLMP bisimulations. In the following, we pro-
vide examples showing that ∼t ( ∼s ( ∼e, therefore strengthening Theo-
rem 6.29. We construct the examples using non-probabilistic NLMPs (Defi-
nition 4.12) with transitions of the form T̃a : S → Σ.

These LTSs with a σ-algebra attached have the following definitions for
event, state and traditional bisimulation. Using the results of Section 4.4,
they could be shown to be equivalent to the already introduced notions of
bisimulation for general NLMPs.

Definition 6.14. Given a non-probabilistic NLMP (S,Σ, {T̃a | a ∈ L}),
where T̃a : (S,Σ)→ (Σ, H(Σ)) we have

i. A sub-σ-algebra Λ of Σ is an event bisimulation if ∀Q ∈ Λ, T̃−1
a (HQ) ∈

Λ.

ii. A symmetric R ⊆ S × S is a state bisimulation if s R t ⇒ ∀Q ∈
Σ(R),

(

s ∈ T̃−1
a (HQ)⇔ t ∈ T̃−1

a (HQ)
)

.

iii. A symmetric R ⊆ S × S is a traditional bisimulation if s R t ⇒
T̃a(s) R(Σ(R)) T̃a(t).

Notice that the measurable notion of traditional bisimulation is weaker
than the (traditional) LTS bisimulation from [44] expressed in Equation (2.2).
The result given in Lemma 6.15 is (obviously) valid for non-probabilistic
NLMP:

Lemma 6.31. Given a non-probabilistic NLMP (S,Σ, {T̃a | a ∈ L}) and a
symmetric relation R ⊆ S×S, R is a state bisimulation iff Σ(R) is an event
bisimulation.

Next, we present the example that separates traditional bisimulation from
the other ones. The proof is reported in Theorem 6.33.

Example 6.15. Consider the standard Borel space (S1,Σ1) = ([0, 1]⊎ [2, 3]⊎
{s, t, x},B([0, 1]⊎[2, 3]⊎{s, t, x})), where {s, t, x} ⊆ R\[0, 3]. Let V be a non-
Borel subset of [2.5, 3]. Take the injection [0, 1] → [2, 3] \ V , that contracts
linearly [0, 1] to [2, 2.5], and the injection [2, 3] \ V → [0, 1] that moves the
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points to the left by 2. By the Cantor-Bernstein-Schröeder Theorem [1], there
is a bijection f between [0, 1] and [2, 3] \ V (they are equinumerous). The
continuous label set is L1 = {a} ⊎ [0, 1], and the transition function T̃x is
defined as follows:

T̃a(s) = [0, 1]

T̃a(t) = [2, 3]

T̃r(r) = T̃r(f(r)) = {x} if r ∈ [0, 1]

T̃c(y) = ∅ otherwise.

It can be seen that S1 = (S1,Σ1, {T̃x | x ∈ L1}) is a non-probabilistic NLMP
conforming Definition 4.12. This non-probabilistic NLMP is schematically
depicted in Figure 6.3.

We also define the family A =
{

{s, t}, {r, f(r)}r∈[0,1], {x}
}

and the rela-
tion R =R(σ(A)).

s t

x

a a

0 1 2 2.5 3

V

[0, 1] [0, 1]

Figure 6.3: Non-probabilistic NLMP S1 showing that state and traditional
bisimilarity differ.

Lemma 6.32. σ(A) is an event bisimulation and R is a state bisimulation,

Proof. We first check that σ(A) is an event bisimulation. Observe that for
any r ∈ [0, 1], {r, f(r)} is not separable in σ(A). Thus for the label a and
for all Q ∈ σ(A), T̃−1

a (HQ) is either empty or equal to {s, t} and hence it
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belongs to σ(A). For the continuous labels r ∈ [0, 1], T̃−1
r (HQ) is nonempty

iff x ∈ Q, and in that case T̃−1
r (HQ) = {r, f(r)} ∈ σ(A).

Then, to show that R is a state bisimulation, by Lemma 6.31 it suffices to
show that T̃−1

x (HQ) ∈ Σ1(R) if Q ∈ Σ1(R). We divide again by labels. For
r ∈ [0, 1], T̃−1

r (HQ) is nonempty only if x ∈ Q, and in this case T̃−1
r (HQ) =

{r, f(r)}. Therefore T̃−1
r (HQ) is R-closed and Σ1-measurable. For label a,

T̃−1
a (HQ) ∈ 2{s,t}, so, the only possibility not to obtain an R-closed set is

separating s and t. If we want to obtain {s} we have to take a measurable
set Q ⊆ [0, 1]. But we also need that Q is R-closed, so Q needs to have at
least one point in [2, 3]\V , therefore t is also in the pre-image. The remaining
choice is looking for measurable subsets of V since T̃−1

a (HV ) = {t}, however
there is no proper subset of V that is R-closed, and V itself is not Borel
measurable.

