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FaMAF, Universidad Nacional de Córdoba - CONICET
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Abstract. The technique of partial order reduction (POR) for proba-
bilistic model checking prunes the state space of the model so that a
maximizing scheduler and a minimizing one persist in the reduced sys-
tem. This technique extends Peled’s original restrictions with a new one
specially tailored to deal with probabilities. It has been argued that not
all schedulers provide appropriate resolutions of nondeterminism and
they yield overly safe answers on systems of distributed nature or that
partially hide information. In this setting, maximum and minimum prob-
abilities are obtained considering only the subset of so-called distributed
or partial information schedulers. In this article we revise the technique
of partial order reduction (POR) for LTL properties applied to proba-
bilistic model checking. Our reduction ensures that distributed schedulers
are preserved. We focus on two classes of distributed schedulers and show
that Peled’s restrictions are valid whenever schedulers use only local in-
formation. We show experimental results in which the elimination of the
extra restriction leads to significant improvements.

1 Introduction

Markov decision processes (MDPs) are widely used in diverse fields ranging
from ecology to computer science. They are useful to model and analyse systems
in which both probabilistic and nondeterministic choices interact. Particularly,
composition oriented versions of MDPs like probabilistic automata [21] or prob-
abilistic modules [12] are aimed to model concurrent and distributed systems.

In the area of system verification, model checking stands out as a model analy-
sis technique for MDPs [22,3]. Moreover, probabilistic model checkers have been
developed, notably PRISM [20] and LiQuor [7]. Probabilistic model checking is
a push-button technique to calculate maximum and minimum probability values
of the satisfaction of a temporal formula in a given model. To obtain these values,
the technique requires to universally quantify on all possible resolutions of the
inherent nondeterminism of the MDP. The resolution of such nondeterminism
is carried out by the so-called schedulers (called also adversaries or policies, see
e.g. [22,3,21]). Schedulers transform MDPs into Markov chains by selecting one
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Fig. 4. A POR based reduction

of the enabled transitions at every step in the execution of the system. Therefore,
the goal of probabilistic model checking is to find the maximum (or minimum)
probability value of a formula over all possible schedulers. Since nondeterminism
is an abstraction of deterministic choices in the implementation, concurrent be-
haviour, or even unknown probabilistic behaviour of the system, such maximum
and minimum values are only safe bounds on the actual probability that the
formula holds.

In several previous works, it has been argued that quantifying over all possible
schedulers yields overly pessimistic bounds in case the components of the system
do not share all information [11,12,6,5,13,15,14]. This can be seen in the follow-
ing example. Consider two persons: one of them tosses a coin and the other one
guesses heads or tails. This can be modelled as two processes, respectively de-
picted as T and G in Fig. 1. (Actions are written in an I/O fashion, with suffixes
? and ! representing input and output respectively.) Process T first tosses a coin
that may land heads (h!) or tails (t!) with probability 1

2 each. If, after tossing
heads, T is notified of a guessed heads (gh?), then T looses the game (repre-
sented with !!¨ ); if instead it is notified of a guessed tails (gt?), then T wins the
game. The case in which T tossed tails is dual. In addition, if T is notified too
early (before tossing the coin), the game is aborted. (Since we deal with input
enabled systems, this modelling choice turns to be a convenient simplification.)
Process G is simpler: it proceeds to guess by choosing heads (ch!) or tails (ct!)
and then it notifies its guess by producing outputs gh! and gt!, respectively. We
take gh and gt to be the only two actions shared between T and G. In this way,
G does not have any means to know the outcome of the coin toss, nor T to
know the guess of G, until they synchronise on gh or gt. The composed system is
depicted by the product automaton in Fig. 3. Notice, however, that an almighty
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scheduler may let G guess the correct answer with probability 1, as follows. It
first lets T toss the coin and then it lets G choose transition ch! or ct! depending
on whether T tossed heads (i.e. T output h!) or it tossed tails (i.e. T output t!),
respectively. Such scheduler is depicted in Fig. 2. Therefore, by quantifying over
all possible schedulers, the maximum probability of G guessing heads or tails
(i.e. of reaching !!¨ ) is 1, disregarding the fact that G has no information about
the coin. This “total information” assumption underlies all probabilistic model
checkers existing today. In conclusion, probabilistic model checkers produce safe
upper and lower bounds for the actual probabilities, but they may result too
conservative. Needless to say that, in this example, in which T and G do not
share all information, we expect the maximum probability of guessing to be 1

2 .
The above observation is fundamental in distributed systems in which com-

ponents share little information with each other, as well as in security protocols,
where the possibility of information hiding is a fundamental assumption (a well-
known example of these systems being the dining cryptographers problem [4]).
The phenomenon we illustrated has been first observed in [21] from the point of
view of compositionality, and has been studied on partial information settings
in [11,12,5,13,15,14].

In order to limit the variety of behaviours introduced by arbitrary schedulers,
classes of schedulers that only consider partial information were proposed in the
literature. In particular, we are interested in the class of so-called distributed
schedulers. Such schedulers were studied in [12] in a synchronous setting and
in [5,14] in an asynchronous setting. A distributed scheduler is constructed from
local schedulers, which are schedulers for single components of the system de-
fined in the usual way, and a mechanism to combine them. Such mechanism
could be related to a projection function [12], a passing token [6,5], execution
rates of the components [15], or schedulers that define the way in which com-
ponents interleave [14]. These approaches result in different types of distributed
schedulers. We remark that the scheduler of Fig. 2 would not be a valid scheduler
in this new setting since the choice for G depends only on information which is
external to (and not observed by) G. In fact, a local scheduler for G yielding
such a behaviour would not be definable, since the local scheduler depends only
on the local history of G, which is certainly the same as long as G does not
execute any transition.

