
A Refinement Based Notion of Non-Interference for
Interface Automata: Compositionality, Decidability

and Synthesis
Matias Lee and Pedro R. D’Argenio

Fac. de Matemática, Astronomı́a y Fı́sica,
Univ. Nac. de Córdoba - CONICET

Córdoba, Argentina
{lee,dargenio}@famaf.unc.edu.ar

Abstract—Interface automata (IA) introduce a framework to
model stateful interfaces. Interface structures for security (ISS)
extend IA to cope with security properties. In this article,
we argue that bisimulation-based non interference is not quite
appropriate to characterize security on ISS. We instead introduce
refinement-based variants of non-interference that fit better in
this context. Moreover, we show that these new properties are
not preserved by composition, but give sufficient conditions
to ensure compositionality. We give two algorithms. The first
one determines if an ISS satisfies the refinement-based non-
interference property. The second one, determines if an ISS can
be made secure by controlling some input actions and, if so,
synthesizes the secure ISS.

Index Terms—interface automata; non-interference; refine-
ment; security

I. Introduction

Nowadays, it is natural to see two or more system in-
teracting in order to carry out difficult or complex tasks.
For example, a web service can use information provided by
other web services to offer a complex new service. To study
how this interaction occurs the concept of system interface
was introduced. A system interface includes all methods and
ways that a system uses with the aim to interact with its
environment.

Good interface description should allow for the analysis
of the interaction between several systems. In this way, we
can predict if the composed system satisfies the desired
requirements. From this moment, we use interchangeably
the terms “system” and “interface” to refer to the descrip-
tion/abstraction of the real system interface.

Interface automata (IA) [1], [2] is a light-weight formalism
that captures the temporal aspects of software component inter-
faces. In this context, interfaces interact with the environment
using input and output actions (visible actions). Input actions
represent the information that can be received by the interface,
while output actions represent the information generated by
it. There is a third sort of action, the hidden actions, which
are used to represent internal transitions which cannot be
observed by the environment. To enrich the description of
interfaces, variants of IA have been devised. Each variant was
enriched according to the requirements to be enforced on the

system. In Resource Interfaces [3] the resources to complete
a task are limited. Timed Interfaces [4] allow expressing time
requirements.

Interface structure for security (ISS) [5] is yet another
variant of IA, where there are two different types of visible
actions. One type carries public or low confidential information
and the other carries private or high confidential information.
For simplicity, we call them low and high actions, respectively.
Low actions are intended to be accessed by any user while
high actions can only be accessed by those users having the
appropriate clearance. In this context the desired requirement
is the so-called non-interference property [6]. In the setting
of ISS we have considered bisimulation based notion of non-
interference, more precisely, the so called BSNNI and BNNI
properties [7]. Informally, these properties state that users
with no appropriate permission cannot deduce any kind of
confidential information or activity by only interacting through
low actions. Since it is expected that a low-level user cannot
distinguish the occurrence of high actions, the system has to
behave the same when high actions are not performed or when
high actions are considered as hidden actions. To formalize the
idea of “behave the same”, the concept of weak bisimulation is
used. In this work, we argue that BSNNI/BNNI are not suitable
properties to formalize the concept of secure interface.

To illustrate our point we present two examples: in the first
one (Figure 1), we get that the system does not satisfy neither
BNNI nor BSNNI but we show that it could be considered se-
cure since no information is actually revealed to low users. The
main problem is the way in which weak bisimulation relates
output transitions. In addition, the second example (Figure 2)
shows that weak bisimulation based security properties may
fail to detect an information leakage through input transitions.

Figure 1 models a credit approval process of an on-line
banking service using an ISS. As usual, outputs are suffixed
by ! and inputs by ?. At the initial state s1, a client can
request a credit (cred req?). The credit approval process
can be carried on locally or by delegating it to an external
component. This decision is modeled by a non deterministic
choice. If it is locally processed (loc ctrl!), an affirmative
or negative response is given to the client (yes!/no!) and the

XXIX International Conference of the Chilean Computer Science Society

1522-4902/10 $26.00 © 2010 IEEE

DOI 10.1109/SCCC.2010.14

280

s1

s2

s3 s4

s5

s6

s7

cred req?

��
loc ctrl!
tt

ext ctrl!
**

yes!/no!

66

done?

ee
only loc?

//

only loc off?

zz

cred req?
��

loc ctrl!
��

yes!/no!

ZZ

Figure 1: Credit approval process of an on-line banking service

process returns to the initial state. On the other hand, if the
decision is delegated (ext ctrl!), the process waits until it
receives a notification that the control is finished (done?),
returning then to the initial state. Besides, in the initial state,
an administrator can configure the system to do only local
control (only loc?). This action is high and is not visible for
low users. (We underline private/high actions.) In state s5, the
administrator can configure the system to return to the original
configuration using action only loc off?.

If we check the BSNNI (or BNNI) property on the the Credit
Request Process, it results to be insecure. The system behaves
differently depending on whether the private action only loc?
is performed or not. If only loc? is not executed, after action
cred req?, it is possible to execute action ext ctrl!. This
behavior is not possible after the action only loc?. Notice
nevertheless that output actions are not visible for the user
until they are executed. Then, from a low user perspective,
the system behavior does not seem to change: the same
input is accepted at states s1 and s5, and then, the low user
cannot distinguish whether the observation of loc ctrl! is a
consequence of the unique option (at state s6) or it is just an
invariable decision of the Credit Request Process (at state s2).
Hence we expect the system to be classified as secure by the
formalism.

We consider this example to be secure because a user does
not know exactly what output action can be executed by an
interface if he has no knowledge of the current state, he can
observe the output actions only when they are executed.

On the other hand, a user may try to guess the behavior
of the system by performing input actions: wrong inputs
will be rejected/ignored; otherwise, they will be accepted.
Based on this fact, the following example shows that weak
bisimulation based non-interference may fail to detect an
information leakage.

Figure 2 depicts the component that executes the external
control. In the initial state, the interface waits for input
ext ctrl? from the Credit Request Process. After this stimulus,
a response about the credit request is given. If the credit is
denied (ext no!), the client can either ask for a decision review
(review?) or accept the decision (accept?). In both cases,
the decision is processed by the component (process;). This
action is internal and is not visible by users (hidden/internal
action are suffixed by semicolon). The process finishes with
action done! returning to the initial state. If the credit is

t1

t2

t3 t4

t6 t7t5 t8

ext ctrl?
��

ext no!

��
ext yes!

��

review?
��

accept?

�� accept?/decline?��
process;
oo

done!

;;

process;
//

done!

ff t9

t10 t11

t12t13

t14 t15

reject all?
//

ext ctrl?
�� ext no! //

allow;

xx
accept?

��
accept?

//

review?
��

process;
//

process;
��

done!

mm

Figure 2: External Control Process in an on-line banking
service

approved (ext yes!), the client can accept or decline the credit
(accept?/decline?). The decision is processed, the component
informs that the task is done and it returns to the initial state.
As in the first example, the behavior of the component can
be modified by an administrator, which can configure the
interface to reject all credit requests (reject all?). For this
reason, if reject all? is received at the initial state, after an
input action ext ctrl?, the process can only execute action
ext no!. At this point, clients are not allowed to ask for a
decision review. Then, at state t11, the interface accepts only
input action accept?. However, based on the client records, the
review may be enabled; this is represented with the internal
transition t11

allow;
−−−−→ t13, notice state t13 accepts both inputs

actions accept? and review?. In any case, after the client
response, the result is processed, the component informs that
the task is done, and the process is restarted.