Theorem 6.33. State bisimilarity (respectively, event bisimilarity) and tra-
ditional bisimilarity differ in S1.

Proof. It suffices to show that s and t are not traditionally bisimilar. That is,
if s and t are not traditionally bisimilar we are done because, by Lemma 6.32,
s ∼s t and s ∼e t in S1.

First notice that for all 0 ≤ r ≤ 1 we have r 6∼t y if y /∈ {r, f(r)} since
T̃r(y) is nonempty iff y ∈ {r, f(r)}. Therefore {r, f(r)} is ∼t -closed for every
0 ≤ r ≤ 1 and hence {r, f(r)} ∈ Σ1(∼t).

In order to show a contradiction, we now assume s ∼t t and take y ∈ V ⊆
[2.5, 3]. Since y ∈ T̃a(t), by definition of traditional bisimulation, there must
be 0 ≤ r ≤ 1 such that y R(Σ1(∼t)) r. However 1 < y and, by construction,
y is not in the image of f . Therefore {r, f(r)} ∈ Σ1(∼t) separates y from
r. So, for every 0 ≤ r ≤ 1, it does not hold that y R(Σ1(∼t)) r, which
contradicts the fact that s ∼t t.

Since ∼s ⊆ ∼e, traditional bisimilarity and event bisimilarity also differ
in S1.

In the final part, we prove that the largest event bisimulation ∼e is not
contained in ∼s. We do this by slightly modifying S1. Instead of a nonmea-
surable set V ⊆ [2.5, 3] we pick the interval I = (2.5, 3], and add self-loop
transitions in the state x through the new label b5.

Example 6.16. Take the standard Borel space (S2,Σ2) = ([0, 1] ⊎ [2, 3] ⊎
{s, t, x},B([0, 1] ⊎ [2, 3] ⊎ {s, t, x})), where {s, t, x} ⊆ R \ [0, 3]. Let I be the
measurable interval (2.5, 3]. We again establish a bijection f between [0, 1]

5Carlos Budde pointed out a mistake in our original proof in [17, Theorem 6.9]. The
proof we present here has also appeared in [10].
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and [2, 3]\I = [2, 2.5]. The continuous label set is L2 = {a, b}⊎ [0, 1], and the
transition function T̃x is similar to that of Example 6.15 adding the self-loop
in x through label b:

T̃a(s) = [0, 1]

T̃a(t) = [2, 3]

T̃r(r) = T̃r(f(r)) = {x} if r ∈ [0, 1]

T̃b(x) = {x}
T̃c(y) = ∅ otherwise.

S2 = (S2,Σ2, {T̃x | x ∈ L2}) is a non-probabilistic NLMP. It is schematically
represented in Figure 6.4.

We again define the family A =
{

{s, t}, {r, f(r)}r∈[0,1], {x}
}

and the rela-
tion R =R(σ(A)).

s t

x

a a

0 1 2 2.5 3

I

[0, 1] [0, 1]

b

Figure 6.4: Non-probabilistic NLMP S2 showing that event and state bisim-
ilarity differ.

Lemma 6.34. I /∈ σ(A).

Proof. It is clear that every member of σ(A) is countable or has a countable
complement, from which the lemma follows.
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In the following we prove that R =∼e using Proposition 6.3 and showing
that σ(A) is the smallest event bisimulation for S2.

Lemma 6.35. For non-probabilistic NLMP S2 = (S2,Σ2, {T̃x : x ∈ L2}),
σ(A) is the smallest event bisimulation.

Proof. The proof of Lemma 6.32 can be reused. We only have to add the
minor observation that T̃−1

b (HQ) is either ∅ or {x}, concluding that σ(A) is
an event bisimulation for S2.

Let Λ ∈ Σ2 an arbitrary stable σ-algebra for NLMP S2 (Definition 6.13).
In particular, S2 ∈ Λ, and we calculate:

T−1
a (HS2

) = {s, t}
T−1
r (HS2

) = {r, f(r)}, ∀r ∈ [0, 1]

T−1
b (HS2

) = {x}

Since Λ is NLMP S2 stable, {{s, t}, {r, f(r)}r∈[0,1], {x}} = A ⊆ Λ. By Propo-
sition 3.1, we conclude σ(A) ⊆ Λ, so it is the smallest stable σ-algebra for
S2, that is, the smallest event bisimulation for S2.