As a consequence, a question arises of whether it is possible to do probabilistic
model checking under a class of distributed schedulers, i.e., by universally quantify-
ing on such subset of schedulers. Unfortunately, in [13] we showed that the bounds
for the probability of properties cannot be calculated nor even approximated if the
schedulers are restricted to be distributed. Actually, the framework in [13] is the
same synchronous setting of [12]. We later extended these undecidability results to
other classes of schedulers [16].

In this paper, we take advantage of the fact that not all schedulers are needed
and revise the partial order technique for probabilistic model checking. Partial
order reduction (POR) [18,9] is a well-known technique to cope with the state
explosion problem. This technique exploits the structure of the product model
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naturally introduced when interleaving the components. The idea is to eliminate
redundant states and transitions but keeping some representative ones. Such
states and transitions are representative in the sense that, if a given path of
the original system is relevant to the property being checked, then an equivalent
path should be found in the reduced system. To ensure that representative states
and transitions remain in the reduced model, the reduced model must comply
with certain conditions [9].

POR for probabilistic model checking was simultaneously introduced in [2]
and [10]. These works were oriented to model check LTL properties on MDPs
and showed that the reduced model should meet one extra condition apart from
those of the non-probabilistic case. This extra condition (call it A5) can be
stated as follows: for all states in which a probabilistic transition can be reached
without executing a transition from the ample set, the set of transitions enabled
in the reduced model (called the ample set) is required to either have only
one transition or coincide with the original enabled transitions. This technical
and non-intuitive condition has been introduced precisely to not eliminate the
behaviour introduced by schedulers like the one of Fig. 2.

In this paper we study POR techniques for two classes of distributed sched-
ulers and show that condition A5 can be relaxed for one class and eliminated for
the other. Therefore, while the composed system of Fig. 3 is irreducible under
condition A5, it can be reduced to the one of Fig. 4 in any of our settings.

The way in which we have conceived our technique further exploits the struc-
ture of product models and, in particular, the fact that not all information is
shared. Moreover, it paves the way for the application of POR to probabilistic
symbolic model checking. In fact, we are currently busy implementing the tech-
nique into PRISM. In this article, we report preliminary promising results of
such implementation.

2 Interleaved Probabilistic Input/Output Automata

First, we briefly recall the standard framework of Markov Decision Processes
(MDP), just to establish the terminology used in the paper. Later on, we present
the framework of Interleaved Probabilistic Input/Output Automata (IPIOA)
and show that they are a particular case of MDPs.

A Markov decision process consists of a set of states S, a set of transitions Trans
and a function enabled : S → P(Trans). Each α ∈ Trans is a function α : S× S →
[0, 1] such that

∑
s′ α(s, s′) = 1 for all s ∈ S, α ∈ enabled(s). A path is a sequence

σ = s1.α1. · · · .αn−1.sn such that αi ∈ enabled(si) and αi(si, si+1) > 0 for all
1 ≤ i < n. Paths can be finite or infinite. Let Pathsfin denote the set of all finite
paths. Given a finite path σ, the last state of σ is denoted by last(σ), and the set
of all infinite paths having σ as a prefix is denoted by σ↑.

The probability of a set of (infinite) paths depends on how the nondeterminism
is resolved. So, we define the probability of a set of paths under a given scheduler.
At every step in the execution of the system, the scheduler chooses one of the
enabled transitions. Given a system and a scheduler, the probability of a set of
paths is thus completely determined.
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In the standard approach, the choice of the next transition is based on the
complete history of the system. So, arbitrary schedulers are defined as functions
mapping finite paths to transitions. A scheduler is then a function η : Pathsfin →
Trans such that η(σ) ∈ enabled(last(σ)) for all σ ∈ Pathsfin . The set of all
schedulers for an MDP P is denoted by Sched(P ).

For all finite path σ, the probability of the set σ↑ under scheduler η is∏n−1
i=1 αi(si, si+1), where αi = η(s1.α1. · · · .αi−1.si) for all i, 1 ≤ i < n. The

probability of every set of infinite paths considered in this paper is uniquely
defined by such probabilities since, in the standard way (namely, by resorting to
the Carathéodory extension theorem), the probability of the cylinders σ↑ can be
extended to the least σ-field containing all cylinders.

Next, we present a framework based on the Switched PIOA introduced by
Cheung et al. [6]. It uses reactive and generative structures (see [17]). Genera-
tive transitions model both communication and state change. The component
executing a generative transition chooses both a label a to output (e.g. in Fig. 1,
h, t) and a new state s according to a given distribution. Reactive transitions
specify how a component reacts to a given input. Since the input is not chosen, re-
active transitions are simply distributions on states. For a finite set S, we denote
by Prob(S) the set of all discrete probability distributions over the set S. Given a
set ActLab of action labels and a set S of states, the set of generative transitions
TG on (S, ActLab) is Prob(S×ActLab), and the set TR of reactive transitions
is Prob(S). A generative structure on (S, ActLab) is a function G : S → P(TG)
and a reactive structure on (S, ActLab) is a function R : S×ActLab → P(TR).
For g ∈ TG, the set of labels a such that g(s, a) > 0 for some s is denoted
by ActLab(g). Given a state s, Dirac(s) is the reactive transition r such that
r(s) = 1.