Suppose that the bank requires that the client cannot detect
whether the external process is denying all credit request.
Since a low user cannot see the output action until they
are executed, he cannot differentiate between the executions
t1

ext ctrl?
−−−−−−→ t2

ext no!
−−−−−→ t3 and t9

ext ctrl?
−−−−−−→ t10

ext no!
−−−−−→ t11. If

we compare states t3 and t11 under weak bisimulation, both
state can execute the same visible transitions and no security
problem is detected. Notice that at state t11, the process cannot
respond immediately to a review? input, but it can execute
t11

allow;
−−−−→ t13

review?
−−−−−→ t14 (recall allow; is an internal action).

In fact, low users can distinguish state t3 from t11: testing the
interface at state t11, the low user can find out that input action
review? is not enabled, while at t3 it is. Hence, we consider
that the interface is not secure.

In this work, we define refinement-based variants of non-
interference that specifically considers this asymmetry be-
tween inputs and outputs. The idea of “behave the same” is
relaxed: under the new approach, a system is secure if the
system with high level activity “performs at most the same”
as the system where no high action is performed. This ensures
that a low user cannot observe new behavior in the system
where high actions take place (but are not observable) w.r.t.
the same system where no high action is executed. The new
formalizations of security are obtained just like BSNNI and
BNNI, but based on refinement instead of weak bisimulation.

281

Such refinement relation is based on the relation introduced
in [2].

We show that the new non-interference property is not
preserved by interface composition in general (just like it
occurs with BSNNI and BNNI), but give sufficient and simple
conditions to ensure compositionality. In addition, we compare
it to existing notions of non-interference, and conclude that
our refinement-based notion strictly includes trace-based non-
interference, but it is incomparable to the bisimulation-based
notion. We also provide two algorithms. The first one deter-
mines if an ISS satisfies the refinement-based non-interference
property. The second one, determines if an ISS can be made
secure by controlling some input actions, and if so, synthesizes
the secure ISS. Both algorithms are polynomial in the number
of states of the ISS under study.

Organization of the paper. In Section II we recall interface
structure for security and the BSNNI and BNNI properties.
Then, we present some examples where the BSNNI/BNNI
properties are not suitable formalization of security. Finally,
we introduce SIR-SNNI and SIR-NNI properties, our new
variant of non-interference. In Section III we study how
SIR-SNNI and SIR-NNI behave w.r.t. interface composition.
Section IV presents the algorithms to check and to derive a
secure interface. Section V concludes the paper.

II. Non-interference Properties for Interfaces

First, we define Interface Automata (IA) [1], [8] and In-
terface Structure for Security (ISS) [5], and introduce some
notation.

Definition 1: An Interface Automaton (IA) is a tuple S =

〈Q, q0, AI , AO, AH ,−→〉 where: (i) Q is a finite set of states
with q0 ∈ Q being the initial state; (ii) AI , AO, and AH are
the (pairwise disjoint) finite sets of input, output, and hidden
actions, respectively, with A = AI∪AO∪AH; and (iii) −→ ⊆ Q×
A×Q is the transition relation that is required to be finite and
input deterministic (i.e. (q, a, q1), (q, a, q2) ∈ δ implies q1 = q2
for all a ∈ AI and q, q1, q2 ∈ Q). In general, we denote QS ,
AI

S , →S , etc. to indicate that they are the set of states, input
actions, transitions, etc. of the IA S .

As usual, we denote q
a
−→ q′ whenever (q, a, q′) ∈ −→, q

a
−→

if there is q′ s.t. q
a
−→ q′, and q

a
−→6 if this is not the case.

An execution of S is a finite sequence q0 a0 q1 a1 . . . qn s.t.
qi ∈ Q, ai ∈ A and qi

ai
−→ qi+1 for 0 ≤ i < n. An execution

is autonomous if all their actions are output or hidden (the
execution does not need stimulus from the environment to run).
If there is an autonomous execution from q to q′ and all action
are hidden, we write q

ε
⇒ q′. Notice this includes case q = q′.

We write q
a
⇒ q′ if there are q1 and q2 s.t. q

ε
⇒ q1

a
−→ q2

ε
⇒ q′.

Moreover q
â
⇒ q′ denotes q

a
⇒ q′ or a ∈ AH and q = q′. We

write q
ε
⇒

a
−→ if there is q′ s.t. q

ε
⇒ q′ and q′

a
−→. A trace from

q0 is a sequence of visible actions a0, a1 · · · such that there are
states q1, q2, · · · such that q0

a0
⇒ q1

a1
⇒ q2 · · · is an execution.

The set of traces of an IA S , notation Traces(S), is the set of
all traces from the initial state of S .

An Interface Structures for Security is an IA, where visible
actions are divided in two disjoint sets: the high action set and
the low action set. Low actions can be observed and used for
any user, while high actions are intended only for users with
the appropriate clearance.

Definition 2: An Interface Structure for Security (ISS) is a
tuple 〈S , Ah, Al〉 where S = 〈Q, q0, AI , AO, AH ,−→〉 is an IA and
Ah and Al are disjoint sets of actions s.t. Ah ∪ Al = AO ∪ AI .

If necessary, we will write Ah
S and Al

S instead of Ah and Al,
respectively, and write AX,m instead of AX∩Am with X ∈ {I,O}
and m ∈ {h, l}.

Non-interference Properties. It is expected that a low-
level user cannot distinguish the occurrence of high actions.
Therefore, we expect that a system behaves the same way if
it does not perform any high action or if it just hides them to
the view of the low users. Hence, restriction and hiding are
central to our definitions of security.

Definition 3: Given an IA S and a set of actions X ⊆ AI
S ∪

AO
S , define:
• the restriction of X in S by S \X =

〈QS , q0
S , A

I
S − X, AO

S − X, AH
S ,−→S \X〉 where q

a
−→S \X q′ iff

q
a
−→S q′ and a < X.

• the hiding of X in S by S/X = 〈QS , q0
S , A

I
S − X, AO

S −

X, AH
S ∪ X,−→S 〉.

Given an ISS S = 〈S , Ah
S , A

l
S 〉 define the restriction of X in S

by S\X = 〈S \X, Ah
S − X, Al

S − X〉 and the hiding of X in S by
S/X = 〈S/X, Ah

S − X, Al
S − X〉.

A possible idea of “behaves in the same way” is encoded
by the weak bisimulation.

Definition 4: Let S and T be IA. A relation R ⊆ QS × QT

is a (weak) bisimulation between S and T if q0
S R q0

T and, for
all qS ∈ QS and qT ∈ QT , qS R qT implies:
• for all a ∈ AS and q′S ∈ QS , qS

a
−→S q′S implies that there

exists q′T ∈ QT s.t. qT
â
⇒T q′T and q′S R q′T ; and

• for all a ∈ AT and q′T ∈ QT , qT
a
−→T q′T implies that there

exists q′S ∈ QS s.t. qS
â
⇒S q′S and q′S R q′T .