Theorem 6.36. Event and state bisimilarity differ in S2.

Proof. Since (s, t) ∈ R = ∼e, we just have to show that s 6∼s t. Observe that
I ∈ Σ2(R). If s and t were state-bisimilar, by Definition 6.14, it would be the
case that s ∈ T̃−1

a (HI) iff t ∈ T̃−1
a (HI). But this is absurd since T̃a(s)∩ I = ∅

and 3 ∈ T̃a(t) ∩ I.

6.3 Concluding Remarks

In this Chapter we reorganized the material found in [17], first revisiting
the LMP notions of bisimulations and logical characterization to introduce
the concepts and proof ideas in a simpler context. Some proofs for LMPs
are new, most notably the proof corresponding to [14, Lemma 5.4]. That
lemma has a small but solvable flaw in its proof. Besides, we used a slightly
different hypothesis for the Dynkin Lemma (λ-systems instead of d-systems).
Therefore we give an alternative proof in Lemma 6.12 based on the main idea
underlying [65, Lemma 3.6]. The aforementioned lemma is used later in the
proof of the logical characterization of event bisimulation for NLMPs.

In the proofs of Lemma 6.12 and Lemma 6.26 (required to show that
event bisimilarity is completely characterized by Ls and L, respectively), the
use of µ(S) = 1 is essential to capture complements. Therefore the logical
characterization of event bisimulation is only valid for probability measures.
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This can be easily generalized to finite measures including subprobabilities.
However, for σ-finite measures it should be changed. One possibility, yet to
be explored, is that the state logic captures an algebra instead of a π-system.
Having this structure, the monotone family theorem (Theorem 3.10) can be
applied to avoid any class of complementation in the proofs.

The logic L for uncountable branching NLMPs is similar (it was developed
at the same time) to the logic given in [52]. The main difference is that
we structured it better by considering two kinds of formulas: one that is
interpreted over states, and the other that is interpreted over probability
measures.

Counterexample 6.12 not only showed the need of a more expressive logic
than Ls, but it also evidenced another aspect where the definition of NLMPs
is tight: the generators H∆>q(Q) are not enough to generate a hit σ-algebra
that captures finite nondeterminism, not to mention denumerable or contin-
uous.

It is important to remark that there are weaker conditions than restricting
NLMPs to finite nondeterminism to equate traditional and state bisimulation.
One possibility is restricting to image denumerable NLMPs, other possibility
is that the partitions induced in Ta by the bisimulation relation are also
denumerable, and finally we could restrict to a measurable space such that
Σ(R) is countably generated.

Some additional observations on the counterexamples 6.15 and 6.16 are
in order. First we restated the systems to conform non-probabilistic NLMPs
of the form S → Σ, instead of working in the restriction to Dirac measures
S → ∆(Σ)|δ(S). In doing so, we rephrased the three notions of bisimilarity
for these “measurable” LTSs. Second, counterexample S1 in Theorem 6.33 re-
lies on the fact that a state bisimulation cannot distinguish a non-measurable
set V while a traditional bisimulation can. From our point of view, such dis-
tinction should not be possible since V is not measurable. Third, counterex-
ample S2 in Theorem 6.36 makes a distinction on the measurable set I that
the event bisimulations cannot distinguish. In our opinion, such distinction
should be observed since a possible scheduler may lead to such set of states
with certain probability. Notice that in this example, states in I do not al-
low the system to reach state x from t, while x can always be reached from
s. In this sense, we argue that state bisimulation is the most appropriate
definition.

This is rather disappointing since the logic L has a natural definition but,
as it completely characterizes event bisimulation, it will not be able to test
the presence of states like those in I in S2. This is due to the fact that the
logic cannot test transitions bearing continuously many labels.
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For NLMPs with structure on the labels (S,Σ,ΣL, T ), the notions of
bisimulations have to be revisited, most notably the event bisimulation. Also
the logic should be updated to cover measurable modalities in the form 〈A〉ψ,
with A ∈ ΣL.

The examples S1 and S2 should also be revisited for NLMPs with struc-
ture on the labels. First checking if they are conforming to the defini-
tion, and then reviewing if they still serve as separating examples. Ob-
serve that S1 could have been used instead of Example 4.10. S1 con-
forms to Definition 4.9 but T : S → ΣL ⊗ ∆(Σ) is not measurable, since
T−1(H[0,1]×{x}) = [0, 1] ⊎ ([2, 3] \ V ). This might be showing that we have to
strengthen Definition 4.9, to avoid the problematic S1.