In our framework, a system is obtained by composing several probabilistic I/O
atoms.

Definition 1. A probabilistic I/O atom is a 5-tuple (S, ActLab, G, R, init), where
S is a finite set of states, ActLab is a finite alphabet of actions labels, and G (R,
resp.) is a generative (reactive, resp.) structure in (S, ActLab). init ∈ S is the
initial state. We require the atoms to be input-enabled, so R(s, a) %= ∅ for every
s ∈ S, a ∈ ActLab.

We often write Si to denote the set of states of an atom Ai and similarly for the
other elements of the 5-tuple. In addition, we write TGi (TRi, resp.) for the set
of generative (reactive, resp.) transitions on (Si, ActLabi).

An interleaved probabilistic I/O system P is a set Atoms(P ) of probabilistic
I/O atoms A1, · · · , AN . The set of states of the system is

∏
i Si, and the initial

state of the system is init = (init1, · · · , initN ).
In order to define how the system evolves, we define compound transitions,

which are the transitions performed by the system as a whole. In such compound
transitions, one of the atoms executes a generative transition, and the other
atoms execute reactive transitions in case the label generated is in their alphabet.
The generative transition gi involved in this compound transition may output
different labels (i.e. the set ActLab(gi) may contain more than one action label).
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Moreover, the same label may lead to different states, i.e. it is possible that
gi(si, a) > 0 and gi(s′i, a) > 0 for two different (local) states si and s′i. Therefore,
we have to ensure that each of this equally labelled outputs is matched by the
same reactive transition in every atom capable of observing such a label. To this
end, we introduce input choice functions fj. An input choice function fj for gi

maps each label in ActLabj ∩ActLab(gi) to a reactive transition. The intended
meaning is that fj(a) is executed by atom Aj in case label a is output by gi.
Formally, a compound transition is a tuple α = (gi, f1, · · · , fi−1, fi+1, · · · , fN)
where gi is a generative transition in the atom Ai (the active atom) and fj :
ActLabj ∩ActLab(gi) → TRj for all j %= i. The atom Ai that executes the gen-
erative transition is denoted by GenAtom(α). The set of all compound transi-
tions is denoted by Trans(P ). A compound transition α is enabled in a given
state (s1, · · · , sN ) if gi ∈ Gi(si) and fj(a) ∈ Rj(sj , a) for all j %= i and a ∈
ActLabj ∩ActLab(gi). We denote by enabled(s) the set of all compound transi-
tions enabled in state s. In case a %∈ ActLabj and a is output by a generative
transition, the atom Aj can only remain in its actual state. In order to re-
flect this fact, given input choice functions fj for gi, we define the functions
f∗

j,sj
:
⋃

i ActLabi → TRi such that f∗
j,sj

(a) = fj(a) if a ∈ ActLabj ∩ActLab(gi)
and f∗

j,sj
(a) = Dirac(sj), otherwise.

Once a compound transition α is fixed, the probability α(s, s′) of reach-
ing a state s′ = (s′1, · · · , s′N ) from a state s = (s1, · · · , sN) is

∑
a gi(s′i, a) ·∏N

j=1 f∗
j,s′

j
(a)(s′j) for all s in which α is enabled. Using the definition of gen-

erative and reactive transitions and simple arithmetic, it can be proven that∑
s′ α(s, s′) = 1 for all s and α enabled in s. In consequence, IPIOA are MDPs

in which the set of MDP transitions corresponds to IPIOA compound transitions.
In order to ease some definitions, we introduce a fictitious “stutter” compound

transition ς. Intuitively, this transition is executed iff the system has reached a
state in which no atom is able to generate a transition. The probability ς(s, s′)
of reaching s′ from s using ς is 1, if s = s′, or 0, otherwise.

The atoms involved in a compound transition α are the active atom and every
atom capable of engaging in a communication with labels output by the active
atom when α is executed. Let gi be the generative transition in α, then

Inv(α) = {Aj | ∃a ∈ ActLabj , si ∈ Si • g(a, si) > 0} .

No atom is involved in ς.
In the following, we suppose that input-enabled atoms A1, . . . , AN are given,

and we consider the system P comprising all the atoms Ai. We call this system
“the compound system”. The states (paths, resp.) of the compound system are
called global states (global paths, resp.) and the states (paths, resp.) of each
atom are called local states (local paths, resp.).

As we have seen, it may be unrealistic to assume that the schedulers are able
to see the full history of all the components in the system. In the following, we
define restricted classes of schedulers in order to exclude unrealistic behaviours.

For the sake of simplicity, the framework in this paper considers only non-
randomized schedulers. However, all of our results also hold for randomized
schedulers (see [16]).
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Distributed schedulers. Distributed schedulers were introduced in [6] but
we use the revised definition of [14]. In a distributed setting as the one we have
introduced, different kinds of nondeterministic choices need to be resolved. An
atom needs an output scheduler to choose the next generative transition. In
addition, it may be the case that many reactive transitions are enabled for a
single label in the same atom. So, for each atom we need an input scheduler
in order to choose a reactive transition for each previous history and for each
label. Similar types of scheduler have been defined by Cheung et al. [6]. Such
schedulers are able to make decisions based only on the local history of the atom.
Therefore we need to extract the local history out of the global execution for
which we define the notion of projection.