We say that S and T are bisimilar, notation S ≈ T , if there
is a bisimulation between S and T . Moreover, we say that two
ISS S and T are bisimilar, and write S ≈ T , whenever the
underlying IA are bisimilar.

The definitions of BSNNI and BNNI, which we recall in
the following, were introduced in [7].

Definition 5: Let S be an ISS. (i) S satisfies bisimulation-
based strong non-deterministic non-interference (BSNNI) if
S\Ah ≈ S/Ah. (ii) S satisfies bisimulation-based non-
deterministic non-interference (BNNI) if S\Ah,I/Ah,O ≈ S/Ah.

Notice the difference between the two definitions. BSNNI
formalizes the security property as we described so far: a
system satisfies BSNNI if a low-level user cannot distinguish
(up to bisimulation) by means of low level actions (the only
visible ones) whether the system performs high actions (so
they are hidden) or not (high actions are restricted). BNNI is
an apparently weaker notion because less actions are restricted.
Actually BNNI and BSNNI are incomparable [7]. In the
definition of BNNI only high input actions are restricted

282

since the low-level user cannot provide this type of actions;
instead high output actions are only hidden since they still
can autonomously occur. The second notion is considered
as it seems appropriate for IA where only input actions are
controllable.

s1 s2

s3 s4

�� H? //

a!
��

b!

%%
b!

��

S
v1

v2

��

a?/b?
��

v4 v5

v6 v7

H? // ε //

a?
��

a?/b?
��

V

Figure 3: In these interfaces, BSNNI and BNNI are not
appropriate properties to denote security.

Unfortunately, BSNNI and BNNI do not yield the expected
security qualities in the context of interfaces as we have seen
in the introduction. In the following we isolate the situations
described before in two schematic examples. Consider the
ISS S in Figure 3. Interface S does not satisfy BSNNI nor
BNNI, but notice that under high level activity (s1

H?
−−→ s2) the

interface does not change its behavior w.r.t. the low user view;
the state s2 just can execute b! that is a possible execution
before the execution of s1

H?
−−→ s2. Notice that the same

reasoning holds if we replace a! by a; or b! by b;. On the other
hand, interface V satisfies both BSNNI and BNNI, despite
this, low users can see differences after high level activity: v1
and v4 are weak bisimilar, but v1 is able to receive input actions
a? and b? while v4 is only able to receive a?. Examples S and
V correspond respectively to the examples of Fig. 1 and 2.
(Notice that the External Control Process is not BSNNI nor
BNNI.)

To address these shortcomings, we introduce a new variation
of non-interference. These variants are obtained from the def-
inition of BSNNI and BNNI by replacing weak bisimulation
by a new relation. Under this new relation, two states s and t
are related if they are able to receive the same input actions;
for every output transition that can execute t, the state s can
execute zero or more hidden transitions before executing the
same output; finally, all hidden transitions that can execute t
can be “matched” by s with zero or more hidden transitions.
In all cases, the reached states have to be also related. In this
way state t does not reveal new visible behavior w.r.t. the state
s. Formally:

Definition 6: Given two IA S and T , a relation < ⊆
QS × QT is a Strict Input Refinement (SIR) of S by T if
q0

S < q0
T and for all qS < qT it holds:

(a) ∀a ∈ AI
S , q

′
S ∈ QS , if qS

a
−→S q′S then ∃q′T ∈ QT : qT

a
−→T q′T

and q′S < q′T ;
(b) ∀a ∈ AI

T , q
′
T ∈ QT , if qT

a
−→T q′T then ∃q′S ∈ QS : qS

a
−→S q′S

and q′S < q′T ;
(c) ∀a ∈ AO

T , q
′
T ∈ QT , if qT

a
−→T q′T then ∃q′S ∈ QS : qS

ε
⇒S

a
−→S

q′S and q′S < q′T ;

s1 s2

s3 s4

s5 s6

�� H2?
//

H1!
��

a!
��

ε
��

a!
��

S

Figure 4: S is SIR-NNI and not SIR-SNNI

(d) ∀a ∈ AH
T , q

′
T ∈ QT , if qT

a
−→T q′T then ∃q′S ∈ QS : qS

ε
⇒S q′S

and q′S < q′T .
We say S is refined (strictly on inputs) by T , or, T refines

(strictly on inputs) to S , notation S < T , if there is a SIR <
s.t. S < T . Let S and T be two ISS, we write S < T if the
underlying IA satisfy S < T .

The definition of SIR is based on the definition of refinement
of [2] only that restriction (b) is new in our relation. We now
provide our SIR-based non-interference properties.

Definition 7: Let S be an ISS. (i) S is SIR-based strong
non-deterministic non-interference (SIR-SNNI) if S\Ah <
S/Ah (ii) S is SIR-based non-deterministic non-interference
(SIR-NNI) if S\AI,h/AO,h < S/Ah.

This new formalization of security ensures that under the
presence of high level activity no new information is revealed
to low users w.r.t. the system with only low activity, because
the interface S\Ah (resp. S\AI,h/AO,h) is refined by S/Ah,

In Figure 3, interface S is SIR-NNI and SIR-SNNI but
not BNNI or BSNNI; on the other hand, V is BNNI and
BSNNI but not SIR-NNI or SIR-SNNI. Notice that these
examples imply that SIR-NNI/SIR-SNNI and BNNI/BSNNI
are incomparable properties.

In contrast to BNNI and BSNNI, SIR-NNI and SIR-SNNI
are related. The following lemma establishes this relation.

Lemma 1: Let S be an ISS. If S is SIR-SNNI then S is
SIR-NNI. The converse is not true.

Proof: As S is SIR-SNNI, then there is a SIR relation
< s.t. S\Ah < S/Ah. Notice that all reachable states in S\Ah

are reachable in S\Ah,I/Ah,O. Let sr ∈ QS\Ah and sa ∈ QS/Ah

be two states s.t. sr < sa. Define ŝr as the state sr in the
interface S\Ah,I/Ah,O. The state ŝr could have some new
internal transition w.r.t the state sr; these new transitions
are results of hiding high output action. Since this kind of
transitions are not taken into account by the definition of SIR,
we have that ŝr < sa. Then S\AI,h/AO,h < S/Ah.

On the other hand, SIR-NNI does not imply SIR-SNNI. This
is shown in Figure 4.

The coarsest sensible semantics on labeled transition system
is trace semantic [9]. Then, it is desirable that given a
definition of security and an interface satisfying that definition,
the interface with hidden high level activity does not have more
low traces than the interface with only low activity. SIR-SNNI
and SIR-NNI satisfy this requirement. The following lemma

283

formalizes this, showing the inclusion of the traces of S/Ah

in the traces of S\Ah and S\AI,h/AO,h.
Lemma 2: Let S = 〈S , Ah, Al〉 be an ISS. (i) If S is SIR-

NNI then Traces(S \Ah,I/Ah,O) ⊇ Traces(S/Ah). (ii) If S is SIR-
SNNI then Traces(S \Ah) ⊇ Traces(S/Ah).