We are also trying to refine the idea of event bisimulation and the logic
so that they can distinguish situations like the one shown by the NLMP S2.
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Chapter 7

Schedulers

In this chapter we show how to resolve the nondeterminism (external and
internal) by means of history-dependent randomized schedulers. Once the
nondeterminism has been resolved by probabilistic choices on an NLMP, the
system is purely stochastic and a measure on traces of executions can be
readily given.

A trace or path is a sequence of states, labels and measures, i.e. they live
in a product space. Therefore, we will make use of different results on prod-
uct σ-algebras and product measures as well as different results concerning
transition measures.

This section extends [67], where the particular case over continuous time
Markov decision processes (CTMDP) was developed. The results obtained
here are similar, but they differ in the tools used in the proofs.

7.1 Constructing a Path Measure

We take the standard approach of resolving nondeterminism, that is, we
resort to policies, adversaries or schedulers [54,64]. Schedulers are functions
that, given some information about the evolution of the system to the current
state, they choose over all outgoing transitions in a probabilistic measure.
The kind and amount of information taken by the function varies, ranging
from taking into account just the current state (memoryless) to considering
all the previous states, labels and distributions that were traversed up to the
current state (history dependent). The applicability of these methods are
strongly related to the power of the scheduler [3, 29]. Hence, we define it in
the most general way so that the definition subsumes all known types.

First, we define the set of paths and its underlying σ-algebra.

123
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Definition 7.1 (Paths). Let (S,Σ) be the measurable space of states, (L,ΣL)
the measurable space of labels, and (∆(S),∆(Σ)) the measurable space of
σ-finite measures. The measurable space of paths of length n is

(Path1,ΣPath1)
.
= (S,Σ)

(Pathn+1,ΣPathn+1)
.
= (S × (L×∆(S)× S)n,Σ⊗ (ΣL ⊗∆(Σ)⊗ Σ)n)

We can take the (disjoint) sum of all finite paths of length n and define the
measurable space of finite paths :

(Path⋆,ΣPath⋆) = (
⊕

i Path
i,
⊕

iΣPathi)

We define the measurable space on infinite paths as follows:

(Pathω,ΣPathω) = (S × (L×∆(S)× S)ω,Σ⊗ (ΣL ⊗∆(Σ)⊗ Σ)ω)

Finally, the set of all paths and its σ-algebra are the sum of finite and infinite:

(Path,ΣPath) = (Path⋆ ⊕ Pathω,ΣPath⋆ ⊕ ΣPathω)

For α ∈ Pathn, α = s1a2µ2s2 . . . anµnsn, the last element is last(α)
.
= sn.

Schedulers are defined on NLMPs with structure on the labels
(S,Σ,ΣL, T ) (see Definition 4.9). Since in this chapter we only use NLMPs
with structure on the labels, we will shortly refer to them only as NLMPs.
Schedulers are functions from Path⋆ to a probability distribution concentrated
on the outgoing transitions.

Definition 7.2 (Scheduler). The function η : Path⋆ → ∆=1(L×∆(S)) is a
scheduler of NLMP (S,Σ,ΣL, T ), if it is a measurable function, and for all
α ∈ Path⋆, η(α)((L×∆(S)) \ T (last(α))) = 0.

We remark that we are bonding the scheduler to the model, since it can
only choose among existing outgoing transitions of last(α). Also notice we
are making use of the added structure of the NLMPs, namely the σ-algebra
ΣL on labels and that T (s) ∈ ΣL ⊗∆(Σ), so η(α) is well defined.

Having resolved the nondeterminism, the quantification of the scheduler
and the model can be combined [58].

Definition 7.3 (Combined transition). Let (S,Σ,ΣL, T ) be an NLMP such
that T contains only σ-finite measures. Let η be a scheduler on such NLMP.
The combined transition µη(·)(·) : Path⋆×(ΣL⊗∆(Σ)⊗Σ)→ [0, 1], is defined:

µη(α)(A× ξ ×Q) .=
∫

A×ξ

(λν : ν(Q))(µ) η(α)(da, dµ)

where A ∈ ΣL, ξ ∈ ∆(Σ), Q ∈ Σ.
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Observe that the integral is well-defined since (λν : ν(Q)) : ∆(S) →
[0, 1] is measurable. The next lemma shows that a combined transition is
a measure in its second coordinate and a measurable function in its first
coordinate, therefore it is a conditional measure.