Given a path σ, the projection [σ]i of the path σ over an atom Ai is defined
inductively as follows: (1) [(init1, · · · , initN )]i = initi , (2) [σ.α.s]i = [σ]i if
Ai %∈ Inv(α), (3) [σ. (gj , · · · ) .s]i = [σ]i.gi.πi(s) if j = i (where πi is the usual
projection on tuples) and (4) [σ. (gj , · · · , fi, · · · ) .s]i = [σ]i.fi.πi(s) if i ∈ Inv(α)
and j %= i. The set of all the projections over an atom Ai is denoted by Proji(P ).

An output scheduler for the atom Ai is a function Θi : Proji(P ) → TGi

such that, if Gi(last([σ]i)) %= ∅ then Θi([σ]i) = g =⇒ g ∈ Gi(last([σ]i)). An
input scheduler for an atom Ai is a function Υi : Proji(P ) × ActLabi → TRi s.t.
Υi([σ]i, a) = r =⇒ r ∈ Ri(last([σ]i), a). Note that, if the output scheduler Θi

fixes a generative transition for a given local path [σ]i, then the actions in the
generative transition can be executed in every global path σ′ s.t. [σ′]i = [σ]i,
since we require the atoms to be input-enabled.

An important modification with respect to the framework in [6,5] is the ad-
dition of an interleaving scheduler that selects the active component to perform
the next output. We first consider arbitrary interleaving schedulers that take
decisions based on the complete history of the whole system.

An interleaving scheduler is a map that, for a given (global) history, chooses
an active atom that will be the next to execute an output transition (according
to its output scheduler). Formally, an interleaving scheduler is a function I :
Paths(P ) → {A1, · · · , AN} such that, if there exists i with Gi(last([σ]i)) > 0
(that is, if there is some atom being able to generate a transition) then I(σ) =
Ai =⇒ Gi(last([σ]i)) %= ∅.

A distributed scheduler for the compound system results by the appropriate
composition of the interleaving scheduler and the output and input schedulers
of each atom.

Definition 2. Given an interleaving scheduler I, input schedulers Υi and output
schedulers Θi for each atom i, the distributed scheduler η obtained by composing
I, Θi and Υi is defined as η(σ) = (gi, f1, · · · , fi−1, fi+1, · · · , fN) where I(σ) =
Ai, gi = Θi([σ]i), and fj(a) = Υj([σ]j , a) for all j %= i and a ∈ ActLabj. In
case there is no generative transition enabled, we require η(σ) = ς. The set of
distributed schedulers of P is denoted by Dist(P ).

Note that, even when interleaving schedulers are unrestricted, compound sched-
ulers for the compound system are still restricted, since the local schedulers can
only see the portion of the history corresponding to the component.



Partial Order Reduction for Probabilistic Systems 345

Strongly distributed schedulers. Strongly distributed schedulers were in-
troduced in [14] as a smaller but yet meaningful class of distributed schedulers.

Distributed schedulers provide an accurate model in case the interleaving
scheduler has access to all information. As an example, suppose that the atoms
represent processes running on the same computer, and the interleaving sched-
uler plays the role of the operating system scheduler. In case such a scheduler
assigns priorities to the processes by gathering information from all processes
states, a total information interleaving scheduler is a natural model.

On the contrary, if we are analysing an agreement protocol and each atom
models an independent node in a network, then the order in which two nodes
execute cannot change according to information that is not available to them.
A simple toy example suffices to show how the worst-case probability is affected
by the information available to the interleaving scheduler.

GH GTT

initT

1/2 1/2

gh?gt? gt?gh?

h! t!

gh? gt?

ch?ct? ct!ch!

gt!gh!
sh st

initGH initGT

Fig. 5. Motivating strongly distributed
schedulers

The atoms in Fig. 5 represent a
game in which T plays against GH

and GT . Atom T loses if it receives a
gh! and the coin has landed heads, and
similarly for gt! and tails. Atoms GH

and GT take the guess in the follow-
ing fashion: in case GH believes that
the coin landed heads, it outputs ch!
and then gh!. Conversely, in case GT

believes that the coin landed tails, it
outputs ct! and then gt!. Note that, as soon as one of the players chooses an
option, the other one accepts it and stays quiet. Following the intuition given
by the example in the introduction, there is no way that GH and GT can make
an arrangement in such a way that they win all the times. However, the in-
terleaving scheduler that selects T in init, and then GH for the path σheads =
init .h!.(sh, initGH , initGT ) and GT for the path σtails = init .t!.(st, initGH , initGT )
leads T to !!¨ with probability 1.

This scheduler is distributed according to Def. 2, since distributed schedulers
restrict the resolution of internal nondeterministic choices, and these atoms have
no such choices. In particular, the interleaving scheduler can arrange the execu-
tion of GH and GT according to the hidden information in T .

The compound model for T , GH and GT is very similar to the one in Fig. 3.
In fact, since in the graphical representation we omit information concerning the
structure of the states, the graphical representation is the same. The unrealistic
scheduler in which T losses all the time is also very similar to the unrealistic
scheduler in Fig. 2.