Proof: Notice Traces(S \Ah) ⊆ Traces(S \Ah,I/Ah,O), then
we only have to prove (ii). The proof of (ii) is straightforward
using the following inductive hypothesis on k: if a0 · · · ak ∈

Traces(S/Ah) is s.t. q0 a0
⇒ q0

a1
⇒ · · ·

ak
⇒ qk then there are states

q′0, · · · , q
′
k such that q0 a0

⇒ q′0
a1
⇒ · · ·

ak
⇒ q′k is an execution of

S \Ah and q′k < qk.
It is also possible to define trace-based non-

interference properties following the same ideas as
for BNNI and BSNNI [7]: an ISS S satisfies non-
deterministic non-interference (NNI) (resp. Strong NNI
(SNNI)) if Traces(S \Ah,I/Ah,O) = Traces(S/Ah) (resp.
Traces(S \Ah) = Traces(S/Ah)). From Lemma 2 we can
straightforwardly conclude:

Corollary 1: Let S = 〈S , Ah, Al〉 be an ISS. (i) If S is SIR-
NNI then S is NNI. (ii) If S is SIR-SNNI then S is SNNI.

The interface V in Fig. 3 shows that an ISS can satisfy
SNNI/NNI but not SIR-SNNI/SIR-NNI.

III. Security Properties and Composition

In this section we study how the SIR-SNNI and SIR-
NNI properties respond to interface composition. We first
define interface composition and show that given two secure
interfaces the composition is not secure in general. Then we
present some conditions that guarantee that the composition
of two interfaces is secure if the interfaces are secure.

Composition of two IA is only defined if their actions are
disjoint except when input actions of one of the IA coincide
with some of the output actions of the other. Such actions are
intended to synchronize in a communication.

Definition 8: Let S and T be two IA, and let shared(S ,T) =

(AS ∩AT) be the set of shared actions. We say that S and T are
composable whenever shared(S ,T) = (AI

S ∩ AO
T) ∪ (AO

S ∩ AI
T).

Two ISS S = 〈S , Ah
S , A

l
S 〉 and T = 〈T, Ah

T , A
l
T 〉 are composable

if S and T are composable.
The product of two composable IA S and T is defined pretty

much as CSP parallel composition: (i) the state space of the
product is the product of the set of states of the components,
(ii) only shared actions can synchronize, i.e., both component
should perform a transition with the same synchronizing label
(one input, and the other output), and (iii) transitions with
non-shared actions are interleaved. Besides, shared actions are
hidden in the product.

Definition 9: Let S and T be composable IA. The product
S ⊗ T is the interface automaton defined by:
• QS⊗T = QS × QT with q0

S⊗T = (q0
S , q

0
T);

• AI
S⊗T = AI

S ∪ AI
T − shared(S ,T), AO

S⊗T = AO
S ∪ AO

T −

shared(S ,T), and AH
S⊗T = AH

S ∪ AH
T ∪ shared(S ,T); and

• (qS , qT)
a
−→S⊗T (q′S , q

′
T) if any of the following holds:

- a ∈ AS − shared(S ,T), qS
a
−→S q′S , and qT = q′T ;

- a ∈ AT − shared(S ,T), qT
a
−→S q′T , and qS = q′S ;

- a ∈ shared(S ,T), qS
a
−→S q′S , and qT

a
−→T q′T .

There may be reachable states on S ⊗ T for which one of the
components, say S , may produce an output shared action that
the other is not ready to accept (i.e., its corresponding input
is not available at the current state). Then S violates the input
assumption of T and this is not acceptable. States like these
are called error states.

Definition 10: Let S and T be composable IA. A product
state (qS , qT) ∈ QS⊗T is an error state if there is an action a ∈
shared(S ,T) s.t. either a ∈ AO

S , qS
a
−→S and qT

a
−→6 T , or a ∈ AO

T ,
qT

a
−→T and qS

a
−→6 S .

If the product S ⊗ T does not contain any reachable error
state, then each component satisfies the interface of the other
(i.e., the input assumptions) and thus are compatible. Instead,
the presence of a reachable error state is evidence that one
component is violating the interface of the other. This may
not be a major problem as long as the environment is able to
restrain of producing an output (an input to S ⊗ T) that leads
the product to the error state. Of course, it may be the case that
S ⊗ T does not provide any possible input to the environment
and reaches autonomously (i.e., via output or hidden actions)
an error state. In such a case we say that S ⊗T is incompatible.

Definition 11: Let S and T be composable IA and let S ⊗T
be its product. A state (qS , qT) ∈ QS⊗T is an incompatible
state if there is an error state reachable from (qS , qT) through
an autonomous execution. If a state is not incompatible, it is
compatible. If the initial state of S ⊗ T is compatible, then S
and T are compatible.

Finally, if two IA are compatible, it is possible to define
the interface for the resulting composition. Such interface is
the result of pruning all input transitions of the product that
lead to incompatible states i.e. states from which an error
state can be autonomously reached. Extending the definition
of composition to ISS is straightforward.

Definition 12: Let S and T be compatible IA. The compo-
sition S ‖ T is the IA that results from S ⊗ T by removing all
transition q

a
−→S⊗T q′ s.t. (i) q is a compatible state in S ⊗ T ,

(ii) a ∈ AI
S⊗T , and (iii) q′ is an incompatible state in S ⊗ T .

Given two composable ISS, S = 〈S , Ah
S , A

l
S 〉 and T =

〈T, Ah
T , A

l
T 〉, their composition, S ‖ T , is defined by the ISS

〈S ‖ T, (Ah
S ∪ Ah

T) − shared(S ,T), (Al
S ∪ Al

T) − shared(S ,T)〉.
It is known from [5] that neither BNNI nor BSNNI are pre-
served by interface parallel composition. The same happens for
SIR-NNI and SIR-BNNI properties. An example is reported
in Fig. 5. Despite this, we give sufficient conditions to ensure
that the composition of ISS results in a non-interferent ISS.
Basically, these conditions require that (i) the component ISS
are fully compatible, i.e. no error state is reached in the
composition (in any way, not only autonomously), and (ii) they
do not use confidential actions to synchronize. This is stated
in the following theorem.

Theorem 1: Let S = 〈S , Ah
S , A

l
S 〉 and T = 〈T, Ah

T , A
l
T 〉 be

two composable ISS such that shared(S ,T) ∩ (Ah
S ∪ Ah

T) = ∅.
If S ⊗ T has no reachable error states and S and T satisfy
SIR-SNNI (resp. SIR-NNI) then S ‖ T satisfies SIR-SNNI

284

s0 s1 s2 s3 s4

s5 s6 s7 s8

a? // b! // ε //
H2?

//

a? // b! //
H2?

//
H1?