Lemma 7.1 (Combined transition is a conditional measure). Let the com-
bined transition µη be as in Definition 7.3. For any finite path α ∈ Path⋆, the
combined transition µη(α)(·) extends uniquely to the following σ-finite mea-
sure:

µη(α)(M) =

∫

(λν : ν(M|a,µ))(µ) η(α)(da, dµ)

where M ∈ ΣL⊗∆(Σ)⊗Σ. Moreover, for all M ∈ ΣL⊗∆(Σ)⊗Σ, µη(·)(M)
is a measurable function.

Proof. First we prove that given a fixed α ∈ Path⋆, µη(α)(·) defines a σ-finite
measure. We apply the product measure theorem (see Theorem 3.42). The
measurable spaces are (S1,Σ1) = (L × ∆(S),ΣL ⊗ ∆(Σ)), and (S2,Σ2) =
(S,Σ). The measure on the first experiment is µ1(A1) = η(α)(A1) with
A1 ∈ ΣL ⊗ ∆(Σ). The conditional measure of the second experiment given
the first experiment value is µ2((a, µ), A2) = ((λν : ν(A2))◦π2)((a, µ)), where
(a, µ) ∈ L×∆(S) and A2 ∈ Σ.

We have to check that µ1 is σ-finite, and µ2 is uniformly σ-finite in its
second coordinate. The scheduler is a probability measure, therefore µ1 is
σ-finite. For the conditional probability we develop the expression where
(a, µ) ∈ L×∆(S), and A2 ∈ Σ:

µ2((a, µ), A2) = ((λν : ν(A2)) ◦ π2)((a, µ)) = µ(A2)

Since the pairs (a, µ) come from the NLMPs that is restricted to σ-finite
measures (the support of the scheduler is on transitions), µ2 is uniformly
σ-finite in its first coordinate. Besides µ2(·, A2) is measurable for all A2 ∈ Σ2

since it is a composition of two measurable functions. The projection π2
is measurable by definition of the product σ-algebra, and (λν : ν(A2)) is
measurable by the definition of σ-algebra on measures.

Secondly we prove that µη(·)(M) is measurable for allM ∈ ΣL⊗∆(Σ)⊗Σ.
We will use the intermediate result of Fubini theorem (see Theorem 3.44) that
establishes that

∫

f(x1, x2)µ(x1, dx2) is well defined and measurable on x1.
We take (S1,Σ1) = (Path⋆,ΣPath⋆) and (S2,Σ2) = (L×∆(S),ΣL⊗∆(Σ)).

The integrand is f(α, (a, µ)) = ((λν : ν(M|(a,µ))) ◦ π2)((a, µ)), where α ∈
Path⋆, and (a, µ) ∈ L × ∆(S). The transition measure is µ2(α,A2) =
η(α)(A2), with α ∈ Path⋆ and A2 ∈ ΣL ⊗∆(Σ).
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Checking that µ2(α,A2) = η(α)(A2) is a uniformly σ-finite transition
measure is direct, given that the scheduler is a transition probability.

We prove now that f(α, (a, µ)) is measurable for all M ∈ ΣL⊗∆(Σ)⊗Σ,
i.e. that (λν : ν(M|(a,µ)))(µ) : L×∆(S)→ [0, 1] is measurable. For this, we
use the the monotone family theorem (see Theorem 3.10). Let the good sets
be

G = {M ∈ ΣL ⊗∆(Σ)⊗ Σ | ((λν : ν(M|(a,µ))) ◦ π2)((a, µ)) is measurable}

The family of finite disjoint unions of measurable rectangles
⊎n
i=1(Ai×ξi×Qi)

generates ΣL ⊗ ∆(Σ) ⊗ Σ, besides they form an algebra. However, we still
have to check that they are good. We develop the expression for M =
⊎n
i=1(Ai × ξi ×Qi):

((λν : ν(
⊎n
i=1(Ai×ξi×Qi)|(a,µ)))◦π2)((a, µ)) =

∑n
i=1(λν : ν(Qi))(µ)χAi

(a)χξi(µ)

The last expression is measurable since it is the sum of products of measurable
functions. If we verify that G is a monotone family, we are done, and hence
f(α, (a, µ)) is measurable for all M ∈ ΣL ⊗∆(Σ)⊗ Σ.