The information available to atoms A and B can be defined as [σ]A,B =
([σ]A, [σ]B). Note that [σheads ]GH ,GT = [σtails ]GT ,GT = (initGH , initGT ). In ad-
dition, in the unrealistic scheduler we have I(σheads) = GH and I(σtails) = GT .
Generalizing GH and GT to be two atoms A, B, and σheads, σtails to be two
paths σ, σ′, we obtain the following condition: for all atoms A %= B there cannot
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be two paths σ, σ′ such that: (1) [σ]A,B = [σ′]A,B and (2) atom A is scheduled
in σ and (3) atom B is scheduled in σ′. Formally:

∀A, B • A %= B =⇒ ∀σ • % ∃σ′ • [σ]A,B = [σ′]A,B ∧ I(σ) = A ∧ I(σ′) = B . (1)

Definition 3. A scheduler η is strongly distributed iff η is distributed and (1)
holds on the interleaving scheduler I that defines η. The set of strongly distributed
schedulers of P is denoted by SDist(P ).
In [14] (where strongly distributed schedulers are introduced for the first time) we
prove some properties to further support the fact that (1) is a natural restriction
whenever the interleaving nondeterminism is resolved a distributed fashion. In
particular, we prove that (1) implies a more general condition in which A and
B are replaced with two disjoint sets of atoms A and B. Strongly distributed
schedulers also generalize the rate schedulers of [15].

3 Partial Order Reduction under Distributed Schedulers

In this section, we develop two variants of POR for probabilistic systems (each
variant corresponding to a class of schedulers) using the ample sets construction
of [9]. Such variants exploit the distributedness assumptions on schedulers in
order to improve the reduction.

Partial order reduction for LTL\{next}. Given a system and a property, the
technique of partial order reduction yields another system with less transitions.
The reduced system is constructed by traversing the state space. When expand-
ing a given state, not all the transitions enabled are considered. An ample set
ample(s) must be calculated for each state s, and only transitions in the ample
set are considered during the search. POR techniques impose restrictions on the
ample sets to ensure that, for each property, the reduced system complies with
the property iff the original system does.

We focus on the case where LTL properties do not contain the next operator.
Given a set AP of atomic propositions and a labelling function L : S → P(AP),
the set of LTL\{next} formulae are generated by the following grammar.

φ ::= True | l | ¬φ |φ1 ∧ φ2 |φ1Uφ2 ,
where True is a constant and l ∈ AP. Intuitively, an infinite path ρ satisfies
φ1Uφ2 (denoted by ρ |= φ1Uφ2) iff there is position in ρ in which φ2 holds,
and φ1 holds in all intermediate positions of ρ from the beginning until the
position in which φ2 holds. As usual, we write Fφ for True Uφ, and Prη(φ) for
Prη({ρ | ρ |= φ}).

Restrictions to the ample sets are based on the notion of independence. We say
that two transitions α, β are independent iff (∃s : {α,β} ⊆ enabled(s)) =⇒
Inv(α) ∩ Inv(β) = ∅. So, two transitions are independent only if the execution
of one of them does not interfere with the execution of the other one. Note that
the order of execution is irrelevant and that neither of them can disable the other.
Notice also that this definition is of a more structural nature than the one in [2].
This is no surprise, since our improvements profit from the structure of the model.
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We need some additional definitions before presenting the restrictions for
POR. A compound transition α is stutter iff α(s, s′) = 0 for all s such that
α ∈ enabled(s) and s′ such that L(s) %= L(s′). An end component (EC) is
a pair (T, A) where A : T → P(Trans) and T is a set of states such that:
(1) ∅ %= A(s) ⊆ enabled(s) for all s ∈ T , (2) α(s, t) > 0 implies t ∈ T , for all
s∈T , α ∈ A(s) (3) for every s, t ∈ T there exists a path from s to t.

The restrictions for the ample sets of [2] to preserve LTL\{next} properties
under unrestricted full-history dependent schedulers are listed below. Ŝ denotes
the set of reachable states in the reduced system P̂ , which is constructed by
taking ample(s) to be the set of enabled transitions in s ∈ Ŝ.

(A1) For all states s ∈ S, ∅ %= ample(s) ⊆ enabled(s),
(A2) If s ∈ Ŝ and ample(s) %= enabled(s), then each transition α ∈ ample(s) is
stutter,
(A3) For each path σ = s.α1.s1.α2. · · · .αn.sn.γ · · · in P where s ∈ Ŝ and γ is
dependent on ample(s) there exists an index 1 ≤ i ≤ n such that αi ∈ ample(s),
(A4) If (T, A) is an EC in P̂ and α ∈

⋂
t∈T enabled(t), then α ∈

⋃
t∈T ample(t)

(A5) If s.α1.s1.α2.s2. · · · .αn.sn.γ.sn+1 is a path in P where s ∈ Ŝ, α1, · · · ,αn,
γ %∈ ample(s) and γ is probabilistic (i.e. 0 < γ(s′, t′) < 1 for some s′, t′) then
|ample(s)| = 1.