��

Ŝ

t0 t1 t2
b? //

H2!
//

T̂

s0

s5, t0 s6, t0 s7, t1 s8, t2
a? // b; //

H2?
//

H1?
��

Ŝ ‖ T̂

Figure 5: SIR-SNNI/SIR-NNI properties are not preserved by
composition

(resp. SIR-NNI).
Proof: Define < by (sr, tr) < (sa, ta) iff sr <S sa and

tr <T ta with <S being a SIR between S \Ah
S and S/Ah

S and
similarly for <T . We show that < is a SIR between (S ‖ T)\Ah

and (S ‖ T)/Ah where Ah = (Ah
S∪Ah

T)−shared(S ,T) = Ah
S∪Ah

T .
Suppose (sr, tr) < (sa, ta). We proceed by case analysis on

the different transfer properties on Def 6. For case (a) suppose
(sr, tr)

a?
−→ (s′r, tr) and sr <S sa. Then there is s′a such that

sa
a?
−→ s′a and s′r < s′a. As a consequence of the absence of

error state in the product, we can ensure (sa, ta)
a?
−→ (s′a, ta) and

(s′r, tr) < (s′a, ta). The case (sr, tr)
a?
−→ (sr, t′r) is analogous. In

the same way we prove that condition (b) holds. For condition
(c), let (sa, ta)

a!
−→ (s′a, ta) and sr <S sa. Then there is s′r such

that sr ⇒
a!
−→ s′r and s′r <S s′a. Let ŝ be a state s.t. sr ⇒ ŝ

a!
−→ s′r.

Notice that all internal transition used to reach ŝ in S \Ah can
be executed in (S ‖ T)\Ah. Then (sr, tr) ⇒ (ŝ, tr)

a!
−→ (s′r, tr)

and (s′r, tr) < (s′a, ta). The case (sa, ta)
a!
−→ (sa, t′a) is analogous.

We finally prove that condition (d) holds. Cases (sa, ta)
ε
−→

(s′a, ta) and (sa, ta)
ε
−→ (sa, t′a) are similar to the previous one.

Suppose now (sa, ta)
εc
−→ (s′a, t

′
a) where εc is an internal action

resulting from a synchronization between S and T on common
action c. Notice c ∈ Al

S ∩ Al
T . W.l.o.g suppose sa

c?
−→ s′a and

ta
c!
−→ t′a. Repeating previous reasoning, we can ensure there is

state t̂ such that (sr, tr)⇒ (sr, t̂)
c;
−→ (s′r, t

′
r) and (s′r, t

′
r) < (s′a, t

′
a).

This result is useful when we develop all the components of
a complex system. As we have total control of each component
design, it is possible to achieve full compatibility. In this way,
to ensure that the composed system is secure, we only have
to develop secure components s.t. every high action of the
component is a high action of the final system. This result can
also be used when we are not in control of all components,
i.e. we want use components not developed by us. The idea
is simple, given two ISS, define the high actions used in the
communication process as low and check if the resulting ISS
satisfies the hypothesis of Theorem 1.

Corollary 2: Let S = 〈S , Ah
S , A

l
S 〉 and T = 〈T, Ah

T , A
l
T 〉 be

two composable ISS. Let S′ = 〈S , Ah
S − shared(S ,T), Al

S ∪

shared(S ,T)〉 and T ′ = 〈T, Ah
T − shared(S ,T), Al

T ∪

shared(S ,T)〉. If S ⊗ T has no reachable error states and S′

and T ′ satisfy SIR-SNNI (resp. SIR-NNI) then S ‖ T satisfies
SIR-SNNI (resp. SIR-NNI).

This result is based on the fact that actions used in the
synchronization become hidden in the composition, then it is
not important the confidential level of the actions.

IV. Deriving Secure Interfaces

As we have just seen, the composition of secure interfaces
may yield a new insecure interface. This may happen when the
components are already available but they where designed in-
dependently and they were not meant to interact. The question
that arises then is if there is a way to derive a secure interface
out of an insecure one. To derive the secure interface, we
adapt the idea used to define ISS composition (see Def. 12);
i.e. we restrict some input transitions in order to avoid insecure
behavior. We then obtained a composed system that offers less
services than the original one but is secure. In this section we
present an algorithm to derive an ISS satisfying SIR-SNNI
(or SIR-NNI) from a given ISS whenever possible. Since the
method is similar in both cases, we focus on SIR-SNNI.

This algorithm is based on the algorithm presented in [5]
to derive interfaces that satisfy BSNNI/BNNI, which in turn
is based on the algorithm for bisimulation checking of [10].
The differences between both algorithm are consequence of
the definition of SIR but the idea behind the procedure is
the same. The new algorithm works as follows: given two
interfaces V and V′, the second without high actions, (i) V
is semi-saturated adding all weak transitions ⇒

a
−→; (ii) a

semi-synchronous product of V and V′ is constructed where
transitions synchronize whenever they have the same label
and satisfy some particular conditions; (iii) whenever there
is a mismatching transition, a new transition is added on the
product leading to a special fail state; (iv) if reaching a fail
state is inevitable then V 6< V′; if there is always a way to
avoid reaching a fail state, then V < V′ . We later define
properly semi-saturation, semi-synchronous product and what
means inevitably reaching a fail state. In this way, given an ISS
S, we can check if S\Ah < S/Ah, if the check succeeds, then
S satisfies SIR-SNNI (see Theorem 2). If it does not succeed,
then we provide an algorithm to decide whether S can be
transformed into a secure ISS by controlling (i.e. pruning) in-
put transitions. This decision mechanism categorizes insecure
interfaces in two different classes: the class of interfaces that
can surely be transformed into secure one and the class in
which this is not possible.

The algorithm to synthesize the secure ISS (once it is
decided that it is possible) selects an input transition to prune,
prune it, and checks whether the resulting ISS is secure. If
it is not, a new input transition is selected and pruned. The
process is repeated until it gets a secure interface. This process
is shown to terminate (see Theorem 3).

Checking Strict Inputs Refinement. Different labels for
internal actions do not play any role in a SIR relation. Then, to

285

simplify, we replace all labels of internal action for two new
ones: ε and ε′. The label ε′ is used to represent an internal
transition that can be removed; in our context, an internal
action can be removed because it is a high input action that was
hidden in order to check for security. Label ε is used to identify
internal action that cannot be removed. This is formalized in
the following definition, which includes self-loops with ε and
ε′ for future simplifications.

Definition 13: Let S be an IA and B ⊆ AH
S . De-

fine S marking B or marking B in S as the IA S B =
〈QS , q0

S , A
I
S , A

O
S , {ε, ε

′},−→S B〉 where −→S B is the least relation
satisfying following rules:

q
ε
−→S B q q

ε′

−→S B q
q

a
−→S q′ a ∈ AI

S ∪ AO
S

q
a
−→S B q′

q
a
−→S q′ a ∈ B

q
ε′

−→S B q′

q
a
−→S q′ a ∈ AH

S − B

q
ε
−→S B q′

Given an ISS S, the marking B in S, notation SB, is the ISS
obtained after marking B in the underlying IA.