Observe that ((λν : ν(M|(a,µ))) ◦ π2)((a, µ)) = µ(M|(a,µ)). Let {Mi}i ⊆ G.
If Mi ր M , then by continuity of the measure (see Theorem 3.18), ((λν :
ν(Mi|(a,µ))) ◦ π2)((a, µ))ր ((λν : ν(M|(a,µ))) ◦ π2)((a, µ)). Given that for all
i, ((λν : ν(Mi|(a,µ))) ◦ π2)((a, µ)) is measurable, by Theorem 3.26 its limit is
also measurable. The case Mi ց M is similar, but Theorem 3.18 requires
that ((λν : ν(M1|(a,µ))) ◦ π2)((a, µ)) < ∞. This can be saved by taking
intersections with a partition S =

⊎

iBi such that µ(Bi) < ∞, and such a
partition exists since all the measures from the NLMPs are σ-finite.

Combined transition is the main ingredient to define measures on paths.

Definition 7.4 (Finite path measure). Let (S,Σ,ΣL, T ) be an NLMP with
σ-finite measures. Let η be a scheduler on such NLMP. If ν ∈ ∆(S) is the
σ-finite initial measure on states, the finite path measure on the measurable
rectangles of ((Pathn,ΣPathn))n is defined recursively by:

P 1
ν,η(M1)

.
= ν(M1)

P n+1
ν,η ((

∏n
i=1Mi)×Mn+1)

.
=

∫

(
∏n

i=1Mi)
µη(α)(Mn+1)P

n
ν,η(dα)

where M1 ∈ Σ, for 1 < i ≤ n + 1, Mi ∈ ΣL ⊗ ∆(Σ) ⊗ Σ, and µη is the
combined transition of Definition 7.3.
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Observe that this is well defined since µη(α)(M) is a measurable function
in its first coordinate. However it is still needed that P n

ν,η, the σ-finite path
measure extends uniquely to the whole σ-algebra ΣPathn .

Lemma 7.2. Let P n
ν,η be as in Definition 7.4. Then for all n, P n

ν,η extends
uniquely to a σ-finite measure on the whole σ-algebra of ΣPathn.

Proof. We fix n and apply the finite product measure theorem (see Theo-
rem 3.46) with measurable spaces ((Si,Σi))

n
i=1 = ((Pathi,ΣPathi))ni=1. The

initial measure on states is µ1(A1) = ν(A1), with A1 ∈ Σ. For 1 < i ≤ n, the
uniformly σ-finite conditional measures are defined by µi(s1, . . . , si−1, Ai) =
µη(s1,...,si−1)(Ai), where s1 ∈ S, for all 1 ≤ j < i, sj ∈ L × ∆(S) × S, and
Ai ∈ ΣL ⊗∆(Σ)⊗ Σ.

The previous result allows to define the measure spaces of finite paths.

Definition 7.5 (Finite path measure spaces). The measure space for paths
of length n is (Pathn,ΣPathn , P n

ν,η), where P
n
ν,η is the σ-finite measure of Defi-

nition 7.4. The sum measure space (see Definition 3.35) of all the finite path
measures is (Path⋆,ΣPath⋆ , P ⋆

ν,η), where P
⋆
ν,η(A) = P i

ν,η(A) if A ∈ ΣPathi.

Notice that if the NLMP is restricted to probability measures, Lemma 7.1
defines a transition probability, and Lemma 7.2 defines a probability measure
for finite paths. Therefore we can define the probability measure for infinite
paths.

Definition 7.6. Let (S,Σ,ΣL, T ) be an NLMP with probability measures.
Let η be a scheduler on such NLMP. If ν ∈ ∆=1(S) is the initial probability
measure on states, then the probability measure on the measurable rectangles
of (Pathω,ΣPathω) (see Definition 3.13) is defined by:

P ω
ν,η((

∏n
i=1Ai)× (

∏

i(L×∆(S)× S))) .= P n
ν,η(

∏n
i=1Ai)

where A1 ∈ Σ and for 1 < i ≤ n Ai ∈ ΣL ⊗∆(Σ)⊗ Σ.

This probability measure extends uniquely to the whole σ-algebra ΣPathω .

Lemma 7.3. Let P ω
ν,η be as in Definition 7.6. Then, P ω

ν,η extends uniquely
to a probability measure on the whole σ-algebra of ΣPathω .

Proof. Let (S1,Σ1) = (S,Σ) and for 1 < i ≤ n, (Si,Σi) = (L×∆(S)×S,ΣL⊗
∆(Σ)⊗Σ) be measurable spaces. Let µ(

∏n
i=1Ai) = P n

ν,η(
∏n

i=1Ai), where P
n
ν,η

is from Definition 7.4, A1 ∈ Σ, and for 1 < i ≤ n Ai ∈ ΣL⊗∆(Σ)⊗Σ. Then
the result follows directly by Theorem 3.47.
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Our previous result is the base to define trace probability. A trace proba-
bility on an NLMP is a probability measure on the infinite sequence of labels.
It is induced by a scheduler and an initial probability distribution.