Conditions A1–A3 are original for POR on non-probabilistic systems [9]. A1
ensures that the reduced model is a submodel of the original one, and that it
does not have terminal states (since the original model does not have either).
A3 enforces that any finite sequence of transitions leaving a state s that does
not contain a transition in ample(s) can be extended with such transition. To-
gether with A2, they ensure that any execution in the original system can be
mimicked by an observational equivalent trace in the reduced system. Besides,
notice that A3 is the only condition that is concretely related to the notion of
(in)dependence. Condition A4 is a probabilistic variant of Peled’s cycle condi-
tion on non-probabilistic models. In such models this condition enforces that,
if a transition is enabled indefinitely along a path in the original system, then
the transition is enabled in the reduced system in at least one state in such a
path. Therefore, condition A4 ensures that all fair paths are also represented
in the reduced system. This variant is somewhat weaker than the original one:
since the restriction does not concern cycles, but end components, some cycles
are not required to comply with the restriction. Condition A5 is particular for
probabilistic models. Contrarily to the other conditions, A5 is technical and
non-intuitive and has been introduced precisely to not eliminate the behaviour
introduced by (non-distributed!) schedulers like the one of the example in Fig. 2.
We remark that if the model P is non-probabilistic, condition A5 has no effect
and condition A4 reduces to Peled’s original cycle condition. As a consequence,
conditions A1–A5 behave exactly in the same way as Peled’s original conditions
for POR on non-probabilistic models.
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In case we assume that the schedulers are distributed, we can replace A5 by
(A5′) If s.α1.s1.α2.s2 · · ·αn.sn.γ.sn+1 is a path in P where s ∈ Ŝ, α1,· · ·,αn,γ %∈
ample(s) and γ is a probabilistic transition, then either ample(s) = enabled(s)
or GenAtom(β) = GenAtom(β′), for all β,β′ ∈ ample(s).

Condition A5′ relaxes condition A5 in the sense that if a probabilistic transi-
tion can be reached from state s without executing a transition from the ample
set, all transitions enabled in the reduced model (i.e. in ample(s)) are generated
by the same atom. Contrarily to A5, A5′ does not requires ample(s) to be a
singleton; ample(s) may contain several transitions as long as they are generated
by a single atom.

The result is formalized in the following theorem.

Theorem 1. Let φ be an LTL\{next} formula and P be an IPIOA. Let P̂ be a
reduction of P complying with conditions A1–A4, A5′. Then,

supη∈Dist(P ) Prη(φ) ≤ supη∈Sched(P̂ ) Prη(φ) .

In case we assume strongly distributed schedulers, A5 can be disregarded.

Theorem 2. Let φ, P be as in Theorem 1. Let P̂ be a reduction of P complying
with conditions A1–A4. Then, supη∈SDist(P ) Prη(φ) ≤ supη∈Sched(P̂ ) Prη(φ).

As an example, recall atoms T and G in Fig. 1 and the non-distributed scheduler
ηw in Fig. 2. According to Theorem 1 the reduction in Fig. 4 is correct in case
distributed schedulers are assumed. However, in the original system P we have
Prηw

(F !!¨ ) = 1, while in P̂ we have Prη(F !!¨ ) ≤ 1
2 for all η. This is due to

the fact that ηw is not distributed. In fact, the supremum over all distributed
schedulers in P is 1

2 , which coincides with supη∈Sched(P̂ ) Prη(F !!¨ ). Recall now the
example in Fig. 5 with atoms T , GH and GT . We mentioned that the scheduler
of Fig. 2 is distributed in this setting. Call this scheduler ηd. If we assume
strongly distributed schedulers, the reduction in Fig. 4 is allowed, and there is
no scheduler yielding probability 1 in the reduced system. This is correct, since
the scheduler ηd is not strongly distributed. However, if we want to preserve
all distributed schedulers (even those that are not strongly distributed) then
condition A5′ prevents the reduction in Fig. 4, since ch! and ct! are generated
by atoms GH and GT , resp. This is exactly what we want, since the scheduler
ηd is a valid distributed scheduler for T , GH and GT , and so a corresponding
scheduler yielding probability 1 must exist in the reduced system.

Correctness of our techniques. The proofs of Theorems 1 and 2 are quite
technical and several details are involved. However, these proofs rely on the same
principle as in the non-probabilistic case. Our aim is to give an explanation so
that the reader can have proper insight on the validity of our techniques. For
fully detailed proofs, see [16].

In the non-probabilistic case, the standard argument is as follows. For every
property φ, we need to prove that φ is satisfied in all paths in P if and only if
φ is satisfied in all paths in P̂ . Since P̂ is a subgraph of P , one implication is
trivial. For the other implication, the conditions on the reduction are used to
prove that, if some path ρ in P does not satisfy φ, then ρ̂ %|=P̂ φ for some ρ̂.
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Similarly, in our case it is sufficient to prove that, for each scheduler η in the
original system, there exists a corresponding η̂ in the reduced system. The prob-
ability values for η and η̂ must coincide for all paths relevant to φ. We prove that,
for each distributed (strongly distributed, resp.) scheduler, there is a correspond-
ing scheduler in the reduced system that yields the same probability value. As a
consequence, it may be the case that, for some non-distributed schedulers, there
are no corresponding schedulers in the reduced system. However, this causes no
harm since schedulers are assumed to be distributed.

Given a non-probabilistic system P , let ρ = s1.α1.s2.α2. · · · and φ such that
ρ %|=P̂ φ. We sketch how the corresponding path ρ̂ is constructed in the standard
approach. If α1 ∈ ample(s1), then ρ̂ starts with s1.α1 and the construction con-
tinues from s2.α2. · · · . On the contrary side, if α1 %∈ ample(s1), then ρ̂ cannot
start with s1.α1, since α1 is not enabled for s1 in P̂ . However, condition A1 en-
sures that ample(s1) %= ∅. For simplicity, let’s consider the case in which some β ∈
ample(s1) is eventually executed in ρ. W.l.o.g., we can take such a β to be the first
transition αn in ρ such that αn ∈ ample(s1). Then, by condition A3 and defini-
tion of independence, we have that ρ′ = s1.αn.s′2.α1. · · · .s′n−1.αn−1.sn.αn+1. · · ·
is a path in P . (Here, s′i denotes the state such that αi−1(s′i, s′i+1) = 1, since
the system is non-probabilistic.) Let ,i = L(si) for all i. Then, since A2 re-
quires the transitions in ample(s) to be stuttering, the sequence L(ρ) of labels
in ρ has the form ,1 · · · ,n,n,n+2 · · · . Condition A2 can be used to prove that
L(ρ′) = ,1,1,2 · · · . So, since L(ρ) and L(ρ′) differ only in the amount of times
that each ,i appears, and LTL\{next} formulae are stuttering-invariant, φ %|=P ρ′.
Having found ρ′, we let ρ̂ start with s1.αn and continue the construction using
s′2.α1. · · · .s′n−1.αn−1.sn.αn+1. · · · . The case in which no transition β is executed
in ρ is similar (see [9]).

gh?gh?

init‖

h! t!

ch! ch!