A natural way to check weak bisimulation is to saturate the
transition system i.e., to add a new transition q

a
−→ q′ to the

model for each weak transition q
a
⇒ q′, and then checking

strong bisimulation on the saturated transition system. Apply-
ing a similar idea we can check if there is a SIR relation. We
add a transition q

a
−→ q′ whenever q⇒

a
−→ q′ with a an output

action. We call this process semi-saturation.
Definition 14: Let S be an IA such that AH

S = {ε, ε′}. The
semi-saturation of S is the IA S = 〈QS , q0

S , A
I
S , A

O
S , {ε, ε

′},−→S 〉

where −→S is the smallest relation satisfying the following
rules:

q
a
−→S q′

q
a
−→S q′

q
ε
−→S q′ q′

a
−→S q′′ a ∈ AO

S

q
a
−→S q′′

Given an ISS S, its semi-saturation, S, is the ISS obtained
by saturating the underlying IA.

The last definition ensure that: if a ∈ AO then q⇒
a
−→S q′ iff

q
a
−→S q′.
Following [5] and [10], the definition of the synchronous

products follows from the conditions of the relation being
checked, in this case SIR. First, we recapitulate these condi-
tions and then we present the formal definition. If S < T then
for two states s ∈ QS and t ∈ QT s.t. s < t, every output/hidden
action that t can execute has to be simulated by s (probably
using internal action); on the other hand, t is not forced to
simulate output/hidden actions from s. Finally, both states have
to simulate all input action that can be executed by the other
one without performing previously any internal action. All
these restrictions become evident from the definition of SIR.
When a condition is not satisfied, a transition to a special state
fail is created. Taking this into account we define the semi-
synchronized product.

Definition 15: Let S be a semi-saturated IA and T be an IA
such that AX

S = AX
T = AX for X ∈ {I,O} and AH

S = AH
T = {ε, ε′}.

The semi-synchronous product of S and T is the IA S × T =

〈(QS ×QT)∪ {fail}, (q0
S , q

0
T), AI , AO, {ε, ε′},−→S×T 〉 where −→S×T

is the smallest relation satisfying following rules:

qS
a
−→S q′S qT

a
−→T q′T

(qS , qT)
a
−→S×T (q′S , q

′
T)

qS
ε′

−→S q′S qT
ε
−→T q′T

(qS , qT)
ε′

−→S×T (q′S , q
′
T)

qS
ε
−→S q′S qT

ε′

−→T q′T

(qS , qT)
ε′

−→S×T (q′S , q
′
T)

qS
a
−→S qT

a
−→6 T a ∈ AI

(qS , qT)
a
−→S×T fail

qS
a
−→6 S qT

a
−→T

(qS , qT)
a
−→S×T fail

Given S = 〈S , Ah
S
, Al
S
〉 and T = 〈T, Ah

T
, Al
T
〉 with S and T

satisfying conditions above and Am
S

= Am
T

= Am for m ∈ {l, h},
then the semi-synchronous product of S and T is defined by
the ISS S × T = 〈S × T, Ah, Al〉.

Let us show how we can use synchronous product to check
and derive, whenever it is possible, a SIR relation. If there is a
state (qS , qT) such that (qS , qT)

a
−→S×T fail then it is evident that

qS 6< qT . Moreover, suppose the synchronous product only has
states (qS , qT) and fail and the transition (qS , qT)

a
−→S×T fail.

If a ∈ AO, as the progress from (qS , qT) is autonomous, there
is no way to control the execution of a! and hence there is
no way to avoid qS 6< qT . Then, we say that (qS , qT) fails the
SIR-relation test. On the other hand, if a ∈ AI , a state offers
a service that the other does not. In this case, removing the
input transition a (the interface offers less services), we avoid
transition (qS , qT)

a
−→S×T fail in the synchronous product and

we get two states such that qS < qT , moreover, we get two
interfaces related by a SIR relation. In this case, we say that
(qS , qT) may pass the SIR relation test. In a more complex
synchronous product, the “failure” in the state (qS , qT) has
to be propagated backwards appropriately to identify pairs of
states that cannot be related. This propagation is done by the
definitions of two different sets: Fail and May. The set Fail
contains those pairs that are not related by a refinement and
there is no set of input transitions to prune so that the pair
may become related by the refinement. On the other hand,
May contains pairs of states that are not related but will be
related if some transition is pruned. States not in Fail ∪May,
belong to the set Pass. All pairs in Pass are related by a SIR
relation.

Definition 16: Let S × T be a synchronous product. We
define the sets Fail,May,Pass ⊆ QS×T respectively by:
• Fail = ∪∞i=0Faili where Faili is defined in Table I. If q ∈

Fail, we say that the pair q fails the SIR relation test.
• May = ∪∞i=0Mayi where Mayi is defined in Table II. If

q ∈ May, we say that the pair q may pass the SIR relation
test.

• Pass = QS×T − (May ∪ Fail). If q ∈ Pass, we say that the
pair q passes the SIR relation test

If the initial state of the underlying IA of an ISS S×T passes
(may pass, fails) the SIR relation test, we say that S×T passes
(may pass, fails) the SIR relation test.
The proof of the following lemma is based on the proof of
the algorithm to check bisimulation in [10], for this reason we
only present a proof sketch. Our proof deviates a little from the
original as a consequence of not all mismatching transitions
are problematic.

286

Fail0 = {(qS , qT) : (qS , qT)
a
−→S×T fail, a < AI} ∪ {fail}

Failk+1 = Failk
∪ {(qS , qT) : a ∈ AO ∪ A, qT

a
−→ q′T , (∀q′S : (qS , qT)

a
−→ (q′S , q

′
T) : (q′S , q

′
T) ∈ Failk)}

Table I: The Fail set.

May0 =
⋃

q
a
−→q′∈(−→S ∪−→T)

May0

q
a
−→q′

Mayk+1 = Mayk ∪
⋃

q
a
−→q′∈(−→S ∪−→T)

Mayk+1

q
a
−→q′

May0

q
a
−→q′

= {(qS , qT) : (q = qS ∨ q = qT), a ∈ AI , (qS , qT)
a
−→S×T fail}

Mayk+1

qS
a
−→q′S

= {(qS , qT) < Fail : a ∈ A, qS
a
−→ q′S , (∀q′T : (qS , qT)

a
−→ (q′S , q

′
T) : (q′S , q

′
T) ∈ Fail ∪Mayk)}

Mayk+1

qT
a
−→q′T

= {(qS , qT) < Fail : a ∈ A, qT
a
−→ q′T , (∀q′S : (qS , qT)

a
−→ (q′S , q

′
T) : (q′S , q

′
T) ∈ Fail ∪Mayk)}

Table II: The May set definition.

Lemma 3: A semi-synchronized product S × T passes the
SIR relation test iff S < T .

Proof sketch: Since (May ∪ Fail) ∩ Pass = ∅, we only
have to prove that (i) (qS , qT) ∈ May ∪ Fail implies qS 6< qT

and (ii) if (qS , qT) ∈ Pass then qS < qT . The proof of (i)
is by induction on k in Mayk and Failk. The proof of (ii) is
straightforward after showing that, given a state (s, t) ∈ QS×T∩

Pass, then:
1) if s

a
−→ s′ and a ∈ AI then there is a state t′ s.t. there is a

transition (s, t)
a
−→ (s′, t′) and (s′, t′) ∈ Pass.

2) if t
a
−→ t′ then there is a state s′ s.t. there is a transition

(s, t)
a
−→ (s′, t′) and (s′, t′) ∈ Pass.