Definition 7.7 (Trace probability). Let S = (S,Σ,ΣL, T ) be an NLMP
with probability measures. Let η be a scheduler on such NLMP, and ν an
initial probability on S. If trace : Pathω → Lω is the projection function,
i.e. trace(s1a2µ2s2a3µ3s3 . . . ) = a2a3 . . . , we define the trace probability T ∈
∆(Lω) of NLMP S induced by scheduler η and initial distribution ν as follows:

Tν,η = P ω
ν,η ◦ trace−1

where P ω
ν,η is the probability measure on infinite paths of Definition 7.6.

Trace probability is a probability measure by Proposition 3.19, since trace
is a measurable function. The set of all trace probabilities is the so called
trace semantics [32].

Definition 7.8 (Trace semantics). Let S = (S,Σ,ΣL, T ) be an NLMP with
probability measures. The trace semantics of S is a set of trace probabilities
induced by schedulers η and initial probability distributions ν over S:

T = {Tν,η | ν ∈ ∆(S), η is a scheduler of S}



Chapter 8

Conclusions

In this thesis we proposed a definition of labeled nondeterministic conditional
measures Ta : S → ∆(Σ). This definition is sound with respect to Measure
Theory, and it is the main ingredient of the NLMPmodel. The extension from
labeled conditional (sub)probabilities τa : S → ∆(S) and its related LMP
model is far from trivial. This is why the cover of this dissertation is decorated
with the definition of the transition function for NLMPs (Definition 4.3).
The other cornerstones of this thesis are the hit σ-algebra (Definition 4.4)
and state bisimulation (Definition 6.9).

Throughout this thesis we were very careful not to put more structure
than needed in the definitions, and the definition of NLMPs itself represents
a clear example of this claim. Most of the definitions are in a pure measure
theoretical setting, avoiding, whenever possible, any topological structure.
Our definitions and results are mostly topology-free [65].

We obtained a good amount of results, but a lot is yet to be done. Next
we summarize our contributions and what will come in the future.

8.1 Achievements

The following list provides a summary of the contributions of this thesis.

• Measure theoretic topology-free definition of labeled nondeterministic
conditional measures, that is, the transition function of NLMPs.

• The use of a hit σ-algebra H(Σ) to capture existential quantification.

• Two variations of the definition of NLMPs, one encompassing a less
expressive model (LTS with a σ-algebra attached), while the other
strengthens the definition of NLMPs including structure to the labels.
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• An initial description on how to use the generators of the σ-algebra of
measures ∆(Σ) and denumerable set operations as a language to specify
continuous nondeterministic choices of continuous probabilities.

• The semantics of three different models that involve nontrivial use of
nondeterministic probabilistic choice.

• Comparisons with established similar models that can represent con-
tinuous nondeterminism in probabilistic choice.

• Three alternative definitions of bisimulation, proving strict inclusions
between them in the general setting.

• An infinitary logic characterizing event bisimulation, and a finitary
logic characterizing all three bisimulations on a finitely branching
NLMPs restricted to analytic spaces.

• A sound definition of scheduler for NLMPs with structure on the labels,
giving rise to probabilistic trace semantics.

8.2 Future Research Directions

Event bisimulation was shown to be too coarse. This was exposed in Ex-
ample 6.16. Traditional bisimulation on the contrary is too fine, since it
distinguishes states over sets that are not measurable (see Example 6.15).
It seems that the correct generalization is the intermediate notion of state
bisimulation for NLMPs, but still more evidence is needed.

Example 4.10 suggests that some σ-algebra structure is also needed in
the labels. Moreover, Example 6.15 is still conforming to the definition of
NLMPs with structure on the labels (Definition 4.9), and it might be the
case it also has to be discarded. If we strengthen the transition relation
asking that T : S → ΣL⊗∆(Σ) to be measurable, Example 6.15 is discarded
since the transition relation is not measurable; however, Example 6.16 is still
conforming. If this research direction is taken, new definitions of all three
bisimulations and a new logic should be given, and there, Example 6.16
should be revisited. For the traditional bisimulations the modifications are
minor since they do not take into account the structure on the labels, and
T|a has the desired properties. The state bisimulation situation with respect
to this new structure is somehow similar. The event bisimulation will differ
since the measurability of T now deals with a more complex hit σ-algebra.
The modifications to be done in the logic are not minor. The modal operator
should be able to capture measurability of the new transition function, i.e.
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T−1(HA) where A ∈ ΣL ⊗ ∆(Σ). The second level of the logic should be
restructured, and it is not clear how to do that.