1/2 1/2

(a)

gh?

init‖
ch!

t!
h!

gh?

1/2
1/2

(b)

Fig. 6. Transforming a scheduler in
the coin example

In summary, the key step of the construc-
tion is to “move” β across the αi’s so that it
executes immediately after s1. In the prob-
abilistic case, we must deal with schedulers
(which have a tree-like structure) instead of
mere paths, and so it is not clear how a tran-
sition can be moved. Consider the scheduler
η in Fig. 6 (a) and the reduction in Fig. 4.
The corresponding scheduler in ̂T ‖ G can-
not start with the probabilistic transition
1
2h! + 1

2 t!, since it is not enabled in înit‖.
However, the same probabilistic effect is obtained by the scheduler η̂ that exe-
cutes ch! in the first place, as illustrated in Fig. 6 (b). In this figure, ch! is moved
across both h! and t!. In the general case, the transition in the ample set is moved
across the transitions in all branches. Note that, in order to move ch! after init,
we rely on the fact that ch! is executed after both h! and t!. In fact, there is
no way to transform the non-distributed scheduler in Fig. 2 into a scheduler for
the reduced system in Fig. 4: although ch!, ct! ∈ ample(init‖), we have that ch!
is chosen in one of the branches, while ct! is chosen in the other.
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Groesser et al. [2] showed how schedulers for the original system can be
mapped to schedulers in the reduced system. They require condition A5 because
the transformation is not possible for some schedulers and some reductions, even
if such reductions comply with A1–A4. However, we proved in [16] that a sim-
ilar transformation can be carried out for all schedulers η complying with the
following condition:

η(σ) ∈ ample(s1) ∧ η(σ′) ∈ ample(s1) =⇒ η(σ) = η(σ′) (2)

for all σ = s1.α1. · · · .αn−1.sn, σ′ = s1.α′
1. · · · .α′

n′−1.s
′
n′ such that the αk’s and

the α′
k’s are independent from ample(s). Roughly speaking, the ample transition

must be the same in all branches in which an ample transition appears.
We show that (2) holds if: (1) η is distributed and A5′ holds or (2) η is

strongly distributed. If η is distributed, let I be ∪β∈ample(s1)Inv(β) and let σ, σ′

be as in (2). Since the αk’s and the α′
k’s are independent from all the transitions

in ample(s1), we have I ∩ Inv(αk) = I ∩ Inv(αk′ ) = ∅ for all k. Then, [σ]i =
[σ′]i = s1 for all Ai ∈ I. By A5′, we have GenAtom(η(σ)) = GenAtom(η(σ′)).
Let Ai = GenAtom(η(σ)) and let Θi be the output scheduler that defines η.
Then, Θi([σ]i) = Θi([σ′]i), and so the generative transition is the same in both
η(σ) and η(σ′). The same argument can be used to show that the input choice
functions are the same in both η(σ) and η(σ′), and so η(σ) = η(σ′).

In case η is strongly distributed, we define Ai = GenAtom(η(σ)) and Ai′ =
GenAtom(η(σ′)). Then, [σ]i = [σ′]i (= s1) and [σ]i′ = [σ′]i′ (= s1). Let I be the
interleaving scheduler that defines η. By Eqn. (1), we have Ai = I(σ) = I(σ′) =
Ai′ , and so GenAtom(η(σ)) = GenAtom(η(σ′)). Following the same reasoning
as in the case of distributed schedulers, we conclude that η(σ) = η(σ′).

The bottom line is that the restrictions imposed to schedulers (together with
A5′, in case distributed schedulers are assumed) allow to transform every sched-
uler in P into a scheduler in P̂ without requiring A5.

Using our technique with existing model checking algorithms. We
emphasize that, although the correctness of the reduction relies on the assump-
tion that the schedulers are distributed (strongly distributed, resp.), the reduced
system is analysed assuming total information (because of the undecidability re-
sult in [13], the verification under partial information cannot be carried out in a
fully automated fashion). The result of the verification thus corresponds to a pes-
simistic analysis of the reduced system. As a consequence, the bounds obtained are
still safe, but they are not so tight as for distributed (strongly distributed, resp.)
schedulers.

As an example, suppose that we are interested in finding the supremum prob-
ability that a system P fails under distributed schedulers. Suppose that 0.1 is
the highest probability of failure allowed by the specification. Moreover, sup-
pose that, by using the standard model checking algorithm for MDPs (e.g. [3]),
we calculate that the supremum probability of a failure quantifying over all
schedulers is 0.15. According to this analysis, the system would not meet the
specification. However, the schedulers yielding probabilities greater than 0.1
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might be “unrealistic” schedulers as the one in Fig. 2. Suppose that we con-
struct P̂ as described above. Then, we can use the algorithm in [3] to calculate
S = supη∈Sched(P̂ ) Prη(F Fail). If S = 0.05, then Theorem 1 above ensures that
supη∈Dist(P ) Prη(F Fail ) ≤ 0.05, and so the system meets the specification. In
this sense, the bounds are safe with respect to Dist(P ). Note that, in this case,
the reduction has prevented some schedulers that are not distributed and so the
verification on P̂ is more accurate than the verification on P .