The proof of both statements is by case analysis on a obtaining
always a contradiction.

Using this lemma, we can verify if an interface is SIR-
SNNI, since S is SIR-SNNI if S \Ah is refined by S/Ah.
Notice that we cannot use S \Ah and S/Ah to create a semi-
synchronized product; in general, S \Ah does not satisfy AH =

{ε, ε′} and it is not semi-saturated. This can be solved marking
∅ in S \Ah and then semi-saturating the interface, i.e. we
work with (S \Ah)∅ instead of S \Ah. Similarly, S/Ah does not
satisfy AH = {ε, ε′}. Since ε′ is used to represent the internal
action that can be removed, we solve this problem marking
Ah,I in S/Ah, i.e. we replace S/Ah by (S/Ah)Ah,I . Therefore,
verifying that S satisfies SIR-SNNI amounts to checking
whether PS = S \Ah

∅ × (S/Ah)Ah,I passes the refinement test.
Applying a similar reasoning, if we are interested on verifying
SIR-NNI, we can check if ((S \Ah,I)/Ah,O)∅ × (S/Ah)Ah,I passes
the SIR-relation test. Then we have a decision algorithm to
check whether an ISS satisfies SIR-SNNI or SIR-NNI. We
state it in the following theorem.

Theorem 2: Let S = 〈S , Ah, Al〉 be an ISS.
1) S satisfies SIR-SNNI iff (S\Ah)∅ × (S/Ah)Ah,I passes the

SIR-relation test.
2) S satisfies SIR-NNI iff ((S \Ah,I)/Ah,O)∅×(S/Ah)Ah,I passes

the SIR-relation test.

Synthesizing Secure ISS. In the following, we show that
if a synchronized product PS may pass the SIR relation test
then there is a set of input transition that can be pruned so
that the resulting interface is secure. First, we need to select
which are the candidate input actions to be removed. So, if S
is an ISS such that PS may pass the SIR-relation test, the set
EC(S) ⊆ −→∩Q×AI ×Q (see Table III) is the set of eliminable
candidates.

All transitions in EC(S) are involved in a synchronization
that connects a source pair that may pass the SIR-relation
test and a failing target. This can happen in four different
situations. The first one is the basic case, in which one of
the components of the pair can perform a low input transition
that cannot be matched by the other. The following two cases
are symmetric and consider the case in which both sides can
perform an equally low input transition but end up in a failing
state. The last case includes high input actions that are hidden
in the synchronized product and always reach a pair that fails.
Notice that if PS may pass the bisimulation test then EC(S) ,
∅.

An important result is that no new failing pair of states is
introduced by removing eliminable candidates. Moreover, if a
pair of states fails in the synchronous product of the original
ISS and it is also present in the synchronous product of the
reduced ISS, then it also fails in this ISS. This ensures that a
synchronous product that may pass the SIR-relation test, will
not fail after pruning. In a sense, Lemma 4 below states that
the sets Fail and Pass ∪May remain invariant.

Lemma 4: Let S be an ISS s.t. PS may pass the SIR-
relation test. Let S′ be an ISS obtained by removing one
transition in EC(S) from S (i.e. −→S′ = −→S − {q

a
−→ q′}, pro-

vided q
a
−→ q′ ∈ EC(S), and unreachable states are removed

form S′). Then it holds that: (i) FailPS′ = FailPS ∩ QPS′ ;
(ii) (PassPS ∪MayPS) ∩ QPS′ = PassPS′ ∪MayPS′

1.

1Subindices in FailPS , MayPS , etc. indicate that these sets were obtained
from the synchronous product PS

287

EC(PS) ={q
a
−→ q′ : (∃q̂ : (q, q̂) ∈ May0

q
a
−→q′
∨ (q̂, q) ∈ May0

q
a
−→q′

)} ∪ (1)

{q
a
−→ q′ : (∃q̂ : (q, q̂) ∈ May1

q
a
−→q′

, (∀q̂′ : (q, q̂)
a
−→ (q′, q̂′) : (q′, q̂′) ∈ Fail))} ∪ (2)

{q
a
−→ q′ : (∃q̂ : (q̂, q) ∈ May1

q
a
−→q′

, (∀q̂′ : (q̂, q)
a
−→ (q̂′, q′) : (q̂′, q′) ∈ Fail))} ∪ (3)

{q
a
−→ q′ : a ∈ Ah,I , q

a
−→ q′, (∃q̂ : (q̂, q) ∈ May1

q
ε′

−→q′
, (∀q̂′ : (q̂, q)

ε′

−→ (q̂′, q′) : (q̂′, q′) ∈ Fail))} (4)

Table III: Set of eliminable candidates.

Proof: We only show (i). (ii) is an immediate consequence
of (i).

(Case ⊆). Clearly QPS ′ ⊆ QPS . Suppose q
b?
−→ q′ ∈

EC(S) is the transition that is removed. By induction on
k we show Failk

q
a
−→q′,PS′

⊆ Failk
q

a
−→q′,PS

for all k. This im-

plies FailkPS′ ⊆ FailkPS and then FailPS′ ⊆ FailPS . Suppose
(qr, qa) ∈ Fail0

qa
a
−→q′a,PS′

. By definition, action a < AI ∪ {ε′} and

(qr, qa)
a
−→ fail. Then a , b? and therefore (qr, qa)

a
−→ fail

belongs to PS. Then (qr, qa) ∈ Fail0
qa

a
−→q′a,PS

. Suppose now

(qr, qa) ∈ Failk+1

qa
a
−→q′a,PS′

. Then a < AI∪{ε′} and (∀q′r : (qr, qa)
a
−→

(q′r, q
′
a) : (q′r, q

′
a) ∈ FailkPS′). Notice that {(q′r, q

′
a) : (qr, qa)

a
−→PS

(q′r, q
′
a)} = {(q′r, q

′
a) : (qr, qa)

a
−→PS′ (q′r, q

′
a)} as consequence

of b? ∈ AI ∪ {ε′}. By induction hypothesis FailkPS′ ⊆ FailkPS ,
then ∀q′a : (qr, qa)

a
−→ (q′r, q

′
a) : (q′r, q

′
a) ∈ FailkPS and we get

(qr, qa) ∈ Failk+1

qa
a
−→q′a,PS

and (qr, qa) ∈ Failk+1
PS .

(Case (⊇).) We show by induction on k that FailkPS′ ⊇
FailkPS ∩ QPS′ for all k. Let (qr, qa) ∈ Fail0PS ∩ QPS′ . Moreover,
w.l.o.g. suppose (qr, qa) ∈ Fail0

qa
a
−→q′a,PS

. Since a < AI , the

transition qr
a
−→ q′r cannot be removed and since qr

a
−→6 , then it

holds that (qr, qa) ∈ Fail0
qr

a
−→q′r ,PS′

⊆ Fail0PS′ . For the induction

case, suppose w.l.o.g. (qr, qa) ∈ Failk+1

qa
a
−→q′a,PS

∩ QPS′ . Then

(∀q′r : (qr, qa)
a
−→ (q′r, q

′
a) : (q′r, q

′
a) ∈ FailkPS). Since (qr, qa)

is reachable in S′ and a < AI , all pair (q′r, q
′
a) is reachable

in S′. By induction hypothesis, (q′r, q
′
a) ∈ FailkPS′ and then

(qr, qa) ∈ Failk+1

qa
a
−→q′a,PS

⊆ Failk+1
PS .