Currently we are busy working on the definition of NLMPs with structure
on the labels T : S → ΣL ⊗ ∆(Σ), where the hit σ-algebra attached to the
image is generated by the smaller family {HA×ξ | A ∈ ΣL, ξ ∈ ∆(Σ)}. In
this case the logic is easier to give: the modality uses measurable sets of
labels instead of individual labels. The syntax of modality is 〈A〉ψ, with
A ∈ ΣL, while the semantics is defined as J〈A〉ψK = T−1(HA×JψK). However
it is not clear if this coarser version has enough power to differentiate some
continuous labeled systems, like “lines” in the form T (s) = {(t, δt) | t ∈
[0, 1]}. Notice that examples of this kind already appeared in Section 5.2.
We already proved that under this definition of NLMPs, related hit sets, and
previously discussed logic, it its not the case that s ∼e t in Example 6.16.
The formula 〈a〉¬[〈[0, 1]〉[⊤]>0]>0 differentiates s and t. These results are
partially explored in [10].

It would be interesting to draw conclusions whether NLMPs can capture
infLMPs or not. We have seen that under reasonable restrictions of the σ-
algebra the realizations of a super-additive functions are ∆(Σ) measurable.
It remains to be proven that the measurability of the super-additive transi-
tion function is inherited by the NLMP translation. In general the infLMP
model is very promising, although it lacks a definition of a scheduler. Once
Desharnais et al. obtain a definition of scheduler in the infLMP model, this
scheduler should be compared to ours.

We aim to obtain a result on probabilistic trace equivalence for bisimilar
states, the so called execution correspondence lemma [58]. Namely, if s ∼
t for some notion of bisimilarity ∼ ∈ {∼t,∼s,∼e}, then the probabilistic
trace semantics with initial probability δs, is equal to the probabilistic trace
semantics with initial probability δt. Although this is a desired result, it has
eluded us so far.

One advantage of NLMPs with respect to LMPs, besides the obvious in-
corporation of internal nondeterminism, is that the former do not restrict to
(sub)probability measures. The definition includes every measure, from gen-
eral ones to probabilities. We carefully pointed out where some restrictions
(usually σ-finite measures) were needed. However in the proofs involving the
logic, finiteness of the measures is strongly used. It would be desirable to
avoid this restriction, and in doing so, perhaps we have to move to a slightly
more complex logic also capturing complements at the state level (techni-
cally speaking, we need an algebra). Moreover, it would be important to
enhance those results providing examples on the fields of Economics, Physics
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or Biology that require the use of NLMPs with σ-finite measures beyond
(sub)probabilities.

The aspect of using ∆⊲⊳q(Q) and countable set operations as a specifica-
tion language for nondeterministic probabilistic choices, is promising, how-
ever more work is needed. Not only Example 4.7 is important on showing
an NLMP with a continuous nondeterminism that depends on the current
state. It also shows a promising line to explore in the field of Model Check-
ing. Systems in this form can be checked against formulas of the logic L.
Take an NLMP (Rk,B(Rk), {Ta | a ∈ L}), where Ta(x) is given by means of
set operations on generators ∆⊲⊳q(x)([p1(x), p2(x)]), and the functions q, p1, p2
are restricted to be linear. Then the satisfiability relation between formulas
in L and NLMP models, reduces to the satisfiability of a Boolean expres-
sion on linear inequalities over interval endpoints. From this point on, a
satisfiability modulo theories (SMT) solver could resolve the model check-
ing problem. At first sight the only drawback is that model and formulas
basically use the same language. This language is good for specification of
properties, since very general properties can be captured by small expres-
sions. However for concrete model description the set expression would need
many ∆⊲⊳q(x)([p1(x), p2(x)]), or even denumerably many as in the measurable
expression for δ(Q), rendering the model checking procedure noncomputable.
Approximation and abstraction techniques should be developed in order to
alleviate this problem.

An NLMP plus a scheduler defines a path probability. By the Radon-
Nikodym theorem [2] we can do the converse, namely if a path probability
is “compatible” with an NLMP [67], then there is a scheduler that gives rise
to this path probability. This would show a kind of completeness result for
schedulers, since there is no path probability out of a given NLMP that is not
generated by a scheduler. A result like this would extend [67] from CTMDP
to much more general systems.

Finally this thesis can be considered as an important first step towards a
modeling formalism to capture continuous systems as is. Once we establish
simulation and approximation results, discrete approximated systems that
are sound with respect to a subset of formulas could be verified.
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