4 Concluding Remarks

We have presented a theoretical framework to perform partial order reduction for
probabilistic model checking. Our technique is a revision of previous works [2,10].
We showed that, in the context of distributed systems, the bounds for the prob-
ability values calculated by the technique on those works may result overly safe.
We then showed that the new condition of [2,10] to construct the ample set may
be relaxed or even dropped. This simplifies the algorithm and results in smaller
reductions.

The POR technique for symbolic representation introduced in [1] constructs
ample sets with transitions from several atoms. So, Theorem 2 allows us to apply
a similar technique for probabilistic systems. We are currently busy implement-
ing the technique into PRISM using these ideas. Preliminary results are shown
in Table 1.

We have selected two notable case studies. Table 1(a) reports results checking
anonymity on the dining cryptographers problem [4]. Column “%” indicates in
percentage how small is the reduced model with respect of the full system. Thus,
for instance, the size of the state space of the reduced model is 23.58% of the
size of the state space of the full model for 11 cryptographers (i.e., more than
4 times smaller). Note that, in general, the construction time of the system
is significantly more expensive for POR when compared to the construction
time of the full system. Nonetheless, the calculation time of the probability
values is significantly larger in the full model. Thus, the total processing time
on large systems is better under POR (see the 11 cryptographers). We remark
that the old POR reduction (including A5) achieves the same results in this
case study. However, our results using POR for the symbolic representation and
explicit vectors for calculation (the so-called “hybrid” approach [20]) significantly
improve the explicit approach of LiQuor [8].

Still more interesting is our second case study. It reports on the verification
of the Binary Exponential Backoff protocol of the IEEE 802.3. (The model is
the same used in [19] adapted to PRISM notation.) We calculated the maximum
and minimum probability that a colliding host aborts transmission after multiple
collisions. The numbers n, N , and K are respectively the number of colliding
hosts, the maximum number of attempts to seize the channel, and the maximum
time slots. Table 1(b) shows reductions yielding sizes up to 5% of the full state
space. More interesting is that reduction using only A1–A4 is significantly more
efficient than the old reduction with A1–A5 (up to 58.88% in case 6/3/4). We
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Table 1. Summary of Experimental Results

(a) Dining Cryptographers

Full A1–A4 reduct.
n size constr. total size % constr. total
7* 287666 0m00.19 0m03.53 115578 40.18 0m13.01 0m16.59
8* 1499657 0m00.30 0m16.18 526329 35.10 0m36.69 0m52.96
9* 7695856 0m00.44 1m24.84 2363896 30.72 1m46.16 2m29.15
10 39005612 0m00.70 4m41.10 10495991 26.91 4m48.19 6m40.37
11 195718768 0m01.11 29m43.34 46159864 23.58 13m12.84 21m02.46

(b) Binary exponential backoff (size comparison)

Model Full A1–A5 reduct. A1–A4 reduct.
n / N / 2K size size % full size % full % A5

4 / 3 / 4 532326 191987 36.07 126629 23.79 65.96
5 / 3 / 4 13866186 2752750 19.85 1690227 12.19 61.40
6 / 3 / 4 357387872 36974560 10.35 21771724 6.09 58.88
4 / 3 / 8 3020342 913379 30.24 604457 20.01 66.18
5 / 3 / 8 115442928 18569442 16.09 11585347 10.04 62.39
6 / 3 / 8 4318481408 353075296 8.18 212917856 4.93 60.30

(c) Binary exponential backoff (time comparison)

Model Full A1–A5 reduct. A1–A4 reduct.
n / N / 2K constr. total constr. total constr. total

4 / 3 / 4 0m01.39 1m04.27 0m18.96 1m22.98 0m18.02 1m13.36
5 / 3 / 4 0m03.49 11m32.99 1m16.82 8m15.60 1m14.53 6m50.12
6 / 3 / 4 0m07.55 5h03m39.81 4m00.95 1h13m11.39 5m15.06 53m35.43
4 / 3 / 8 0m02.05 3m33.62 0m23.85 3m01.88 0m22.78 2m28.50
5 / 3 / 8 0m05.41 1h21m13.54 1m36.41 30m42.82 1m41.18 22m09.23
6 / 3 / 8 0m13.30 — 5m14.95 12h31m57.39 6m44.82 7h45m46.75

Entries marked with * run on a Pentium 4 630, 3.0Ghz with 2Gb memory, while all the
others run on an Opteron 8212 (dual core) with 32Gb memory.

obtained similar satisfactory results on time comparison, notably (again) in case
6/3/4. We note that the 6/3/8 full model could not be analysed because the
state space was too large to fit in the hybrid engine of PRISM.

Of course, not all examples we ran yielded such impressive results. We have
experienced very little reduction in cases in which components depend very much
from each other. This is nonetheless reasonable as our technique is precisely
devised for distributed system with little sharing. In particular, both case studies
have few communication points and significant local processing.

It is in our plans to report soon on the details of the implementation of the
tool under development.
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