The following theorem is the main result of this section.
Notice that its proof defines the algorithm to prune input
actions and obtain a secure interface. A similar result holds
for SIR-NNI.

Theorem 3: Let S be an ISS such that PS may pass the SIR
relation test. Then there is an input transition set −→χ such that,
if S′ is the ISS obtained from S by removing all transitions
in −→χ, S′ is SIR-SNNI.

Proof: We only report a proof sketch. The complete proof
follows in the same way as the proof of Theorem 4.10 in
[5]. Let S′ be an ISS obtained from S by removing one
transition from the set EC(S). Lemma 4 ensures that S′ may
pass or passes the SIR relation test. If S′ passes the SIR

relation test, we stop. If S′ may pass the SIR relation test,
we repeat the process until we obtain an ISS that passes the
test. Since the transition set is finite, in the worst case, we
will continue with the process until obtaining an ISS with an
empty set of eliminable candidates. If this ISS may pass the
SIR-relation test we get a contradiction with the fact that the
set of eliminable candidates is empty, then this ISS has to
pass the test. Finally, −→χ is composed by the set of transitions
removed along the way.

V. Concluding remarks

Our contribution. We have presented a framework to ma-
nipulate stateful interfaces for security and their composition.
In this context, an ISS is secure if it satisfies the SIR-SNNI (or
SIR-NNI) property. SIR-SNNI and SIR-NNI properties have
been introduced in this paper and we showed that are suitable
definitions of non interference for interfaces; moreover, SIR-
SNNI and SIR-NNI imply (traced-based) SNNI and NNI,
respectively. We have studied how the properties behaves
w.r.t composition and we have presented sufficient conditions
ensuring the preservation of the properties under composition.
We also provided a synthesis algorithm that decides whether
an ISS can be turned into a secure ISS by controlling input
transitions.

Related work. Little work has been developed to synthesis
secure system. Cassez et al. [11] resolve a synthesis problem
for SNNI in a framework similar to ours. In [12] and [13]
the results are extended for timed non-interference on timed
automata. Similar results presented in this paper can be found
in [5] for BSNNI and BNNI. It is worthwhile to note that
the BSNNI/BNNI based algorithm presented in [5] can only
synthesize a secure interface through the control of low inputs.
It maybe the case that a secure interface can be synthesized by
controlling some high input, in which case the algorithm will
only announce that it cannot determine whether it is possible
to synthesize a secure interface. This is not the case on the
SIR-SNNI/SIR-NNI based algorithm presented in this paper,
which can always synthesize a secure interface if this is indeed
possible.

Applications. The presented results can be useful in the con-
text of web services. For example, in [14], an IA is constructed
based on behavioral descriptions of a web service, which are
expressed in OWL-S language. The IA constructed is used to
find web services s.t. when they are composed, the resulting

288

interface satisfies the behavioral description. [15] addresses the
problem of adapting the behavior of an interface to carry out
a successful communication. Using this kind of techniques,
we can remove input action to get a secure interface. Finally,
[16] proposes a model to characterize security properties of a
software component and show how to use this information
to create compositional security contracts to ensure secure
web service composition. In this context, SIR-SNNI and SIR-
NNI can be new security attributes. Moreover, the result of
Corollary 2 can be useful to create compositional security
contracts for the new attributes.

Acknowledgment

We would like to thank Miguel Pagano for his useful
comments on the draft version of this article.

References
[1] L. de Alfaro and T. A. Henzinger, “Interface theories for component-

based design,” in EMSOFT, ser. LNCS, T. A. Henzinger and C. M.
Kirsch, Eds., vol. 2211. Springer, 2001.

[2] L. de Alfaro and T. H. Henzinger, “Interface-based design,” in Engineer-
ing Theories of Software-Intensive Systems, ser. Nato Science Series,
M. B. et al., Ed. Springer, 2005, pp. 83–104.

[3] A. Chakrabarti, L. de Alfaro, T. Henzinger, and M. Stoelinga, “Resource
interfaces,” in EMSOFT. LNCS, Springer, January 2003, pp. 117–133.

[4] L. de Alfaro, T. Henzinger, and M. Stoelinga, “Timed interfaces,” in
Procs. of EMSOFT. LNCS, Springer, January 2002, pp. 108–122.

[5] M. Lee and P. R. D’Argenio, “Describing secure interfaces with interface
automata,” Electron. Notes Theor. Comput. Sci., vol. 264, no. 1, pp. 107–
123, 2010.

[6] J. A. Goguen and J. Meseguer, “Security policies and security models,”
in IEEE Symposium on Security and Privacy, 1982, pp. 11–20.

[7] R. Focardi and R. Gorrieri, “Classification of security properties (part
i: Information flow),” in Procs. of FOSAD 2000, ser. LNCS, vol. 2171.
Springer, 2001, pp. 331–396.

[8] L. de Alfaro and T. A. Henzinger, “Interface automata,” in ESEC /

SIGSOFT FSE. ACM Press, 2001, pp. 109–120.
[9] R. J. V. Glabbeek, “The linear time - branching time spectrum i. the

semantics of concrete, sequential processes,” in In Handbook of Process
Algebra. Elsevier, 2001, pp. 3–99.

[10] J.-C. Fernandez and L. Mounier, ““On the fly” verification of be-
havioural equivalences and preorders,” in Procs. of CAV ’91, ser. LNCS,
vol. 575. Springer, 1991, pp. 181–191.

[11] F. Cassez, J. Mullins, and O. H. Roux, “Synthesis of non-interferent
systems,” in MMM-ACNS’07, ser. Comm. in Comp. and Inform. Sc.,
vol. 1. Springer, 2007, pp. 307–321.

[12] G. Gardey, J. Mullins, and O. H. Roux, “Non-interference control
synthesis for security timed automata,” Electr. Notes Theor. Comput.
Sci., vol. 180, no. 1, pp. 35–53, 2007.

[13] G. Benattar, F. Cassez, D. Lime, and O. H. Roux, “Synthesis of
non-interferent timed systems,” in FORMATS, ser. Lecture Notes in
Computer Science, J. Ouaknine and F. W. Vaandrager, Eds., vol. 5813.
Springer, 2009, pp. 28–42.

[14] S. Hashemian and F. Mavaddat, “A graph-based approach to web ser-
vices composition,” in Applications and the Internet, 2005. Proceedings.
The 2005 Symposium on. IEEE, 2005, pp. 183–189.

[15] M. Dumas, M. Spork, and K. Wang, Eds., Adapt or Perish: Algebra and
Visual Notation for Service Interface Adaptation, ser. LNCS, vol. 4102.
Springer, 2006.

[16] K. Khan, J. Han, and Y. Zheng, “A framework for an active interface to
characterise compositional security contracts of software components,”
in Procs of ASWEC ’01. Washington, DC, USA: IEEE Computer
Society, 2001, p. 117.

289

